

FROST Demo
Security Audit Report
ZCG
Final Audit Report: 29 April 2025

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Issue A: Usage of Vulnerable Dependencies

Issue B: No Zeroization of Secret Data

Issue C: Missing VSS Commitment Verification by Participants in Trusted Dealer

Issue D: Missing Checks in Send and Receive Functions of the Server

Issue E: Import Allows Overwrite of Contacts

Issue F: Participants Act as Signing Oracles

Suggestions

Suggestion 1: Introduce Protocol-Specific Message Verification

Suggestion 2: Abstract and Unify the Encrypt / Decrypt Functions for All HTTP Files

Suggestion 3: Rename Functions and Variables in Participants and Coordinator for Improved

Clarity

Suggestion 4: Add Randomizer Sanity Check To Improve Robustness

Suggestion 5: Improve Handling of Excessively Large Messages During Encryption / Decryption

Suggestion 6: Only Save Encrypted Secrets to File

Suggestion 7: Improve HTTP Error Handling

About Least Authority

Our Methodology

Security Audit Report | FROST Demo | ZCG 1
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
ZCG has requested that Least Authority perform a security audit of the FROST server and client
components. The project implements a demo that illustrates how to use the FROST protocol based on the
frost-crate. The FROST server helps participants and coordinators communicate with each other, and
The FROST client is a CLI tool that demonstrates how to interact with the server and the frost-crate.

Project Dates
● February 3, 2025 - February 12, 2025: Initial Code Review (Completed)
● February 13, 2025: Delivery of Initial Audit Report (Completed)
● April 29, 2025: Verification Review (Completed)
● April 29, 2025: Delivery of Final Audit Report (Completed)

Review Team
● Jasper Hepp, Security Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer
● Burak Atasoy, Project Manager
● Jessy Bissal, Technical Editor and Writer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the FROST server and client
components followed by issue reporting, along with mitigation and remediation instructions as outlined in
this report.

The following code repositories are considered in scope for the review:
● Frost-server:

https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/frostd
● Frost-client:

https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/frost-client
● Dependencies:

○ https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/coordinator
○ https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/dkg
○ https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/participant
○ https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/trusted-dealer

Specifically, we examined the Git revision for our initial review:

● 548a8a7329c6eed8180464662f430d12cd71dfcc

For the verification, we examined the Git revision:

● 548a8a7329c6eed8180464662f430d12cd71dfcc

For the review, this repository was cloned for use during the audit and for reference in this report:

Security Audit Report | FROST Demo | ZCG 2
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/frostd
https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/frost-client
https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/coordinator
https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/dkg
https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/participant
https://github.com/ZcashFoundation/frost-zcash-demo/tree/main/trusted-dealer

● frost-zcash-demo:
https://github.com/LeastAuthority/frost-zcash-demo

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Zcash Foundation GitHub:
https://github.com/ZcashFoundation/frost-zcash-demo

● FROST Documentation:
https://frost.zfnd.org

In addition, this audit report references the following documents:

● C. P. L. Gouvêa and C. Komlo, “Re-Randomized FROST." IACR Cryptology ePrint Archive, 2024,
[GK24]

● C. Komlo and I. Goldberg, “FROST: Flexible Round-Optimized Schnorr Threshold Signatures." IACR
Cryptology ePrint Archive, 2020, [KG20]

● RFC 9591:
https://datatracker.ietf.org/doc/rfc9591

● Memory Zeroization:
https://docs.rs/zeroize/latest/zeroize/index.html#

● frost crate:
https://github.com/ZcashFoundation/frost

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Vulnerabilities within each component and whether the interaction between the components is

secure;
● Whether requests are passed correctly to the network core;
● Key management, including secure private key storage and management of encryption and

signing keys;
● Denial of Service (DoS) and other security exploits that would impact the intended use or disrupt

the execution;
● Protection against malicious attacks and other ways to exploit;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Security Audit Report | FROST Demo | ZCG 3
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/frost-zcash-demo
https://github.com/ZcashFoundation/frost-zcash-demo
https://frost.zfnd.org
https://eprint.iacr.org/2024/436.pdf
https://eprint.iacr.org/2020/852.pdf
https://datatracker.ietf.org/doc/rfc9591/
https://docs.rs/zeroize/latest/zeroize/index.html#
https://github.com/ZcashFoundation/frost

Findings
General Comments
The code in scope serves as a demonstration of how to use the frost-crate. The frost-crate is an
implementation for a threshold Schnorr signatures scheme called FROST (RFC 9591, [KG20]). The
frost-demo allows a user to locally mimic a key generation setup via a trusted dealer or a distributed
key generation protocol (DKG) as well as the FROST signing protocol. A server allows secure and
authenticated communication between the parties using HTTP, TLS (optional), and encryption of
messages via the noise protocol.

