

Kotlin and Swift Payment URI Prototypes
Security Audit Report
ZCG
Final Audit Report: 11 June 2025

Table of Contents
Overview

Background
Project Dates
Review Team

Coverage
Target Code and Revision
Supporting Documentation
Areas of Concern

Findings
General Comments

System Design
Code Quality
Documentation and Code Comments
Scope

Specific Issues & Suggestions
Issue A: URI Parser Accepts Sprout Addresses
Issue B: URI Parser Allows Transparent Unified Addresses To Have Memos
Issue C: [Kotlin] Parser Decodes Plus Sign to Space in Parameter Values
Issue D: [Kotlin] Parser Uses System’s Default Character Set When Decoding Base64
Issue E: [Kotlin] Parser Does Not Allow Amount To Be Zero
Issue F: Parser Does Not Allow Amount to Be Omitted
Issue G: Parser Accepts Any Unicode Letter or Digit in Address
Issue H: Parser Does Not Accept Parameters Without Values
Issue I: [Kotlin] Encoder Produces Invalid URI for Payment Request With Multiple Payments
Issue J: [Kotlin] Encoder Produces Invalid URI for Single Address With No Other Parameters
Issue K: [Kotlin] Parser Does Not Declare the Exceptions It Throws
Issue L: [Kotlin] Parser Throws Unexpected Exception Types for Various Invalid Inputs

Suggestions
Suggestion 1: [Kotlin] Use Package Declarations Consistently
Suggestion 2: [Kotlin] Correctly Implement Deserialization for Singleton Objects
Suggestion 3: [Kotlin] Remove Redundant Code
Suggestion 4: [Kotlin] Correctly Define Character Sets
Suggestion 5: [Kotlin] Use Idiomatic Kotlin
Suggestion 6: Pass Context to the Parser
Suggestion 7: Add Configuration for Future req Parameters
Suggestion 8: [Kotlin] Use a Plugin To Check for Vulnerable Dependencies

About Least Authority
Our Methodology

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 1
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
ZCG has requested that Least Authority perform a security audit of the Kotlin and Swift Payment URI
prototypes, as defined in ZIP-321.

Project Dates
●​ February 10, 2025 - February 26, 2025: Initial Code Review (Completed)
●​ February 28, 2025: Delivery of Initial Audit Report (Completed)
●​ June 10, 2025: Verification Review (Completed)
●​ June 11, 2025: Delivery of Final Audit Report (Completed)

Review Team
●​ Nikos Iliakis, Security Researcher and Engineer
●​ Michael Rogers, Security Researcher and Engineer
●​ Burak Atasoy, Project Manager
●​ Jessy Bissal, Technical Editor

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Kotlin and Swift Payment URI
prototypes followed by issue reporting, along with mitigation and remediation instructions as outlined in
this report.

The following code repositories are considered in scope for the review:
●​ kotlin-payment-uri: ​

https://github.com/zecdev/zcash-kotlin-payment-uri
●​ swift-payment-uri: ​

https://github.com/zecdev/zcash-swift-payment-uri

Specifically, we examined the following Git revisions for our initial review:

●​ zcash-kotlin-payment-uri: 2a68ef50318930c49748caa9fd74c8bc89b72337
●​ zcash-swift-payment-uri: c24dd72a60cf0f2bca4a9a6503ef63e079c96f77

For the verification, we examined the Git revision:

●​ zcash-kotlin-payment-uri: 5da8f0e48ef2b3a3bf04550790088a97832274dd
●​ zcash-swift-payment-uri: b9a103a821cc91a3b12c5ca6e4d983dcf34b777c​

For the review, these repositories were cloned for use during the audit and for reference in this report:

●​ https://github.com/LeastAuthority/zcash-kotlin-payment-uri
●​ https://github.com/LeastAuthority/zcash-swift-payment-uri

All file references in this document use Unix-style paths relative to the project’s root directory.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 2
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/zecdev/zcash-kotlin-payment-uri
https://github.com/zecdev/zcash-swift-payment-uri
https://github.com/LeastAuthority/zcash-kotlin-payment-uri
https://github.com/LeastAuthority/zcash-swift-payment-uri

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

●​ ZCG Forum Dev Grant Updates:
https://forum.zcashcommunity.com/t/grant-updates-zcash-wallet-community-developer/45562/5

●​ ZIP-321: Payment Request URIs​
https://zips.z.cash/zip-0321

In addition, this audit report references the following documents:

●​ RFC 2119 | Key Words for Use in RFCs to Indicate Requirement Levels​
https://www.rfc-editor.org/rfc/rfc2119

●​ Zcash Protocol Specification, Version 2024.5.1-112-gcf7a5c | Section 5.6: Encoding of Addresses
and Keys:​
https://zips.z.cash/protocol/protocol.pdf#addressandkeyencoding

●​ ZIP-316 | Unified Addresses and Viewing Keys:​
https://zips.z.cash/zip-0316

●​ RFC 2234 | Augmented BNF for Syntax Specifications | ABNF, section 6.1: Core Rules:​
https://www.rfc-editor.org/rfc/rfc2234#section-6.1

●​ Jazzer: Coverage-guided, in-process fuzzing for the JVM​
https://github.com/CodeIntelligenceTesting/jazzer

●​ OWASP dependency-check-gradle plugin​
https://plugins.gradle.org/plugin/org.owasp.dependencycheck

Areas of Concern
Our investigation focused on the following areas:

