

Keystone Hardware Wallet
Security Audit Report
ZCG
Final Audit Report: 20 March 2025

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Suggestions

Suggestion 1: Improve Test Coverage

Suggestion 2: Improve Code Comments

Suggestion 3: Improve Documentation

Suggestion 4: Correct Error Messages

Suggestion 5: Update Silent Skip in Signature Generation

About Least Authority

Our Methodology

Security Audit Report | Keystone Hardware Wallet | ZCG 1
20 March 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
As the Zcash Ecosystem Security Lead, ZCG has requested that Least Authority perform a security audit
of the Keystone Hardware Wallet, which supports Zcash users managing their assets. This wallet is
designed with several security features, including air-gapped communication, open-source firmware, and
a user-friendly interface.

Project Dates
● January 6, 2025 - January 29, 2025: Initial Code Review (Completed)
● February 3, 2025: Delivery of Initial Audit Report (Completed)
● March 20, 2025: Verification Review (Completed)
● March 20, 2025: Delivery of Final Audit Report (Completed)

Review Team
● Poulami Das, Security / Cryptography Researcher and Engineer
● Anna Kaplan, Cryptography Researcher and Engineer
● Burak Atasoy, Project Manager
● Jessy Bissal, Technical Editor and Writer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Keystone Hardware Wallet,
followed by issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Keystone SDK:

https://github.com/KeystoneHQ/keystone-sdk-rust/tree/0.0.45/libs/ur-registry/src/zcash
○ QRCode protocol definition

● Keystone SDK FFI:
https://github.com/KeystoneHQ/keystone-sdk-rust/tree/0.0.45/libs/ur-registry-ffi

○ QRCode protocol definition FFI layer for iOS and Android
● Keystone SDK iOS:

https://github.com/KeystoneHQ/keystone-sdk-ios/blob/0.8.5/Sources/KeystoneSDK/Chain/Keyst
oneZcashSDK.swift

○ iOS QR protocol wrapper
● Keystone SDK Android:

https://github.com/KeystoneHQ/keystone-sdk-android/blob/0.7.8/library/src/main/kotlin/com/k
eystone/sdk/KeystoneZcashSDK.kt

○ Android QR protocol wrapper
● Keystone firmware (Zcash sign process):

https://github.com/KeystoneHQ/keystone3-firmware/tree/1.8.2/rust/zcash_vendor
● Keystone firmware (Zcash key generation and message signing):

https://github.com/KeystoneHQ/keystone3-firmware/blob/1.8.2/rust/keystore/src/algorithms/zc
ash/mod.rs

● Keystone firmware (Zcash API layer):
https://github.com/KeystoneHQ/keystone3-firmware/tree/1.8.2/rust/apps/zcash/src

Security Audit Report | Keystone Hardware Wallet | ZCG 2
20 March 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/KeystoneHQ/keystone-sdk-rust/tree/0.0.45/libs/ur-registry/src/zcash
https://github.com/KeystoneHQ/keystone-sdk-rust/tree/0.0.45/libs/ur-registry-ffi
https://github.com/KeystoneHQ/keystone-sdk-ios/blob/0.8.5/Sources/KeystoneSDK/Chain/KeystoneZcashSDK.swift
https://github.com/KeystoneHQ/keystone-sdk-ios/blob/0.8.5/Sources/KeystoneSDK/Chain/KeystoneZcashSDK.swift
https://github.com/KeystoneHQ/keystone-sdk-android/blob/0.7.8/library/src/main/kotlin/com/keystone/sdk/KeystoneZcashSDK.kt
https://github.com/KeystoneHQ/keystone-sdk-android/blob/0.7.8/library/src/main/kotlin/com/keystone/sdk/KeystoneZcashSDK.kt
https://github.com/KeystoneHQ/keystone3-firmware/tree/1.8.2/rust/zcash_vendor
https://github.com/KeystoneHQ/keystone3-firmware/blob/1.8.2/rust/keystore/src/algorithms/zcash/mod.rs
https://github.com/KeystoneHQ/keystone3-firmware/blob/1.8.2/rust/keystore/src/algorithms/zcash/mod.rs
https://github.com/KeystoneHQ/keystone3-firmware/tree/1.8.2/rust/apps/zcash/src