System Design

Server

We reviewed the server and its functionality and found that the send and receive functions do not
properly validate messages (Issue D). Additionally, we identified that HTTP error handling can be
improved (Suggestion 7) and further recommend abstracting and unifying the entire HTTP
communication struct, including its encryption and decryption functions (Suggestion 2).

Trusted Dealer

We reviewed the trusted dealer against the specification in RFC 9591 (Appendix C) and found that it does
not check whether all participants received the same VSS commitment (Issue C).

Distributed Key Generation

We reviewed the DKG implementation against the specification in [KG20] to evaluate its proper usage of
the frost-crate. We did not find any issues within this context.

FROST Signing Protocol

We reviewed the coordinator and the participants in the context of the signing protocol. In particular, we
reviewed the implementation against the specification in RFC 9591 to evaluate its proper usage of the
frost-crate.

We found that a user can overwrite contacts when importing a new contact, which might be exploitable in
a spoofing attack (Issue E). We also found that the participants trust the coordinator to use the expected
message in the signing process (Issue F). Additionally, we suggest introducing a trait that requires users
to implement protocol-specific message verification (Suggestion 1).

Our team reviewed the rerandomization extending RFC 9591. This demo uses the rerandomize-crate
based on [GK24]. We note that it implements the version in which a centralized party selects the
randomization factor, rather than the alternative design described in Section 5.1 [GK24]. While we did not
identify any issues with the overall usage of rerandomized FROST, we still suggest improving the
robustness of the rerandomize argument (Suggestion 4).

We observed that share refreshing and identifiable abort have not yet been implemented. In
addition, we found that the demo currently handles message vectors that contain a single message only
and hence does not allow signing several messages in parallel within one invocation of the signing
protocol. Furthermore, RFC 9591 allows for a Single Coordinator or Coordinator‐Less Deployments, while
the code only implements the Single Coordinator version.

Security Audit Report | FROST Demo | ZCG 4
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://datatracker.ietf.org/doc/rfc9591/
https://eprint.iacr.org/2020/852.pdf
https://www.rfc-editor.org/rfc/rfc9591.html#name-trusted-dealer-key-generati
https://eprint.iacr.org/2020/852.pdf
https://github.com/ZcashFoundation/frost
https://github.com/ZcashFoundation/frost/blob/main/frost-rerandomized/README.md
https://eprint.iacr.org/2024/436.pdf
https://eprint.iacr.org/2024/436.pdf

Handling of Secure Data

The implementation does not properly manage secret data stored in memory. We recommend zeroizing
all secret data that has been used (Issue B). In addition, we noted that the secret key of the user is stored
in an unencrypted local config file. Although we do not consider this to be an issue since the
implementation is for demo purposes only, we still recommend encrypting it (Suggestion 6).

Some functions, such as print_signing_package, log secret data (e.g., commitments). While we do
not consider this to be an issue since the implementation is for demo purposes only, our team advises
against logging secret data in production.

Dependencies
We examined the dependencies implemented in the codebase and identified two vulnerabilities. We
recommend upgrading the two dependencies to their recommended replacements (Issue A).

Code Quality
We performed a manual review of the repositories in scope and found the code to be well-organized and
in adherence to Rust best practices. However, we recommend renaming certain functions in the
participant and coordinator components to improve clarity (Suggestion 3).

Tests

The frost-crate includes test coverage. Note that our team did not assess whether test coverage was
sufficient, as the tests were out of the scope of this audit. However, we ran the demo and tested its
functionality based on the documentation.

Documentation and Code Comments
The project documentation provided for this review offers a sufficient overview of the system and its
intended behavior. In particular, frost-demo is documented extensively with comprehensive READMEs
and relevant descriptions that facilitate understanding the code. Additionally, the codebase is
well-commented with accurate inline comments, which was helpful in understanding the intended
functionality of most of the components.

