o

Least Authority

PRIVACY MATTERS

Zebra NUG.1 Network Upgrade
Security Audit Report

ZCG

Final Audit Report: 3 November 2025

Table of Contents

Overview

Background
Project Dates
Review Team
Coverage
Target Code and Revision
Supporting Documentation
Areas of Concern
Findings
General Comments
Code Quality
Documentation and Code Comments
Scope
Specific Issues & Suggestions
Suggestions
Suggestion 1: Improve Constant Comment
Suggestion 2: Update Inconsistent Error Messages
Suggestion 3: Update Inconsistent Definition of Activation Height
Suggestion 4: Update Variable to Plural Form
About Least Authority

Our Methodology

Security Audit Report | Zebra NU6.1 Network Upgrade | ZCG
3 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background

As the Zcash Ecosystem Security Lead, Least Authority reviewed the changes made to Zebra that will be
introduced in the NU6.1 network upgrade.

Project Dates

August 20, 2025 - August 27, 2025: Initial Code Review (Completed)
August 29, 2025: Delivery of Initial Audit Report (Completed)
November 3, 2025: Verification Review (Completed)

November 3, 2025: Delivery of Final Audit Report (Completed)

Review Team

Poulami Das, Security / Cryptography Researcher and Engineer
Eduardo Morais, Cryptography Researcher and Engineer

Burak Atasoy, Project Manager

Jessy Bissal, Technical Editor

Coverage

Target Code and Revision

For this audit, we performed research, investigation, and review of the Zebra NU6.1 Updates followed by
issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repository is considered in scope for the review:
e Zebra repository:

https://qithub.com/ZcashFoundation/zebra
Specifically, we examined the following Git revisions for our initial review:

b01446f66eba95748d0b761bf417d2744a44c874
3bac7fd6bbeb74df56d4aa2b14c9916c8de6d98e
82ff285582df10d809f1a49321b561bba1d71b07
639c09af08cebdff8ca9ealdb31d6ac26c0c6705
a986a5421e3e1319cc004e2913a7a5ed7c13a468
5d1dd798c6b69959209612b7f659dcd3cfc799b3

The following Git milestone describes the scope and provides documentation for the revision:

e https://github.com/ZcashFoundation/zebra/milestone/43

For the review, this repository was cloned for use during the audit and for reference in this report:

e https://github.com/LeastAuthority/zebra

For the verification, we examined the Git revision:

Security Audit Report | Zebra NU6.1 Network Upgrade | ZCG
3 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ZcashFoundation/zebra
https://github.com/ZcashFoundation/zebra/milestone/43
https://github.com/LeastAuthority/zcashfoundation-zebra

o e422d2f4e5134ce2233282405a8578d3077¢c160f

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation

The following documentation was available to the review team:
e https://zips.z.cash/draft-ecc-community-and-coinholder
https://zips.z.cash/zip-0201
https://zips.z.cash/zip-0255
https://zips.z.cash/zip-1015
https://zips.z.cash/zip-1016
https://zips.z.cash/zip-0271

In addition, this audit report references the following document:
e Previous Least Authority Report for NU6:
https://leastauthority.com/wp-content/uploads/2024/11/Least-Authority-ZCG-Zcashd-NU6-Updat
es-Final-Audit-Report.pdf

Areas of Concern

Our investigation focused on the following areas:

Correctness of the implementation;

Vulnerabilities within each component and whether the interaction between the components is
secure;

Protection against malicious attacks and other ways to exploit;

Consistency of the implementation with the specifications;

Balance violation;

Potential loss of funds; and

Anything else as identified during the initial analysis phase.

Findings

General Comments

The Zebra project is a Rust implementation of a Zcash node, developed by the Zcash Foundation as an
alternative to the reference zcashd client. Its core functionality centers on validating blocks, enforcing
consensus rules, and managing the Zcash ledger. Zebra plays a key role in supporting the decentralization
of the Zcash network, strengthening security through independent implementations, and facilitating
protocol upgrades such as NU6.1.

We audited the Zebra repository updates associated with the NU6.1 milestone, as defined in ZIP
specification 255, along with the underlying core ZIPs of 201,271, and 1816. ZIP 255 specifies important
constants, including the consensus branch ID and the activation height for testnet, and mandates
minimum supported protocol versions for both testnet and mainnet. The peer-management rules from
ZIP 201 apply unchanged in ZIP 255.