● Keystone firmware (wallet export):
https://github.com/KeystoneHQ/keystone3-firmware/blob/1.8.2/rust/apps/wallets/src/zcash.rs

● Changes in:
https://github.com/zcash/librustzcash/commit/9407f09208d5574a3ba7bf3e6963741114ba77c
2

● Changes in:
https://github.com/zcash/orchard/commit/e0cc7ac53ad8c97661b312a8b1c064f4cd3c6629

Specifically, we examined the following Git revisions for our initial review:

● keystone sdk rust: 42f5e05834c395b8d7ce5d1a233b371d2b74fa21
● keystone sdk android: 34e9a701c52ab56d0844c27055d21fab14a5a434
● keystone sdk ios: 1d826dff694cc0fbbf457bc05053fd9f6f8fe386
● keystone firmware: a162157390c498c1c36212a09cf6c9fcd6d16141

For the verification, we examined the Git revisions:

● keystone sdk rust: 792eaafc0fb301d453f5ee7a84f7b8f9f90ec31f
● keystone sdk ios: bb599d52685d2aa607575f08f378b96f72ef925e
● keystone firmware: 607c1c1bd404716c0c4c5ead23455b0c803b8a70

For the review, these repositories were cloned for use during the audit and for reference in this report:

● keystone sdk:
https://github.com/LeastAuthority/keystone-sdk-rust

● keystone sdk android:
https://github.com/LeastAuthority/keystone-sdk-android

● keystone sdk ios:
https://github.com/LeastAuthority/keystone-sdk-ios

● keystone firmware:
https://github.com/LeastAuthority/keystone3-firmware

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● ZCG Forum:
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508
/79

● MetaMask and Keystone Mobile Tutorial:
https://www.youtube.com/watch?v=ixRIoGfbmTI

● SDK here:
○ https://www.npmjs.com/package/@keystonehq/keystone-sdk 1
○ https://dev.keyst.one/docs/integration-guide-basics/install-the-sdk#webextensionreact-n

ative
● Posts about the development and security of the wallet:

○ https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-applicatio
n/48508/25

Security Audit Report | Keystone Hardware Wallet | ZCG 3
20 March 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/KeystoneHQ/keystone3-firmware/blob/1.8.2/rust/apps/wallets/src/zcash.rs
https://github.com/zcash/librustzcash/commit/9407f09208d5574a3ba7bf3e6963741114ba77c2
https://github.com/zcash/librustzcash/commit/9407f09208d5574a3ba7bf3e6963741114ba77c2
https://github.com/zcash/orchard/commit/e0cc7ac53ad8c97661b312a8b1c064f4cd3c6629
https://github.com/LeastAuthority/keystone-sdk-rust
https://github.com/LeastAuthority/keystone-sdk-android
https://github.com/LeastAuthority/keystone-sdk-ios
https://github.com/LeastAuthority/keystone3-firmware
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/79
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/79
https://www.youtube.com/watch?v=ixRIoGfbmTI
https://www.npmjs.com/package/@keystonehq/keystone-sdk
https://dev.keyst.one/docs/integration-guide-basics/install-the-sdk#webextensionreact-native
https://dev.keyst.one/docs/integration-guide-basics/install-the-sdk#webextensionreact-native
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/25
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/25

○ https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-applicatio
n/48508/35

○ https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-applicatio
n/48508/36

○ https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-applicatio
n/48508/42

○ https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-applicatio
n/48508/47

○ https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-applicatio
n/48508/49

● Website:
https://keyst.one

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Vulnerabilities within each component and whether the interaction between the components is

secure;
● Key management, including secure private key storage and management of encryption and

signing keys;
● Denial of Service (DoS) and other security exploits that would impact the intended use or disrupt

the execution;
● Protection against malicious attacks and other ways to exploit;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
The Keystone Hardware Wallet acts as a wrapper wallet for an online wallet–in this case, Zashi. To enable
the functionalities of the Zashi wallet, the Keystone Wallet team developed a QR code protocol and
implemented Zcash functionalities to ensure compatibility within the Keystone Hardware Wallet context.
In particular, the Keystone Hardware Wallet allows signing a Zcash transparent transaction or an orchard
transaction.