Scope
Given that the scope of this review was limited to the HTTP trait implementations, our team considered it
sufficient. Note that the CLI and socket versions were excluded from the scope of this audit, as agreed
upon with the FROST demo team. Additionally, our team assumed that the frost-crate dependencies
behave as intended and comply with the FROST specification.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Usage of Vulnerable Dependencies Resolved

Issue B: No Zeroization of Secret Data Resolved

Security Audit Report | FROST Demo | ZCG 5
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://frost.zfnd.org/zcash/ywallet-demo.html

Issue C: Missing VSS Commitment Verification by Participants in Trusted
Dealer

Resolved

Issue D: Missing Checks in Send and Receive Functions of the Server Resolved

Issue E: Import Allows Overwrite of Contacts Resolved

Issue F: Participants Act as Signing Oracles Resolved

Suggestion 1: Introduce Protocol-Specific Message Verification Implemented

Suggestion 2: Abstract and Unify the Encrypt / Decrypt Functions for All
HTTP Files

Implemented

Suggestion 3: Rename Functions and Variables in Participants and
Coordinator for Improved Clarity

Implemented

Suggestion 4: Add Randomizer Sanity Check To Improve Robustness Implemented

Suggestion 5: Improve Handling of Excessively Large Messages During
Encryption / Decryption

Implemented

Suggestion 6: Only Save Encrypted Secrets to File Partially Implemented

Suggestion 7: Improve HTTP Error Handling Implemented

Issue A: Usage of Vulnerable Dependencies

Location

Cargo.toml

Cargo.lock

Synopsis

Analyzing the codebase with cargo audit for dependency versions shows two vulnerabilities.

Impact

Using unmaintained dependencies or packages with known vulnerabilities may lead to critical security
vulnerabilities in the codebase.

Technical Details

The following dependency vulnerabilities were identified:

Crate: idna
Version: 0.5.0
Title: `idna` accepts Punycode labels that do not produce any non-ASCII when decoded
Date: 2024-12-09
ID: RUSTSEC-2024-0421

Security Audit Report | FROST Demo | ZCG 6
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/frost-zcash-demo/blob/main/Cargo.toml
https://github.com/LeastAuthority/frost-zcash-demo/blob/main/Cargo.lock

URL: https://rustsec.org/advisories/RUSTSEC-2024-0421
Solution: Upgrade to >=1.0.0

Crate: openssl
Version: 0.10.66
Title: ssl::select_next_proto use after free
Date: 2025-02-02
ID: RUSTSEC-2025-0004
URL: https://rustsec.org/advisories/RUSTSEC-2025-0004
Solution: Upgrade to >=0.10.70

Remediation

We recommend upgrading the two dependencies.

Status

The FROST demo team has resolved the issue and removed the OpenSSL dependency.

Verification

Resolved.

Issue B: No Zeroization of Secret Data

Location

Examples (non-exhaustive):

participant/src/cli.rs#L47

frost-client/src/trusted_dealer.rs#L64

dkg/src/cli.rs#L72

Synopsis

Secret data, such as the nonce or the secret key, is not erased from memory and could be leaked.

Impact

This issue could potentially result in the full disclosure of secrets.

Preconditions

Root access to the machine is required, enabling the reading of process memory from other processes.

Severity

Low.

Technical Details

As highlighted in RFC 9591 and other related documentation, secret data, such as the nonce, must be
deleted after it has been used. More specifically:

● For the nonce and commitment in RFC 9591, Section 5.2 states: “Each participant MUST delete
the nonce and corresponding commitment after completing sign.”

● For the trusted dealer key generation in RFC 9591, Appendix C states: “delete secret values after
distributing shares to each participant” and “The trusted dealer MUST delete the secret_key and
secret_key_shares upon completion.”