●​ Correctness of the implementation;
●​ Vulnerabilities within each component and whether the interaction between the components is

secure;
●​ Whether requests are passed correctly to the network core;
●​ Denial of Service (DoS) and other security exploits that would impact the intended use or disrupt

the execution;
●​ Protection against malicious attacks and other ways to exploit;
●​ Inappropriate permissions and excess authority;
●​ Data privacy, data leaking, and information integrity; and
●​ Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team performed a security audit of a library for processing Zcash Payment URIs, as defined in
ZIP-321. The core functionality of this library, which is implemented in Kotlin for Android and in Swift for
iOS, is to construct and parse payment request URIs, enabling users to express payment intents in a
standardized format. This format can be recognized by wallets and other applications within the Zcash
ecosystem, facilitating transactions through links or QR codes.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 3
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://forum.zcashcommunity.com/t/grant-updates-zcash-wallet-community-developer/45562/5
https://zips.z.cash/zip-0321
https://www.rfc-editor.org/rfc/rfc2119
https://zips.z.cash/protocol/protocol.pdf#addressandkeyencoding
https://zips.z.cash/zip-0316
https://www.rfc-editor.org/rfc/rfc2234#section-6.1
https://github.com/CodeIntelligenceTesting/jazzer
https://plugins.gradle.org/plugin/org.owasp.dependencycheck

During our review of ZIP-321, we examined its implementation for correctness, security, and adherence to
the specification. We assessed URI parsing, address validation, amount handling, memo encoding,
required parameters, duplicate field handling, and security resilience. While our evaluation indicated that
the implementation generally complies with the ZIP-321 specification, we identified several deviations, as
reported below (Issue A, Issue B, Issue C, Issue D, Issue E, Issue F, Issue G, and Issue H).

System Design
Our team examined the Kotlin and Swift implementations of the Zcash Swift Payment URI library, which is
designed with a modular architecture that focuses on the construction and parsing of Zcash Payment
URIs, as per ZIP-321. It includes core data structures for encapsulating payment details, a parser for
interpreting URI strings, and a renderer for generating URIs from structured data. During our review, we
found that security has been taken into consideration as demonstrated by robust validation, error
handling, and a suite of unit tests, which supports reliability and system integrity.

Our team notes that the Kotlin and Swift implementations of the library do not cover all of the
recommendations in ZIP-321, some of which require extensive semantic validation of the payments
encoded in a payment URI to ensure that they can form a valid transaction. Such validation would require
implementations of ZIP-321 to be able to parse and interpret all types of Zcash addresses, as well as
being aware of other limitations on the validity of transactions, such as limits on the maximum number of
payments per transaction for any combination of address types.

We have not recommended modifying the implementation to accommodate these recommendations in
cases where doing so would substantially increase its complexity or scope. However, we have proposed
one modification that would accommodate a recommendation of ZIP-321 with a reasonable amount of
effort (Suggestion 6), and two changes to meet the strict requirements of ZIP-321, even though doing so
may increase the complexity and scope of the implementation (Issue A and Issue B). This reasoning is
based on the meanings attributed to the uppercase “SHOULD” and “MUST” in RFC 2119, as stated in
ZIP-321.

Our analysis indicates that a more effective solution to the problem of semantic validation is to divide
ZIP-321 into two standards: one defining the syntax of payment URIs and the other defining the
conditions for multiple payments to form a valid transaction. This would allow for a separation of
concerns between input handling and transaction marshalling. However, we recognize that changes to the
standard are beyond the scope of this review.

Dependencies

Our team analyzed the Swift and Kotlin codebases for dependencies with known vulnerabilities. While no
vulnerable dependencies were detected in Swift, we identified four in Kotlin, which we recommend
updating (Suggestion 8).

Code Quality
The Swift codebase is well-structured, adhering to standard Swift practices with a focus on
maintainability and readability. The codebase effectively uses Swift's Error protocol for error handling and
includes tests to verify correctness and reliability. Coding standards are enforced through SwiftLint,
promoting consistent style and best practices. Additionally, the code makes idiomatic use of Swift
features, such as optionals and closures. While generally well-implemented, the codebase could be
improved by addressing outstanding TODOs and would benefit from regular updates to maintain its
quality.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 4
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.rfc-editor.org/rfc/rfc2119

The Kotlin codebase is also generally well-structured and well-written, although we found several
implementation bugs that indicate that not all of the parameter combinations permitted by ZIP-321 have
been tested.

Tests

The codebase includes tests that verify the parsing logic's functionality. These tests cover various
scenarios to confirm correctness and reliability. However, numerous cases are not covered by tests.
Better test coverage could have detected Issue C, Issue E, Issue F, Issue H, Issue I, and Issue J. We also
recommend adding fuzzing tests (Issue L).

Our team has added a branch to Least Authority’s fork of the Kotlin repository that contains tests for
several issues identified in this report, to help with verifying that the issues have been resolved and to
avoid regressions in the future.

Documentation and Code Comments
The codebase lacks extensive documentation. However, given its small size, the existing comments and
structure provide sufficient clarity for understanding and maintaining the code. Additionally, the
codebases are moderately commented, which helps clarify their structure and functionality, though not
every aspect is covered extensively.

Scope
The scope of this review was sufficient and included all security-relevant components.​

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: URI Parser Accepts Sprout Addresses Resolved

Issue B: URI Parser Allows Transparent Unified Addresses To Have Memos Resolved

Issue C: [Kotlin] Parser Decodes Plus Sign to Space in Parameter Values Resolved

Issue D: [Kotlin] Parser Uses System’s Default Character Set When Decoding
Base64

Resolved

Issue E: [Kotlin] Parser Does Not Allow Amount To Be Zero Resolved

Issue F: Parser Does Not Allow Amount to Be Omitted Resolved

Issue G: Parser Accepts Any Unicode Letter or Digit in Address Resolved

Issue H: Parser Does Not Accept Parameters Without Values Resolved

Issue I: [Kotlin] Encoder Produces Invalid URI for Payment Request With Resolved

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 5
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zcash-kotlin-payment-uri/tree/extra-tests