Security Audit Report | Zebra NU6.1 Network Upgrade | ZCG
3 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://zips.z.cash/draft-ecc-community-and-coinholder
https://zips.z.cash/zip-0201
https://zips.z.cash/zip-0255
https://zips.z.cash/zip-1015
https://zips.z.cash/zip-1016
https://zips.z.cash/zip-0271
https://leastauthority.com/wp-content/uploads/2024/11/Least-Authority-ZCG-Zcashd-NU6-Updates-Final-Audit-Report.pdf
https://leastauthority.com/wp-content/uploads/2024/11/Least-Authority-ZCG-Zcashd-NU6-Updates-Final-Audit-Report.pdf

ZIP 271 introduces a one-time disbursement of all funds from the Deferred Dev Fund Lockbox to a
transparent P2SH multisig address at the moment of activation, from which key-holders will allocate
grants, in accordance with the rules defined in the Community and Coinholder Funding Model (ZIP 1816).
Additionally, ZIP 271 proposes extending protocol-based development funding beyond the scheduled end
of existing streams defined in ZIP 1015, introducing mechanisms for managing lockbox accruals. It
emphasizes security by requiring multisig controls that remain resilient even if one of the parties
becomes uncooperative or loses their keys. ZIP 1016 focuses on the rules of the Community and
Coinholder Funding Model, under which 8% of block rewards go to Zcash Community Grants (ZCG), and
12% accrue to a coinholder-controlled fund, initially seeded by the Deferred Dev Fund Lockbox.

We compared the implementation changes against their specifications in ZIP 255 and related ZIPs, and
found that the code matches the required changes. In particular, we reviewed the associated PRs: #9603,
#9754, #9747, #9757, and #9762, which implement the mechanisms for one-time lockbox disbursement
and funding stream extension, as per ZIP 271 and the corresponding Testnet parameters. These
mechanisms are not yet implemented for mainnet, as the specification currently lacks the necessary
information on activation height, recipient address, funding stream start, and end heights for mainnet.

We examined block and transaction validation logic for susceptibility to fund manipulation or draining
attacks and did not identify any critical issues.

We also reviewed interactions with third-party contracts and dependencies, and found no vulnerabilities or
untrusted code execution paths.

In addition to these main areas, we identified a few code and documentation concerns that, while not
security-critical, could improve clarity and maintainability.

Dependencies

Our team did not identify any vulnerabilities in the implementation's use of dependencies.

Code Quality

We performed a manual review of the in-scope codebase and found it to be of high quality, well organized,
and generally aligned with development best practices.

However, during our review, we identified several areas for improvement, including duplicated test vector
error messages representing different logic, inconsistent handling of constants, and inconsistent variable
naming. We recommend addressing these issues to help maintain consistency, accuracy, and clarity in
both the implementation and accompanying comments (Suggestion 2, Suggestion 3, Suggestion 4).

Tests

We found the tests to be sufficient, covering both the basic functionality of the protocol and tests for
invalid cases.

Documentation and Code Comments

Along with reviewing the code, our team reviewed ZIPs 201, 255, 271, and 1016. We found the
documentation clear and correct, with no ambiguities, and noted one area where clarity could be
improved (Suggestion 1). In addition, we found the code comments sufficient.

Scope

The scope of this review was limited to changes introduced in the NU6.1 network upgrade.

Security Audit Report | Zebra NU6.1 Network Upgrade | ZCG
3 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://zips.z.cash/zip-0201
https://zips.z.cash/zip-0255
https://zips.z.cash/zip-0271
https://zips.z.cash/zip-1016

Specific Issues & Suggestions

We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Suggestion 1: Improve Constant Comment Resolved

Suggestion 2: Update Inconsistent Error Messages Resolved

Suggestion 3: Update Inconsistent Definition of Activation Height Resolved

Suggestion 4: Update Variable to Plural Form Unresolved
Suggestions

Suggestion 1: Improve Constant Comment

Location

diff

Synopsis

Although the value of the constant POST_NU6_1_FUNDING_STREAMS_NUM_ADDRESSES_TESTNET was
updated in commit 5d1dd798c6b69959209612b7f659dcd3cfc799b3, the comment above the
constant, starting on line 583, remained unchanged. The explanation for the change is given in the
description of PR 9786, as follows:

“We want to match the number of addresses defined in zcashd and ZIP 255 for the FPF funding streams on
Testnet.

37 addresses was correct for 1.26M blocks, but only 27 are needed now that the Testnet funding stream
ends after 939,500 blocks.

This PR will not change Zebra's behaviour (except that it will use less memory, but only 10 pointers worth /
80B).”

Mitigation
We recommend updating the comment to reflect the reasoning provided in PR 9786.

Status
The Zebra team has updated the comment in PR 9952.

Verification

Resolved.