Security Audit Report | FROST Demo | ZCG 7
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://rustsec.org/advisories/RUSTSEC-2024-0421
https://rustsec.org/advisories/RUSTSEC-2025-0004
https://github.com/ZcashFoundation/frost-zcash-demo/pull/469
https://github.com/LeastAuthority/frost-zcash-demo/blob/548a8a7329c6eed8180464662f430d12cd71dfcc/participant/src/cli.rs#L47
https://github.com/LeastAuthority/frost-zcash-demo/blob/main/frost-client/src/trusted_dealer.rs#L64
https://github.com/LeastAuthority/frost-zcash-demo/blob/main/dkg/src/cli.rs#L72
https://www.rfc-editor.org/rfc/rfc9591.html#name-round-two-signature-share-g
https://www.rfc-editor.org/rfc/rfc9591.html#appendix-C

● For the DKG protocol described in [KG20], in Figure 1, the paper states that the proofs of
knowledge sigma_i from Round 1, Step 5, as well as the polynomial evaluations from Round 2,
Step 3, should be deleted.

Currently, secret data is stored in memory, while it is likely overwritten during normal code execution. This
is neither a best practice nor a secure method for deleting secret data. Instead, zeroization should be
implemented.

Remediation

We recommend utilizing memory zeroization of all sensitive values.

Status

The FROST demo team has addressed this issue using Rust’s zeroize crate but noted that a more
robust solution will require improvements to frost-core, which they intend to implement in the future.

Verification

Resolved.

Issue C: Missing VSS Commitment Verification by Participants in Trusted
Dealer

Location

frost-client/src/trusted_dealer.rs#L64

Synopsis

The FROST demo implementation deviates from RFC 9591 by omitting the verification of the VSS
(Verifiable Secret Sharing) commitment. According to RFC 9591 (Appendix C), after receiving shares from
the trusted dealer, participants must verify that they received the same VSS commitment.

Impact

Without the check, a compromised dealer could introduce inconsistent secret shares. This could
undermine the integrity of the generated keys and, by extension, the security of the signing protocol.

While the demo’s context does not pose any risks, a production-level adaptation relying on this approach
would be vulnerable to subtle but critical misconfigurations and attacks.

Severity
Medium.

Technical Details

The FROST specification in RFC 9591 (see Appendix C) requires that each participant, upon receiving
their share, verify the accompanying VSS commitment. In the current implementation, the trusted dealer
does not send individual messages but rather embeds the share and commitment data in the
configuration files of each participant. This is acceptable in a demo setting. Nevertheless, the
participant’s check should be included for demonstration purposes.

Remediation

We recommend implementing a check to verify that each participant receives the same VSS commitment
in the function trusted_dealer_for_ciphersuite, after line L65. In addition, we recommend adding

Security Audit Report | FROST Demo | ZCG 8
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2020/852.pdf
https://docs.rs/zeroize/latest/zeroize/index.html#
https://github.com/ZcashFoundation/frost-zcash-demo/pull/482
https://github.com/LeastAuthority/frost-zcash-demo/blob/main/frost-client/src/trusted_dealer.rs#L64
https://www.rfc-editor.org/rfc/rfc9591.html#appendix-C
https://www.rfc-editor.org/rfc/rfc9591.html#appendix-C

a code comment highlighting that this check should be performed by each participant in a
production-ready application.

Status

The FROST demo team argued convincingly that the suggested check would not be meaningful in its
current form because commitment verification only occurs after the config files are received, and this
process takes place outside the tool; furthermore, the necessary commitments are not included in the
config file. The team also noted that adding the check for reference would be impractical, as it relies on
a broadcast channel, which is complex to configure. Instead, the FROST demo team chose to include
warnings in the command-line help and within the source code.

Our team agrees with the development team’s response and thus considers this issue resolved.

Verification

Resolved.

Issue D: Missing Checks in Send and Receive Function of the Server

Location

frostd/src/functions.rs

Synopsis

The FROST demo server lacks proper validation in its message handling functions. Specifically, the send
and receive functions do not verify whether the provided user.pubkey is a member of the current
session. Additionally, the send function does not check whether the intended recipients are included in
the session’s list of authorized public keys. Together, these oversights allow any user—even those not part
of the session—to send and receive messages as if they were legitimate session participants.

Impact

An attacker can exploit the missing checks to inject unauthorized messages. However, the encryption of
messages via the noise protocol does not allow an attacker to send messages to the participants of the
session since the decryption would fail.

Preconditions

An attacker would need to know the session ID.

Severity
Low.

Remediation

We suggest implementing a session membership check in the send and receive functions. We suggest
also checking whether the recipients are part of the session.

Status

The FROST demo team has resolved this issue.

Verification

Resolved.