Multiple Payments

Issue J: [Kotlin] Encoder Produces Invalid URI for Single Address With No
Other Parameters

Resolved

Issue K: [Kotlin] Parser Does Not Declare the Exceptions It Throws Resolved

Issue L: [Kotlin] Parser Throws Unexpected Exception Types for Various
Invalid Inputs

Partially Resolved

Suggestion 1: [Kotlin] Use Package Declarations Consistently Implemented

Suggestion 2: [Kotlin] Correctly Implement Deserialization for Singleton
Objects

Implemented

Suggestion 3: [Kotlin] Remove Redundant Code Not Implemented

Suggestion 4: [Kotlin] Correctly Define Character Sets Not Implemented

Suggestion 5: [Kotlin] Use Idiomatic Kotlin Partially Implemented

Suggestion 6: Pass Context to the Parser Not Implemented

Suggestion 7: Add Configuration for Future req Parameters Not Implemented

Suggestion 8: [Kotlin] Use a Plugin To Check for Vulnerable Dependencies Partially Implemented

​
Issue A: URI Parser Accepts Sprout Addresses

Location

zecdev/zip321/ZIP321.kt#L187

Sources/ZcashPaymentURI/Parser.swift#L412

Synopsis

The parser accepts Sprout addresses, which the specification states must not be accepted.

Impact

This is an implementation correctness issue rather than a security vulnerability.

Technical Details

ZIP-321 states that, “Sprout addresses MUST NOT be supported in payment requests.” The URI parser
performs no validation of addresses other than checking that they contain only Unicode letters and digits.
Therefore, it does not prevent Sprout addresses from being used in payment requests.

Mitigation

The parser optionally accepts a function from the calling code that can be used to validate addresses.
Applications that use the parser can work around this issue by supplying an address validation function
that rejects Sprout addresses.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 6
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/ZIP321.kt#L187
https://github.com/zecdev/zcash-swift-payment-uri/blob/78894711d913867304ec837f9cc4347216d1f517/Sources/ZcashPaymentURI/Parser.swift#L412

Remediation

There are two options for remediation, either of which would be suitable:

1.​ The URI parser could specifically reject Sprout addresses by recognizing their prefixes, which are
described in section 5.6 of the Zcash Protocol Specification.

2.​ The URI parser could specifically accept address types that are known to be allowed by ZIP-321
and reject all other addresses. If this option is chosen, then the parser should be updated
whenever new address types are added to the Protocol Specification. ZIP-321 states that, “New
address formats may be added to [the Protocol Specification] in future, and these SHOULD be
supported whether or not this ZIP is updated to explicitly include them.”

Status

The Kotlin and Swift team has updated the Kotlin and Swift codebases to address this issue.

Verification

Resolved.

Issue B: URI Parser Allows Transparent Unified Addresses To Have Memos

Location

zip321/model/RecipientAddress.kt#L36

Sources/ZcashPaymentURI/RecipientAddress.swift#L32

Synopsis

The parser does not consider transparent unified addresses to be transparent. As a result, it allows them
to have memos.

Impact

This is an implementation correctness issue rather than a security vulnerability. Since a Zcash transaction
containing a memo for a transparent address cannot be constructed, the memo field will not be sent in
the clear.

Technical Details

ZIP-321 states that, “Parsers MUST consider the entire URI invalid if the address associated with the same
paramindex [as the memo parameter] does not permit the use of memos (i.e. it is a transparent address).”
The URI parser attempts to ensure this by checking whether the address associated with a memo
parameter is transparent. This is achieved by checking whether the first character of the address is “t.”
However, this check fails to detect universal addresses with transparent receivers, as described in
ZIP-316.

Remediation

In order to reliably detect transparent addresses as required by ZIP-321, we recommend modifying the
URI parser logic to decode any unified address that has an associated memo field and check whether any
receiver of the address is transparent.

Status

The Kotlin and Swift team has updated the Kotlin and Swift codebases to address this issue.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 7
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://zips.z.cash/protocol/protocol.pdf#addressandkeyencoding
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/parser/ParserContext.kt#L71
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/RecipientAddress.kt#L36
https://github.com/zecdev/zcash-swift-payment-uri/blob/35061939a3925560e2bdaad27c2efbee572ef98c/Sources/ZcashPaymentURI/RecipientAddress.swift#L32
https://zips.z.cash/zip-0316
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/parser/ParserContext.kt#L81

Verification

Resolved.

Issue C: [Kotlin] Parser Decodes Plus Sign to Space in Parameter Values

Location

zip321/extensions/StringEncodings.kt#L20

Synopsis

The URI parser decodes the plus sign character to the space character in parameter values. This results in
an incorrect representation of the parameter value being returned to the calling code. If the incorrect
representation is converted back into a payment URI, the space character is encoded as the string “%20.”
Consequently, the re-encoded URI is not semantically equivalent to the original URI.

Impact

This is an implementation correctness issue rather than a security vulnerability.

Technical Details

The URI parser uses the Java standard library method URLDecoder#decode(String, String) to
decode parameter values containing percent-encoded characters. However, this method also replaces
plus sign characters with space characters. ZIP-321 defines the plus sign character to be one of the
characters allowed in encoded parameter values, but does not define it as an encoding of the space
character. Therefore, the conversion performed by the standard library method is not suitable for this
purpose.

Remediation

When decoding parameter values, we recommend using an approach similar to the one used for
encoding: characters explicitly allowed in encoded parameter values by ZIP-321, including the plus sign,
should not be modified by encoding or decoding.

Status

The Kotlin and Swift team has updated the Kotlin codebase to address this issue by implementing
decoding of percent-encoded characters without relying on the Java standard library method.

Verification

Resolved.