Security Audit Report | Zebra NU6.1 Network Upgrade | ZCG
3 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zcashfoundation-zebra/commit/5d1dd798c6b69959209612b7f659dcd3cfc799b3
https://github.com/ZcashFoundation/zebra/commit/5d1dd798c6b69959209612b7f659dcd3cfc799b3
https://github.com/ZcashFoundation/zebra/pull/9786
https://github.com/ZcashFoundation/zebra/pull/9786
https://github.com/ZcashFoundation/zebra/pull/9952

Suggestion 2: Update Inconsistent Error Messages

Location

network/tests/vectors.rs#L377

network/tests/vectors.rs#1.394

network/tests/vectors.rs#1L490

network/tests/vectors.rs#lL 500

Synopsis

The unit test check_configured_funding_stream_constraints performs multiple checks. Each
check should have a clear error message. However, the check at line 394 has the same error message as
the check at line 377, indicating a copy/paste problem. Analyzing each check, it is possible to see that the
first check (at line 377) verifies the expected height, while the second one (at line 394) checks the
expected recipient. Similarly, the check at line 490 has the same error message as the check at line 500,
while carrying out a different check.

Mitigation
We recommend updating the error messages (at lines 394 and 5080) to reflect the unit test behavior.

Status
The Zebra team has updated the error messages in PR 9952.

Verification
Resolved.

Suggestion 3: Update Inconsistent Definition of Activation Height

Location

diff

Synopsis

A new constant, NU6_1_ACTIVATION_HEIGHT_TESTNET, was introduced to represent the activation
height. This constant is used to define the constant vector TESTNET_ACTIVATION_HEIGHTS. However,
other elements of the vector are not defined in the same way, leading to inconsistency. For instance, the
other elements are defined directly by calling block : :Height().

Mitigation

To improve clarity, we recommend defining constants for the activation height of each network update.
Each constant should include a descriptive comment and a link to the corresponding documentation,
following the pattern used for NU6 _1_ACTIVATION_HEIGHT_TESTNET.

Status

The Zebra team has updated the code in PR 9952 to align it with the implementation, as recommended in
this report.

Verification
Resolved.

Security Audit Report | Zebra NU6.1 Network Upgrade | ZCG
3 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/ZcashFoundation-zebra/blob/5d1dd798c6b69959209612b7f659dcd3cfc799b3/zebra-chain/src/parameters/network/tests/vectors.rs#L377
https://github.com/LeastAuthority/ZcashFoundation-zebra/blob/5d1dd798c6b69959209612b7f659dcd3cfc799b3/zebra-chain/src/parameters/network/tests/vectors.rs#L394
https://github.com/LeastAuthority/ZcashFoundation-zebra/blob/5d1dd798c6b69959209612b7f659dcd3cfc799b3/zebra-chain/src/parameters/network/tests/vectors.rs#L490
https://github.com/LeastAuthority/ZcashFoundation-zebra/blob/5d1dd798c6b69959209612b7f659dcd3cfc799b3/zebra-chain/src/parameters/network/tests/vectors.rs#L500
https://github.com/ZcashFoundation/zebra/pull/9952
https://github.com/LeastAuthority/ZcashFoundation-zebra/commit/a986a5421e3e1319cc004e2913a7a5ed7c13a468#diff-e8e567321611f41b3647da9de33aaaa7039df6eb36aab1173c4f77fdc1caf8cbR157
https://github.com/ZcashFoundation/zebra/pull/9952

Suggestion 4: Update Variable to Plural Form

Location

zebra-network/src/config.rs#lL21

Synopsis

The variable ConfiguredLockboxDisbursement should be referred to in its plural form,
ConfiguredLockboxDisbursements, to align with naming conventions and maintain consistency with
other variables such as expected_one_time_lockbox_disbursements and
one_time_lockbox_disbursements.

Mitigation
We recommend renaming the variable to its plural form and updating all corresponding references
throughout the codebase.

Status
The Zebra team has opened PR 9952 to update the variable, but the change was not applied.

Verification

Unresolved.

Security Audit Report | Zebra NU6.1 Network Upgrade | ZCG
3 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/ZcashFoundation-zebra/blob/audit/zebra-network/src/config.rs#L21
https://github.com/ZcashFoundation/zebra/pull/9952

About Least Authority

We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit

https://leastauthority.com/security-consulting/.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis

Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Security Audit Report | Zebra NU6.1 Network Upgrade | ZCG
3 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results

We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions

We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing

Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Zebra NU6.1 Network Upgrade | ZCG
3 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Zebra NU6.1 Network Upgrade
	Overview
	Background
	Project Dates
	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	Dependencies
	Code Quality
	Tests

	Documentation and Code Comments
	Scope

	Specific Issues & Suggestions
	Suggestions
	Suggestion 1: Improve Constant Comment
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 2: Update Inconsistent Error Messages
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: Update Inconsistent Definition of Activation Height
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 4: Update Variable to Plural Form
	Location
	Synopsis
	Mitigation
	Status
	Verification

	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