Our team examined the design of the Keystone Hardware Wallet and found that security has generally
been taken into consideration. However, we found areas of improvement that would contribute to the
overall security of the system (Suggestion 1, Suggestion 2, Suggestion 3, Suggestion 4, and Suggestion
5).

Our team examined the QR code protocol components (definition, FFI layer, iOS, and Android wrappers),
which ensure the correct generation and parsing of the QR code from and to the Keystone hardware, the
Zcash signing process, the key generation and message signing process within the Keystone firmware, as
well as changes to the librustzcash and orchard crates related to the PCZT format relevant for
Keystone.

Security Audit Report | Keystone Hardware Wallet | ZCG 4
20 March 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/35
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/35
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/36
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/36
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/42
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/42
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/47
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/47
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/49
https://forum.zcashcommunity.com/t/keystone-hardware-wallet-support-grant-application/48508/49
https://keyst.one
https://github.com/KeystoneHQ/keystone-sdk-rust/tree/0.0.45/libs/ur-registry/src/zcash
https://github.com/KeystoneHQ/keystone-sdk-rust/tree/0.0.45/libs/ur-registry-ffi
https://github.com/KeystoneHQ/keystone-sdk-ios/blob/0.8.5/Sources/KeystoneSDK/Chain/KeystoneZcashSDK.swift
https://github.com/KeystoneHQ/keystone-sdk-android/blob/0.7.8/library/src/main/kotlin/com/keystone/sdk/KeystoneZcashSDK.kt
https://github.com/KeystoneHQ/keystone3-firmware/tree/1.8.2/rust/zcash_vendor
https://github.com/KeystoneHQ/keystone3-firmware/blob/1.8.2/rust/keystore/src/algorithms/zcash/mod.rs
https://github.com/zcash/librustzcash/tree/9407f09208d5574a3ba7bf3e6963741114ba77c2/pczt/src
https://github.com/zcash/orchard/tree/e0cc7ac53ad8c97661b312a8b1c064f4cd3c6629/src/pczt

During our review, we found that the risk of security attacks, such as signature forgeability and
transaction malleability, is largely mitigated due to the air-gapped nature of Keystone operations.

We analyzed the correctness of Keystone operations and the potential for sensitive data leakage and did
not identify any critical issues in this regard.

Additionally, we assessed the generation and use of randomness as well as the use of cryptographic
building blocks, and did not identify any areas of concern.

Code Quality
We performed a manual review of the repositories in scope and found the code to be clean,
well-organized, and in adherence to development best practices.

Tests

The repositories in scope include some tests; however, our team found that test coverage, especially with
regards to some of the complex functionalities, can be significantly improved (Suggestion 1).

Documentation and Code Comments
The project documentation provided for this security review, particularly the tutorial for the Keystone
Hardware Wallet integration with a software wallet, was insufficient. We recommend that the project
documentation be improved to include additional information about the signing workflow, mapped with
the codebase. Our team also found that while Sapling is no longer supported, there are some
functionalities that still refer to Sapling-related parameters (for instance in src/pczt/parse.rs). We
recommend clarifying this in the documentation to avoid confusion (Suggestion 3). Additionally, there are
insufficient code comments describing security-critical components and functions in the codebase. We
recommend improving code comments (Suggestion 2).

Scope
The scope of this review was sufficient and included all security-critical components.

Dependencies

We examined the dependencies implemented in the codebase and found that the Keystone Hardware
Wallet code utilizes Zcash dependencies on the librustzcash library and the orchard crate. The
librustzcash library and the orchard crate in turn use some insecure, unsound, and yanked
dependencies. Since these two repositories were out of scope, except for minor code changes related to
Keystone as noted here and here, we advise the Keystone Wallet team to actively track changes impacting
them and work in close coordination with the development teams of the librustzcash library and the
orchard crate. Additionally, our team checked the correctness of dependencies used in the Zashi Wallet
repositories for Android and iOS, and did not identify any issues.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Suggestion 1: Improve Test Coverage Resolved