Issue D: [Kotlin] Parser Uses System’s Default Character Set When
Decoding Base64

Location

zip321/model/MemoBytes.kt#L68

Synopsis

The URI parser’s behavior depends on the system’s default character set. Parsing of URIs with memo
fields will fail on systems with certain unusual character sets.

Impact

This is an implementation correctness issue rather than a security vulnerability.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 8
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/extensions/StringEncodings.kt#L20
https://docs.oracle.com/en/java/javase/21/docs//api/java.base/java/net/URLDecoder.html#decode(java.lang.String,java.lang.String)
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/encodings/QcharCodec.kt#L57
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/MemoBytes.kt#L68

Technical Details

ZIP-321 specifies the use of Base64 for encoding memo fields. The URI parser uses the Java standard
library method Base64.Decoder#decode(byte[]) to decode Base64-encoded memo fields, after
substituting certain characters as required by ZIP-321 and converting the resulting string to a byte array.

The conversion from string to byte array employs the Kotlin standard library method
String#toByteArray(Charset), which uses the specified character set to determine how to
represent the string as a byte array. The URI parser passes the system’s default character set to this
method.

On systems with certain unusual character sets, such as UTF-16 or Windows 1026, the use of the
system’s default character set will produce a byte array that the method
Base64.Decoder#decode(byte[]) does not recognize. This will cause the parsing of the URI to fail.

Remediation

Instead of passing the system’s default character set to the method String#toByteArray(Charset),
we recommend modifying the URI parser logic to omit the optional parameter value, allowing the method
to use the default parameter value Charsets.UTF_8, which is suitable for this purpose and will work in
the same way across all systems.

Status

The Kotlin and Swift team has updated the Kotlin codebase to address this issue by using the default
UTF-8 character set.

Verification

Resolved.

Issue E: [Kotlin] Parser Does Not Allow Amount To Be Zero

Location

zip321/model/NonNegativeAmount.kt#L50

zip321/parser/Parser.kt#L293

Synopsis

The URI parser requires payment amounts to be strictly greater than zero, although the Zcash network
accepts payment amounts that are equal to zero.

Impact

This is an implementation correctness issue rather than a security vulnerability.

Technical Details

The URI parser uses a class called NonNegativeAmount to represent payment amounts. Although the
name of this class (and the related error type, NegativeAmount) would seem to suggest that amounts
must be greater than or equal to zero, the implementation actually requires amounts to be strictly greater
than zero. This prevents payment URIs from being used for certain use cases, such as sending a memo
without transferring any funds.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 9
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/model/MemoBytes.kt#L77
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/model/MemoBytes.kt#L77
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/NonNegativeAmount.kt#L50
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/parser/Parser.kt#L293

Additionally, the rejection of payment amounts that are equal to zero causes parsing errors for certain
URIs that omit payment amounts, as the parser tries to substitute an amount of zero for the omitted
amount, and then rejects this as an invalid amount.

Remediation

We recommend updating the logic to allow payment amounts to be greater than or equal to zero.

Status

The Kotlin and Swift team has updated the Kotlin codebase to address this issue by accepting amounts
equal to zero.

Verification

Resolved.

Issue F: Parser Does Not Allow Amount to Be Omitted

Location

zip321/model/Payment.kt#L4

zip321/parser/Parser.kt#L293

Sources/ZcashPaymentURI/Model.swift#L19

Sources/ZcashPaymentURI/Parser.swift#327

Synopsis

The parser rejects payment URIs that do not have an amount specified for every payment, except in the
special case of a URI that contains a single address in the hierarchical part of the URI, with no URI
parameters.

Impact

This is an implementation correctness issue rather than a security vulnerability.

Technical Details

The URI parser uses a class called Payment to represent each payment in the URI being parsed. This
class has a field of type NonNegativeAmount that is not allowed to be null, so constructing an instance
of the Payment class requires an amount to be specified. However, ZIP-321 allows payment amounts to
be omitted from URIs. (This makes it possible for a user to publish a URI for receiving payments, without
disclosing the amount of any specific payment that may be received.)

When the parser parses a URI, it collects the parameters that relate to each payment and then uses those
parameters to construct an instance of the Payment class. If no amount parameter has been specified,
then an amount of zero is used (see Issue E). However, an amount of zero is not semantically equivalent
to an omitted amount.

Remediation

We recommend allowing the nonNegativeAmount field of the Payment class to be null, indicating that
no amount has been specified for the payment.

Status

The Kotlin and Swift team has updated the Kotlin and Swift codebases to address this issue.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 10
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/model/NonNegativeAmount.kt#L28
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/model/NonNegativeAmount.kt#L28
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/Payment.kt#L4
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/parser/Parser.kt#L293
https://github.com/zecdev/zcash-swift-payment-uri/blob/d841234a64bdcd1c236f4a5936ecf4fbfcd1223f/Sources/ZcashPaymentURI/Model.swift#L19
https://github.com/zecdev/zcash-swift-payment-uri/blob/78894711d913867304ec837f9cc4347216d1f517/Sources/ZcashPaymentURI/Parser.swift#L327
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/model/Payment.kt#L7

Verification

Resolved.

Issue G: Parser Accepts Any Unicode Letter or Digit in Address

Location

zip321/parser/AddressParser.kt#L6

Synopsis

The URI parser in Kotlin accepts any Unicode letter or digit as a valid character in a Zcash address,
whereas the syntax specification in ZIP-321 specifies that only ASCII letters or digits should be allowed.​

In Swift, in the construction of a request, there is no validation of characters passed to the address input
for constructing a URI. The URI parsing works as intended.

Impact

The issue makes it possible to construct a payment URI that may appear at first glance to have different
semantics from those it actually possesses. However, such a URI could not be used to create a valid
Zcash transaction that would result in funds being transferred; therefore, it is unlikely that there will be any
significant security impact.