Security Audit Report | FROST Demo | ZCG 9
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/frost-zcash-demo/blob/main/frostd/src/functions.rs
https://github.com/ZcashFoundation/frost-zcash-demo/pull/485

Issue E: Import Allows Overwrite of Contacts

Location

frost-client/src/contact.rs#L58

Synopsis

The function import allows overwriting existing contacts.

Impact

This issue increases the risk of spoofing attacks.

Severity
Medium.

Technical Details

Contacts are stored in a map. Adding a new entry with an existing key overwrites the previous value. For
contacts, the key is the name and the value is the public key.

An attacker could use this to overwrite an existing contact of an honest participant using a public key that
they control. The attacker could then trick the honest participant to participate in a key generation and
signing protocol with a forged public key, thereby executing a type of spoofing attack.

Remediation

We recommend adding a check during import to prevent overwrites. The remove functionality could be
used if a user needs to change an existing contact.

Status

The FROST demo team has resolved this issue and added a check to prevent multiple contacts from
using the same public key.

Verification

Resolved.

Issue F: Participants Act as Signing Oracles

Location

src/comms/http.rs#L308

Synopsis

The participants trust the coordinator to use the expected message in the signing process, as there is
currently no way for participants to validate the expected content of a message. The FROST demo team
has already identified a similar instance here.

Impact

The extent of the impact depends on the specific application.

Security Audit Report | FROST Demo | ZCG 10
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/frost-zcash-demo/blob/main/frost-client/src/contact.rs#L58
https://github.com/ZcashFoundation/frost-zcash-demo/pull/483
https://github.com/LeastAuthority/frost-zcash-demo/blob/main/participant/src/comms/http.rs#L308
https://github.com/ZcashFoundation/frost-zcash-demo/issues/333

Remediation

One potential approach to resolving this issue is to tie session_ids to message-hashes, such that
each participant can verify that the message hash is related to the session ID. We also suggest referring
to the recommendations outlined in RFC 9591 (Section 7.6) for hashing the message.

Status

The FROST demo team has implemented a prompt that displays the message to be signed, allowing the
user to explicitly consent. The team additionally noted that the proposed remediation is not applicable, as
the tool must remain compatible with the specific protocol the user is interacting with, which requires
signing the exact bytes supplied by the user.

Verification

Resolved.

Suggestions

Suggestion 1: Introduce Protocol-Specific Message Verification

Location

src/comms/http.rs#L308

Synopsis

In Round 2, the coordinator sends the message to the participant, but the participant does not verify its
protocol-specific structure. This deviates from the recommendations documented in RFC 9591 (Section
7.7) and the frost-crate (here).

Mitigation

We recommend defining message verification as a trait requiring users to implement protocol-specific
message verification. We also suggest message hashing, as recommended in RFC 9591 (Section 7.6).

Status

The FROST demo team stated that, because the tool lacks awareness of the specific protocol invoking it,
it is unable to perform message verification itself. However, they emphasized the importance of
displaying the message to the user and prompting them to confirm their intention to sign the message. To
address this, they introduced such a prompt along with a trait method similar to the one proposed by our
team. In the context of Zcash, this will later be extended to display the transaction plan of the transaction
being signed. At that stage, the FROST demo team intends to introduce a Content-Type mechanism to
help users understand the nature of the data being signed.

Verification

Implemented.

Suggestion 2: Abstract and Unify the Encrypt / Decrypt Functions for All
HTTP Files

Location

src/comms/http.rs#L117

Security Audit Report | FROST Demo | ZCG 11
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.rfc-editor.org/rfc/rfc9591.html#section-7.6
https://github.com/ZcashFoundation/frost-zcash-demo/pull/467
https://github.com/LeastAuthority/frost-zcash-demo/blob/main/participant/src/comms/http.rs#L308
https://www.rfc-editor.org/rfc/rfc9591.html#section-7.7
https://www.rfc-editor.org/rfc/rfc9591.html#section-7.7
https://github.com/ZcashFoundation/frost/blob/464cc050001e70713df10f5baf1f8589971cb5a0/frost-core/src/lib.rs#L372
https://www.rfc-editor.org/rfc/rfc9591.html#section-7.6
https://github.com/ZcashFoundation/frost-zcash-demo/pull/491
https://github.com/LeastAuthority/frost-zcash-demo/blob/main/participant/src/comms/http.rs#L117

src/comms/http.rs#L370

src/comms/http.rs#L276

Synopsis

The DKG component, the participant, and the coordinator each implement the same struct, HTTPComms,
which includes an encryption and decryption function for messages received via the server.