Security Audit Report | Keystone Hardware Wallet | ZCG 5
20 March 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/KeystoneHQ/keystone3-firmware/blob/1.8.2/rust/apps/zcash/src/pczt/parse.rs
https://github.com/zcash/librustzcash/commit/9407f09208d5574a3ba7bf3e6963741114ba77c2
https://github.com/zcash/orchard/commit/e0cc7ac53ad8c97661b312a8b1c064f4cd3c6629
https://github.com/zcash/librustzcash/commit/9407f09208d5574a3ba7bf3e6963741114ba77c2
https://github.com/zcash/orchard/commit/e0cc7ac53ad8c97661b312a8b1c064f4cd3c6629
https://github.com/zcash/librustzcash/commit/9407f09208d5574a3ba7bf3e6963741114ba77c2
https://github.com/zcash/orchard/commit/e0cc7ac53ad8c97661b312a8b1c064f4cd3c6629
https://github.com/Electric-Coin-Company/zashi-android
https://github.com/Electric-Coin-Company/zashi-ios

Suggestion 2: Improve Code Comments Resolved

Suggestion 3: Improve Documentation Resolved

Suggestion 4: Correct Error Messages Resolved

Suggestion 5: Update Silent Skip in Signature Generation Resolved

Suggestions

Suggestion 1: Improve Test Coverage

Location

ur-registry/src (no tests)

ur-registry-ffi/src/zcash (no tests)

zcash_vendor/src

Synopsis

The functionalities related to the QR code protocol in ur-registry/src and
ur-registry-ffi/src/zcash contain no tests at all, and those in zcash_vendor/src contain
insufficient tests.

Mitigation

We recommend adding unit tests to check the correctness of the functionalities in the aforementioned
repositories.

Status

The Keystone Wallet team has added correctness tests in PR1652 to zcash_vendor/src,
keystone-sdk-rust/tree/master/libs/ur-registry-ffi/src/zcash, and
keystone-sdk-rust/tree/0.0.45/libs/ur-registry/src/zcash.

Verification

Resolved.

Suggestion 2: Improve Code Comments

Location

Examples (non-exhaustive):

ur-registry/src

ur-registry-ffi/src/zcash

zcash_vendor/src

rust/apps/zcash/src

Security Audit Report | Keystone Hardware Wallet | ZCG 6
20 March 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/keystone-sdk-rust/tree/0.0.45/libs/ur-registry/src
https://github.com/LeastAuthority/keystone-sdk-rust/tree/0.0.45/libs/ur-registry-ffi/src/zcash
https://github.com/KeystoneHQ/keystone3-firmware/tree/1.8.2/rust/zcash_vendor/src
https://github.com/KeystoneHQ/keystone3-firmware/pull/1652/
https://github.com/KeystoneHQ/keystone3-firmware/tree/1.8.2/rust/zcash_vendor/src
https://github.com/KeystoneHQ/keystone-sdk-rust/tree/master/libs/ur-registry-ffi/src/zcash
https://github.com/LeastAuthority/keystone-sdk-rust/tree/0.0.45/libs/ur-registry/src/zcash
https://github.com/KeystoneHQ/keystone-sdk-rust/tree/0.0.45/libs/ur-registry/src
https://github.com/KeystoneHQ/keystone-sdk-rust/tree/0.0.45/libs/ur-registry-ffi/src/zcash
https://github.com/KeystoneHQ/keystone3-firmware/tree/1.8.2/rust/zcash_vendor/src
https://github.com/KeystoneHQ/keystone3-firmware/tree/1.8.2/rust/apps/zcash/src

Synopsis

The code lacks a significant number of explanatory comments. This reduces the readability of the code
and, as a result, makes reasoning about the security of the system more difficult. Comprehensive in-line
documentation helps provide reviewers of the code with a better understanding and ability to reason
about the system design.

Mitigation

We recommend expanding and improving the code comments to facilitate reasoning about the security
properties of the system.

Status

The Keystone Wallet team has added extensive code comments to zcash_vendor/src,
rust/apps/zcash/src,
keystone-sdk-rust/tree/master/libs/ur-registry-ffi/src/zcash, and
keystone-sdk-rust/tree/0.0.45/libs/ur-registry/src/zcash.