Preconditions

There are no preconditions for creating an invalid payment URI.

Feasibility

An invalid payment URI can be created easily by copying and pasting Unicode characters, but it does not
appear feasible to use an invalid payment URI to create a valid Zcash transaction.

Technical Details

The URI parser validates addresses by checking whether all the characters they contain are letters or
digits. However, the check that is used for this purpose is designed for use with Unicode, so the parser
accepts any Unicode letter or digit as a valid character in an address.

For example, the following URI appears at first glance to have a payment amount of 1.234 ZEC; however,
the amount is actually 20 ZEC. The Unicode letters “ʔ”, “�”, and “ꓸ” are used in place of the delimiters “?”,
“=”, and “.”, so all characters up to and including “amount�1ꓸ234” are handled by the parser as a single
address parameter. The unrecognised parameter Have is accepted by the parser, as required by ZIP-321,
which allows the true payment amount to be concealed among similar-looking text:​
​
zcash:tmEZhbWHTpdKMw5it8YDspUXSMGQyFwovpUʔamount�1ꓸ234?message=Thanks%20for%20
your%20payment%20for%20the%20correct%20&amount=20&Have=%20a%20nice%20day

The address that is extracted from the URI by the parser is not a valid Zcash address. Therefore, it does
not appear feasible to exploit this issue by tricking users into transferring larger amounts than intended.

The syntax specification in ZIP-321 uses the ALPHA and DIGIT productions to specify which characters
are valid in addresses. The DIGIT production matches the digits 0-9. ZIP-321 refers to RFC 3986 for the
definition of the ALPHA production. RFC 3986, in turn, refers to RFC 2234, which defines the ALPHA
production as matching the letters A-Z and a-z.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 11
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/parser/AddressParser.kt#L6
https://www.rfc-editor.org/rfc/rfc2234#section-6.1

Remediation

We recommend modifying the parser logic to only accept ASCII letters and digits in addresses.

Status

The Kotlin and Swift team has updated the Kotlin and Swift codebases to address this issue.

Verification

Resolved.

Issue H: Parser Does Not Accept Parameters Without Values

Location

zip321/parser/Parser.kt#L73

zip321/parser/Parser.kt#L102

Sources/ZcashPaymentURI/Parser.swift#L97

Synopsis

The URI parser does not accept parameters without values, which are allowed by ZIP-321.

Impact

This is an implementation correctness issue rather than a security vulnerability.

Technical Details

The syntax specification in ZIP-321 defines five named parameters (address, amount, label, memo, and
message), as well as the syntax for any parameters that may be defined in the future. The syntax for
these future parameters uses the productions reqparam and otherparam, which respectively refer to
required parameters and other parameters. Each of these productions matches a parameter name, an
optional parameter index, and an optional parameter value preceded by an equals sign. However, the URI
parser does not permit the parameter value and equals sign to be omitted. This may cause valid URIs to
be rejected.

Remediation

We recommend updating the parsing logic to accept required parameters and other parameters that do
not have values.

The presence of a required parameter (with or without a value) already correctly causes the URI to be
rejected, as required by ZIP-321. However, we recommend testing the parser with required parameters
that do not have values in order to verify that it emits the correct error type when such a parameter is
encountered (i.e., that it rejects the URI due to the parameter being required, rather than due to the
absence of a value).

Status

The Kotlin and Swift team has updated the Kotlin and Swift codebases to address this issue.

Verification

Resolved.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 12
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/parser/AddressParser.kt#L6
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/parser/Parser.kt#L73
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/parser/Parser.kt#L102
https://github.com/zecdev/zcash-swift-payment-uri/blob/78894711d913867304ec837f9cc4347216d1f517/Sources/ZcashPaymentURI/Parser.swift#L97
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/parser/Parser.kt#L123

Issue I: [Kotlin] Encoder Produces Invalid URI for Payment Request With
Multiple Payments

Location

zip321/Render.kt#L115

zip321/ZIP321.kt#L130

Synopsis

When encoding a payment request with multiple payments and using the default formatting options, the
URI encoder omits the “?” character from the URI. The resulting URI is invalid.

Impact

This is an implementation correctness issue rather than a security vulnerability.

Technical Details

The URI encoder supports various formatting options: The address of the first payment may be encoded
in the hierarchical part of the URI or in a query parameter, and the encoder may use a parameter index for
every payment or omit the index for the first payment. The encoder therefore inserts the “?” character at
different places in the URI depending on the formatting options that are used.

When encoding multiple payments, if a start index has been specified, then the encoder does not insert
the “?” character immediately following the scheme part of the URI (“zcash:”). However, the default
formatting options for encoding multiple payments specify a start index, resulting in the “?” character
being omitted.

Remediation

We recommend correcting the logic for encoding multiple payments and adding tests that check the
encoding of multiple payments with all available formatting options.

Status

The Kotlin and Swift team has updated the Kotlin codebase to address this issue.

Verification

Resolved.

Issue J: [Kotlin] Encoder Produces Invalid URI for Single Address With No
Other Parameters

Location

zip321/ZIP321.kt#L146

Synopsis

When encoding a payment URI containing a single address and no other parameters, the encoder omits
the “?” character from the URI when non-default formatting options are used. The resulting URI is invalid.

Impact

This is an implementation correctness issue rather than a security vulnerability.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 13
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/Render.kt#L115
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/ZIP321.kt#L130
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/Render.kt#L155
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/ZIP321.kt#L146

Technical Details

The URI encoder provides a convenience function for encoding a payment URI containing a single address
and no other parameters. When using the default formatting options, this function correctly omits the “?”
character, which is not needed because the address is encoded in the hierarchical part of the URI, and
there are no query parameters. However, when using non-default formatting options that encode the
address as a query parameter, the encoder incorrectly omits the “?” character between the scheme part
of the URI (“zcash:”) and the query parameter.