Mitigation

Since the code is the same across the three implementations, we recommend unifying this code for better
abstraction and improved error resilience.

Status

The FROST demo team has implemented the mitigation in [PR#495] and [PR#496].

Verification

Implemented.

Suggestion 3: Rename Functions and Variables in Participants and
Coordinator for Improved Clarity

Location

participant/src/cli.rs#L27

Synopsis

Certain functions and variable names are not intuitive and decrease the readability of the code. This
includes, in particular, the functions responsible for the signing protocol on both the participant and
coordinator side. The participant side progresses in rounds (1 and 2), while the coordinator progresses in
steps (1, 2, and 3). However, the connection between the two communicating parties is not immediately
clear. In addition, the function get_signature_shares called by the coordinator first sends signing
packages and then receives signature shares in the second step.

Mitigation

We suggest unifying the rounds and steps into one consistent setup for the coordinator and participant.
We additionally recommend renaming the function get_signature_shares to
send_signing_packages_and_get_signature_shares or a similar alternative.

Status

The FROST demo team has implemented the mitigation as recommended.

Verification

Implemented.

Suggestion 4: Add Randomizer Sanity Check To Improve Robustness

Location

frost-client/src/args.rs#L173

Security Audit Report | FROST Demo | ZCG 12
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/frost-zcash-demo/blob/main/dkg/src/comms/http.rs#L370
https://github.com/LeastAuthority/frost-zcash-demo/blob/main/coordinator/src/comms/http.rs#L276
https://github.com/ZcashFoundation/frost-zcash-demo/pull/495
https://github.com/ZcashFoundation/frost-zcash-demo/pull/496
https://github.com/LeastAuthority/frost-zcash-demo/blob/main/participant/src/cli.rs#L27
https://github.com/ZcashFoundation/frost-zcash-demo/pull/515
https://github.com/LeastAuthority/frost-zcash-demo/blob/main/frost-client/src/args.rs#L173

Synopsis

The randomizer as an argument input to the command of the coordinator is implemented as a vector of
strings. This vector should have the same length as the message vector, but no check is implemented in
the code to verify this. However, since the code does not support signing multiple messages
simultaneously, this does not result in a security-relevant issue.

Mitigation

We recommend changing the type to Option<Vec<String>> and adding a check to verify that if the
option is SOME, the length of the randomizer matches the length of the messages passed in as an
argument.

Status

The FROST demo team has implemented the mitigation as recommended.

Verification

Implemented.

Suggestion 5: Improve Handling of Excessively Large Messages During
Encryption / Decryption

Location

src/comms/http.rs#L306

src/comms/http.rs#L460

Synopsis

In order to prevent denial-of-service (DoS) attacks, a message from the server must have a size of less
than 65535 bytes in the functions encrypt and decrypt for the coordinator, participant, and DKG
protocol. If the message exceeds this bound, the code of the coordinator (for example) would abort in
L460 of the function recv when the coordinator receives a message from the participant. Hence, a
malicious participant can end the coordinator process by sending a message that is too large to decrypt.

Mitigation

We recommend implementing a different approach for handling messages exceeding a certain size.
Instead of throwing an error, the code should be modified to ignore large messages.

Status

The FROST demo team stated that FROST is not a robust protocol—participants can always prevent a
signing session from succeeding. Accordingly, they do not attempt to prevent all possible forms of
session abortion, as participants can disrupt sessions in various ways, such as by sending invalid
encrypted messages. Nonetheless, they implemented a message limit check on the server to help
mitigate memory exhaustion, as message length would otherwise only be validated upon decryption.
They also introduced session cleanup mechanisms for the coordinator and DKG starter roles to prevent
aborted sessions from persisting in the event of protocol errors.

Verification

Implemented.