Verification

Resolved.

Suggestion 3: Improve Documentation

Synopsis

The documentation currently lacks sufficient explanation of the QR code protocol and Zcash
functionalities of key generation and signing for a Keystone Hardware Wallet.

Mitigation

We recommend creating relevant documentation explaining the QR code protocol and signing mechanism
within the Keystone Hardware Wallet. Ideally, this should include mapping the relevant workflows of the
QR code protocol, key generation, and signing process with the respective codebase. To avoid confusion,
we further recommend clarifying why the Sapling parameters need to be handled in certain parts of the
code (src/pczt/parse.rs), as the Keystone Hardware Wallet does not currently support Sapling
transactions.

Status

The Keystone Wallet team has added documentation to src/pczt/parse.rs, along with several
READMEs in PR1652.

Verification

Resolved.

Suggestion 4: Correct Error Messages

Location

KeystoneZcashSDK.swift#L18

KeystoneZcashSDK.swift#L26

Synopsis

The code incorrectly throws a PSBT error instead of a PSZT error.

Security Audit Report | Keystone Hardware Wallet | ZCG 7
20 March 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/KeystoneHQ/keystone3-firmware/tree/1.8.2/rust/zcash_vendor/src
https://github.com/KeystoneHQ/keystone3-firmware/tree/1.8.2/rust/apps/zcash/src
https://github.com/KeystoneHQ/keystone-sdk-rust/tree/master/libs/ur-registry-ffi/src/zcash
https://github.com/LeastAuthority/keystone-sdk-rust/tree/0.0.45/libs/ur-registry/src/zcash
https://github.com/KeystoneHQ/keystone3-firmware/blob/1.8.2/rust/apps/zcash/src/pczt/parse.rs
https://github.com/KeystoneHQ/keystone3-firmware/blob/1.8.2/rust/apps/zcash/src/pczt/parse.rs
https://github.com/KeystoneHQ/keystone3-firmware/pull/1652/
https://github.com/KeystoneHQ/keystone-sdk-ios/blob/0.8.5/Sources/KeystoneSDK/Chain/KeystoneZcashSDK.swift#L18
https://github.com/KeystoneHQ/keystone-sdk-ios/blob/0.8.5/Sources/KeystoneSDK/Chain/KeystoneZcashSDK.swift#L26

Mitigation

We recommend updating the code to make it parse and generate a PSZT error instead of a PSBT error.

Status

The Keystone Wallet team has updated the code to generate a PSZT error.

Verification

Resolved.

Suggestion 5: Update Silent Skip in Signature Generation

Location

algorithms/zcash/mod.rs#L96

Synopsis

When one of the conditions in the if statement does not hold, the function emits an Ok(()) and silently
skips. Consequently, no signature is produced, and no error message is provided.

Mitigation

We recommend updating the else case to output an error message instead of an Ok(()).

Status

The Keystone Wallet team has updated the code in PR1652 to throw an appropriate error message after
the Ok(()).

Verification

Resolved.

Security Audit Report | Keystone Hardware Wallet | ZCG 8
20 March 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/KeystoneHQ/keystone-sdk-ios/commit/bb599d52685d2aa607575f08f378b96f72ef925e
https://github.com/KeystoneHQ/keystone3-firmware/blob/a162157390c498c1c36212a09cf6c9fcd6d16141/rust/keystore/src/algorithms/zcash/mod.rs#L96
https://github.com/KeystoneHQ/keystone3-firmware/pull/1652/

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Security Audit Report | Keystone Hardware Wallet | ZCG 9
20 March 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Keystone Hardware Wallet | ZCG 10
20 March 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Keystone Hardware Wallet
	Overview
	Background
	Project Dates
	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	Code Quality
	Tests

	Documentation and Code Comments
	Scope
	Dependencies

	Specific Issues & Suggestions
	Suggestions
	Suggestion 1: Improve Test Coverage
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 2: Improve Code Comments
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: Improve Documentation
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 4: Correct Error Messages
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 5: Update Silent Skip in Signature Generation
	Location
	Synopsis
	Mitigation
	Status
	Verification

	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