Remediation

We recommend correcting the encoding logic and adding tests for this convenience function that cover
all available formatting options.

Status

The Kotlin and Swift team has updated the Kotlin codebase to address this issue.

Verification

Resolved.

Issue K: [Kotlin] Parser Does Not Declare the Exceptions It Throws

Location

zip321/ZIP321.kt#L187

Synopsis

The URI parser throws several types of exceptions, some of which are checked exceptions. Since these
are not declared with a @Throws annotation, Java code that calls the parser cannot catch the checked
exceptions.

Impact

This is an implementation correctness issue rather than a security vulnerability.

Technical Details

Libraries written in Kotlin may be called from Kotlin or Java code. Java distinguishes between checked
and unchecked exceptions: Java methods must declare the types of any checked exceptions that they
throw. It is an error for Java code to attempt to catch checked exception types that are not declared in this
manner. In contrast, Kotlin does not require methods to declare the types of any checked exceptions that
they throw, but the @Throws annotation may optionally be used to make such a declaration, either for
documentation purposes or for interoperability with Java. If a Kotlin method throws checked exceptions
but does not declare them in a @Throws annotation, then Java code that calls the Kotlin method cannot
attempt to catch those exception types.

The URI parser has @Throws annotations on many of its methods, but the top-level URI parsing method
does not have such an annotation. This prevents Java code from catching the checked exception types
that it throws, including ZIP321.Errors and NonNegativeAmount.AmountError.

Mitigation

Java code that uses the parser can circumvent this issue by catching a generic error type such as
Exception; however, this does not allow the calling code to distinguish between errors of different types.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 14
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/ZIP321.kt#L179
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/ZIP321.kt#L187

Remediation

We recommend adding a suitable @Throws annotation to the top-level parsing method,
ZIP321.request(String, ((String) -> Boolean)?).

Status

The Kotlin and Swift team has updated the Kotlin codebase to address this issue by explicitly declaring
that the Errors type may be thrown.

Verification

Resolved.

Issue L: [Kotlin] Parser Throws Unexpected Exception Types for Various
Invalid Inputs

Location

zip321/ZIP321.kt#L187

Synopsis

In addition to the exception types defined in the codebase, the parser throws unexpected exception types
for certain invalid inputs. These exception types include:

●​ com.copperleaf.kudzu.parser.ParserException; and
●​ java.lang.IllegalArgumentException.

Impact

While this is primarily an implementation correctness issue rather than a security vulnerability, it could
cause an application using the parser to crash when parsing an invalid URI.

Technical Details

Our team used a fuzzing library to test the parser’s response to a large number of invalid inputs. In
addition to the expected exception types, some inputs caused the parser to throw
com.copperleaf.kudzu.parser.ParserException or
java.lang.IllegalArgumentException.

One example of an input that causes a ParserException to be thrown is the empty string. An
IllegalArgumentException is thrown if a percent sign in a parameter value is not followed by two
hexadecimal digits.

Mitigation

Java or Kotlin code that uses the parser can circumvent this issue by catching generic error types, such
as Exception or RuntimeException; however, this does not allow the calling code to distinguish
between errors of different types.

Remediation

We recommend catching these exceptions close to the point where they are thrown and re-throwing them
as error types that are defined in the codebase (and declared in a @Throws annotation, as explained in
Issue K). This will provide users of the parser with clarity about which exception types to expect.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 15
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/ZIP321.kt#L216
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/ZIP321.kt#L216
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/ZIP321.kt#L187

We further recommend adding fuzzing tests to the codebase to catch any similar issues that may arise in
the future. The Jazzer library is straightforward to integrate into Java and Kotlin codebases. Our team
has added a branch to Least Authority’s clone of the Kotlin repository to demonstrate this integration.

Status

The Kotlin and Swift team has updated the Kotlin codebase to catch the unexpected error type
ParserException and rethrow it as the expected error type, ZIP321.Errors. However, the
unexpected error type IllegalArgumentException is still thrown, including in recently added code in
the file QCharCodec.kt. Furthermore, code in the files Param.kt and NonNegativeAmount.kt, which
have been updated since the initial report may now throw the unexpected error types
IllegalArgumentException and NumberFormatException.

Verification

Partially Resolved.​

Suggestions

Suggestion 1: [Kotlin] Use Package Declarations Consistently

Location

zip321/model/MemoBytes.kt#L1

zip321/model/NonNegativeAmount.kt#L1

zip321/model/Payment.kt#L1

zip321/model/PaymentRequest.kt#L1

zip321/model/RecipientAddress.kt#L1

Synopsis

Several files in the Kotlin codebase lack package declarations, indicating that classes declared in those
files belong to the default package. Use of the default package is discouraged, as it may lead to name
conflicts.

Mitigation

We recommend adding package declarations to all files.

Status

The Kotlin and Swift team has implemented the recommendation by updating the package declarations.

Verification

Implemented.

Suggestion 2: [Kotlin] Correctly Implement Deserialization for Singleton
Objects

Location

zip321/model/MemoBytes.kt#L13

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 16
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/tree/fuzzing-tests
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/parser/Parser.kt#L252
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/encodings/QcharCodec.kt#L77
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/parser/Param.kt#L240
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/model/NonNegativeAmount.kt#L51
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/MemoBytes.kt#L1
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/NonNegativeAmount.kt#L1
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/Payment.kt#L1
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/PaymentRequest.kt#L1
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/RecipientAddress.kt#L1
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/MemoBytes.kt#L13

zip321/model/NonNegativeAmount.kt#L37

zip321/model/RecipientAddress.kt#L4

zip321/ZIP321.kt#L15

Synopsis

The Kotlin codebase effectively utilizes sealed classes for type-safe error handling. However, types that
inherit from Exception inherit the Serializable interface, which does not have sensible default
behavior for Kotlin’s singleton objects. Attempting to deserialize these types will result in unexpected
behavior, as the deserialized object will not be identical to the singleton.