Security Audit Report | FROST Demo | ZCG 13
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ZcashFoundation/frost-zcash-demo/pull/492
https://github.com/LeastAuthority/frost-zcash-demo/blob/548a8a7329c6eed8180464662f430d12cd71dfcc/coordinator/src/comms/http.rs#L306
https://github.com/LeastAuthority/frost-zcash-demo/blob/548a8a7329c6eed8180464662f430d12cd71dfcc/coordinator/src/comms/http.rs#L460
https://github.com/LeastAuthority/frost-zcash-demo/blob/548a8a7329c6eed8180464662f430d12cd71dfcc/coordinator/src/comms/http.rs#L460
https://github.com/ZcashFoundation/frost-zcash-demo/pull/493

Suggestion 6: Only Save Encrypted Secrets to File

Location

frost-client/src/config.rs

Synopsis

The FROST client currently reads sensitive data from configurations, including secrets from a config file,
which is not encrypted.

Mitigation

While unencrypted secrets might be acceptable for a demo version, we still recommend refraining from
storing secrets in plaintext. A more appropriate approach would be to encrypt this data and prompt the
user for a password during login.

Status

The FROST demo team acknowledged the importance of this suggestion but stated that addressing it will
require careful design to maintain interoperability with other applications. They have scheduled the
planned improvements for a future update and, in the meantime, will include warnings about the issue in
the documentation.

Verification

Partially Implemented.

Suggestion 7: Improve HTTP Error Handling

Location

src/comms/http.rs#L496

Synopsis

In the following lines of code, _r is not checked. Consequently, if the server responds with HTTP 400 or
500, the code will not detect it:

let _r = self.client
 .post(format!("{}/send", self.host_port))
 .json(&frostd::SendArgs { ... })
 .send().await?;

Mitigation

One possible solution could be to implement the following:

let resp = self.client.post(...).send().await?;
if !resp.status().is_success() {
 return Err(eyre!("send failed: {}", resp.status()).into());
}

Status

The FROST demo team has implemented the mitigation as recommended.

Security Audit Report | FROST Demo | ZCG 14
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ZcashFoundation/frost-zcash-demo/blob/main/frost-client/src/config.rs
https://github.com/ZcashFoundation/frost-zcash-demo/pull/494
https://github.com/LeastAuthority/frost-zcash-demo/blob/main/coordinator/src/comms/http.rs#L496
https://github.com/ZcashFoundation/frost-zcash-demo/pull/517

Verification

Implemented.

Security Audit Report | FROST Demo | ZCG 15
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Security Audit Report | FROST Demo | ZCG 16
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | FROST Demo | ZCG 17
29 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	FROST Demo
	Overview
	Background
	Project Dates
	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	System Design
	Server
	Trusted Dealer
	Distributed Key Generation
	FROST Signing Protocol
	Handling of Secure Data

	Dependencies
	Code Quality
	Tests

	Documentation and Code Comments
	Scope

	Specific Issues & Suggestions
	​Issue A: Usage of Vulnerable Dependencies
	Location
	Synopsis
	Impact
	Technical Details
	Remediation
	Status
	Verification

	Issue B: No Zeroization of Secret Data
	Location
	Synopsis
	Impact
	Preconditions
	Severity
	Technical Details
	Remediation
	Status
	Verification

	Issue C: Missing VSS Commitment Verification by Participants in Trusted Dealer
	Location
	Synopsis
	Impact
	Severity​Medium.​​​Technical Details
	Remediation
	Status
	Verification

	Issue D: Missing Checks in Send and Receive Function of the Server
	Location
	Synopsis
	Impact
	Preconditions
	Severity​Low.
	Remediation
	Status
	Verification

	Issue E: Import Allows Overwrite of Contacts
	Location
	Synopsis
	Impact
	Severity​Medium.​​​Technical Details
	Remediation
	Status
	Verification

	Issue F: Participants Act as Signing Oracles
	Location
	Synopsis
	Impact
	Remediation
	Status
	Verification

	​Suggestions
	Suggestion 1: Introduce Protocol-Specific Message Verification
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 2: Abstract and Unify the Encrypt / Decrypt Functions for All HTTP Files
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: Rename Functions and Variables in Participants and Coordinator for Improved Clarity
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 4: Add Randomizer Sanity Check To Improve Robustness
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 5: Improve Handling of Excessively Large Messages During Encryption / Decryption
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 6: Only Save Encrypted Secrets to File
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 7: Improve HTTP Error Handling
	Location
	Synopsis
	Mitigation
	Status
	Verification

	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