Mitigation

Singleton objects should override the readResolve method to return the singleton instance. For
example:​
​
object InvalidBase64 : Errors() {

 private fun readResolve(): Any = InvalidBase64

}

Status

The Kotlin and Swift team has implemented the suggestion by adding readResolve methods.

Verification

Implemented.

Suggestion 3: [Kotlin] Remove Redundant Code

Location

zip321/model/NonNegativeAmount.kt#L73

zip321/model/Payment.kt#L13

zip321/parser/IndexedParameter.kt#L7

zip321/model/RecipientAddress.kt#L1

zip321/parser/CharsetValidations.kt#L5

Synopsis

The NonNegativeAmount class contains redundant code, with two ways to create a
NonNegativeAmount from a BigDecimal, two ways to create a NonNegativeAmount from a String,
and a function that creates a BigDecimal from a String while checking some but not all of the
NonNegativeAmount constraints. This redundancy makes it difficult to reason about which constraints
have been checked in each case.

The data classes Payment and IndexedParameter override the equals(Any?) and hashCode
methods. However, the implementations appear to have the same semantics as those that would be
generated automatically for data classes, which renders the use of these methods redundant.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 17
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/NonNegativeAmount.kt#L37
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/RecipientAddress.kt#L4
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/ZIP321.kt#L15
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/NonNegativeAmount.kt#L73
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/Payment.kt#L13
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/parser/IndexedParameter.kt#L7
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/model/RecipientAddress.kt#L1
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/parser/CharsetValidations.kt#L5

The file RecipientAddress.kt contains an unused type alias, RequestParams.

The CharsetValidations class contains definitions of the Base58 and Bech32 character sets that
are unused, although these may be intended for use by applications that use the parser, which are allowed
to supply their own address validation functions.

Mitigation

We recommend removing redundant and unused code to improve the readability and maintainability of
the codebase.

Status

The Kotlin and Swift team has updated some of the relevant Kotlin code. The NonNegativeAmount
class still contains some redundant code: an unused constructor, a constructor used only in tests, and an
extension function used only in tests. We recommend removing this code so that the execution paths
covered by the tests match those used in production. Additionally, the redundant code previously noted in
other classes has not been removed.

Verification

Not Implemented.

Suggestion 4: [Kotlin] Correctly Define Character Sets

Location

zip321/parser/CharsetValidations.kt#L18

zip321/parser/CharsetValidations.kt#L42

Synopsis

The CharsetValidations class contains definitions of several character sets used by the parser. The
definition of the Bech32 character set incorrectly includes the characters “b” and “i”, while the definition
of the unreserved character set incorrectly includes the character “!”.

These errors do not have any functional impact at present. The Bech32 character set is unused, as noted
in Suggestion 3, while the unreserved character set is only used in a context where it is combined with
another character set that already contains the character “!”.

Mitigation

Although these errors do not presently have any functional impact, we recommend correcting them to
avoid any potential functional impact in the future as the codebase evolves.

Status

The Kotlin and Swift team has not updated the relevant Kotlin code to implement this suggestion.

Verification

Not Implemented.

Suggestion 5: [Kotlin] Use Idiomatic Kotlin

Location

zip321/extensions/StringEncodings.kt#L3

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 18
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/parser/CharsetValidations.kt#L18
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/parser/CharsetValidations.kt#L42
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/extensions/StringEncodings.kt#L3

zip321/parser/Param.kt#L19

zip321/parser/Param.kt#L140

Synopsis

While the codebase generally demonstrates effective utilization of Kotlin idioms, there are a few instances
where this could be improved. Qualified type names are used in various instances, likely as a
consequence of IDE-assisted refactoring. Some functions declare nullable return types but never actually
return null, which forces callers to handle the null case unnecessarily.

Mitigation

We recommend replacing qualified type names with imports. Constructs of the form “(variable as?
Type) != null” can be replaced with “variable is Type”. Fields, parameters, and return types
should generally not be nullable unless the null case is needed.

Status

The Kotlin and Swift team has updated the Kotlin codebase to implement this suggestion by using
idiomatic Kotlin. Our team considers this a partial implementation of the suggestion, as the newly added
code contains similar non-idiomatic usages to those noted in the initial report, such as the use of
fully-qualified names instead of imports.

Verification

Partially Implemented.

Suggestion 6: Pass Context to the Parser

Synopsis

According to ZIP-321, ”If the context of whether the payment URI is intended for Testnet or Mainnet is
available, then each address SHOULD be checked to be for the correct network.” However, the library
currently lacks a mechanism to specify whether the transactions are intended for mainnet or testnet.

Mitigation

We recommend creating a variable (that can be optional) to set the context of the parser and specify if it
is intended to be used for testnet or mainnet, to allow the parser to perform the proper checks.

Status

The Kotlin and Swift team has updated the Kotlin and Swift codebases to implement the suggestion.

Verification

Implemented.

Suggestion 7: Add Configuration for Future req Parameters

Synopsis

According to ZIP-321, in the forward compatibility section, ”Variables which are prefixed with a req- are
considered required. If a parser does not recognize any variables which are prefixed with req-, it MUST
consider the entire URI invalid. Any other variables that are not recognized, but that are not prefixed with a
req-, SHOULD be ignored.” Hence, all variables that currently start with “req-” are considered invalid.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 19
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/parser/Param.kt#L19
https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/src/main/kotlin/org/zecdev/zip321/parser/Param.kt#L140
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/parser/Parser.kt#L30
https://github.com/zecdev/zcash-kotlin-payment-uri/blob/5da8f0e48ef2b3a3bf04550790088a97832274dd/lib/src/main/kotlin/org/zecdev/zip321/ZIP321.kt#L219

Mitigation

To enhance forward compatibility and flexibility in handling req- parameters, we recommend modifying
the constructor to accept a list of recognized req- parameters. This would allow developers to define
which req- prefixed parameters are supported by their implementation while ensuring unrecognized
req- parameters result in a validation failure, as required by ZIP-321, without the need to update the
parser.

Status

The Kotlin and Swift team has not updated the relevant Kotlin code to implement this suggestion.

Verification

Not Implemented.

Suggestion 8: [Kotlin] Use a Plugin To Check for Vulnerable Dependencies

Location

build.gradle.kts

Synopsis

Our team scanned the Swift and Kotlin codebases for dependencies with known vulnerabilities. No
vulnerable dependencies were found for Swift; however, for Kotlin we identified the following
vulnerabilities:

Dependency name Version Known vulnerabilities

guava 31.1 CVE-2023-2976, CVE-2020-8908

ktlint-cli-reporter-checkstyle 1.0.1 CVE-2019-10782,
CVE-2019-9658

logback-classic 1.3.5 CVE-2023-6378

logback-core 1.3.5 CVE-2023-6378,
CVE-2024-12798,
CVE-2024-12801

Mitigation

We recommend keeping all dependencies updated and using a plugin to check for vulnerable
dependencies automatically. For this review, our team used the OWASP dependency-check-gradle plugin.
This plugin uses data from the National Vulnerability Database, which can be accessed by applying for a
free API key.

We note that three of the four vulnerable dependencies are required by the JLLeitschuh
ktlint-gradle plugin. The latest version of this plugin still depends on a vulnerable version of ktlint
that was released in 2023. If possible, we recommend replacing this plugin with an alternative solution
that has more recent dependencies.

Status

The dependencies of the Kotlin codebase have been updated since the initial report. However, the
ktlint-gradle plugin still has two vulnerable dependencies: ktlint-cli-reporter-checkstyle
version 1.1.0, and logback-core version 1.3.14. Our team’s suggestions to replace this plugin with a

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 20
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zcash-kotlin-payment-uri/blob/2a68ef50318930c49748caa9fd74c8bc89b72337/lib/build.gradle.kts
https://plugins.gradle.org/plugin/org.owasp.dependencycheck

more current alternative and to adopt a plugin that automatically detects vulnerable dependencies have
not been implemented.

Verification

Partially Implemented.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 21
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.​

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 22
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Kotlin and Swift Payment URI Prototypes | ZCG ​ 23
11 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Kotlin and Swift Payment URI Prototypes
	Overview
	Background
	Project Dates
	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	System Design
	Dependencies

	Code Quality
	Tests

	Documentation and Code Comments
	Scope

	Specific Issues & Suggestions
	​Issue A: URI Parser Accepts Sprout Addresses
	Location
	Synopsis
	Impact
	Technical Details
	Mitigation
	Remediation
	Status
	Verification

	Issue B: URI Parser Allows Transparent Unified Addresses To Have Memos
	Location
	Synopsis
	Impact
	Technical Details
	Remediation
	Status
	Verification

	Issue C: [Kotlin] Parser Decodes Plus Sign to Space in Parameter Values
	Location
	Synopsis
	Impact
	Technical Details
	Remediation
	Status
	Verification

	Issue D: [Kotlin] Parser Uses System’s Default Character Set When Decoding Base64
	Location
	Synopsis
	Impact
	Technical Details
	Remediation
	Status
	Verification

	Issue E: [Kotlin] Parser Does Not Allow Amount To Be Zero
	Location
	Synopsis
	Impact
	Technical Details
	Remediation
	Status
	Verification

	Issue F: Parser Does Not Allow Amount to Be Omitted
	Location
	Synopsis
	Impact
	Technical Details
	Remediation
	Status
	Verification

	Issue G: Parser Accepts Any Unicode Letter or Digit in Address
	Location
	Synopsis
	Impact
	Preconditions
	Feasibility
	Technical Details
	Remediation
	Status
	Verification

	Issue H: Parser Does Not Accept Parameters Without Values
	Location
	Synopsis
	Impact
	Technical Details
	Remediation
	Status
	Verification

	Issue I: [Kotlin] Encoder Produces Invalid URI for Payment Request With Multiple Payments
	Location
	Synopsis
	Impact
	Technical Details
	Remediation
	Status
	Verification

	Issue J: [Kotlin] Encoder Produces Invalid URI for Single Address With No Other Parameters
	Location
	Synopsis
	Impact
	Technical Details
	Remediation
	Status
	Verification

	Issue K: [Kotlin] Parser Does Not Declare the Exceptions It Throws
	Location
	Synopsis
	Impact
	Technical Details
	Mitigation
	Remediation
	Status
	Verification

	Issue L: [Kotlin] Parser Throws Unexpected Exception Types for Various Invalid Inputs
	Location
	Synopsis
	Impact
	Technical Details
	Mitigation
	Remediation
	Status
	Verification

	Suggestions
	Suggestion 1: [Kotlin] Use Package Declarations Consistently
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 2: [Kotlin] Correctly Implement Deserialization for Singleton Objects
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: [Kotlin] Remove Redundant Code
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 4: [Kotlin] Correctly Define Character Sets
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 5: [Kotlin] Use Idiomatic Kotlin
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 6: Pass Context to the Parser
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 7: Add Configuration for Future req Parameters
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 8: [Kotlin] Use a Plugin To Check for Vulnerable Dependencies
	Location
	Synopsis
	Mitigation
	Status
	Verification

	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

