
Smart Contracts
Security Audit Report

Fungify
Updated Final Audit Report: 10 January 2024

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Issue A: Minting Process Is Susceptible to Inflation / Sandwich Attacks

Issue B: doNFTTransferOut Deterministically Returns the Last NFT

Suggestions

Suggestion 1: Enter Market in receive Function

Suggestion 2: Upgrade Solidity Version and Lock the Pragma

Suggestion 3: Use Correct ERC20 Interface

Suggestion 4: Initialize Variables Before Use

Suggestion 5: Check Return Values of View Function Calls and collectInterest

Suggestion 6: Avoid Comparison to Boolean Constants

About Least Authority

Our Methodology

Security Audit Report | Smart Contracts | Fungify 1
10 January 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Fungify has requested that Least Authority perform a security audit of their smart contracts.

Project Dates
● November 21, 2023 - December 13, 2023: Initial Code Review (Completed)
● December 15, 2023: Delivery of Initial Audit Report (Completed)
● January 10, 2024: Verification Review (Completed)
● January 10, 2024: Delivery of Final Audit Report (Completed)
● January 10, 2024: Delivery of Updated Final Audit Report (Completed)

Review Team
● Nikos Iliakis, Security Researcher and Engineer
● Steven Jung, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Fungify smart contracts followed
by issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Fungify Taki Contracts:

https://github.com/fungify-dao/taki-contracts

Specifically, we examined the Git revision for our initial review:

● a259825b8e1feea0f339d16e6565b6ba159017f2

For the verification, we examined the Git revision:

● 2416d1724f90be9f7307d976ea5dd8c2ec859f72

For the review, this repository was cloned for use during the audit and for reference in this report:

● Fungify Taki Contracts:
https://github.com/LeastAuthority/fungify-taki-contracts-estimation

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Website:
https://fungify.it

Security Audit Report | Smart Contracts | Fungify 2
10 January 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/fungify-dao/taki-contracts
https://github.com/LeastAuthority/fungify-taki-contracts-estimation
https://fungify.it/

In addition, this audit report references the following documents:
● Blog post, “Introducing Fungify Lending Pools”:

https://blog.fungify.it/p/introducing-fungify-lending-pools?utm_source=profile&utm_medium=rea
der2”

● Fungify | Protocol | Tools:
https://docs.fungify.it/protocol/pools

● Solidity | Division:
https://docs.soliditylang.org/en/v0.8.1/types.html?highlight=division#division

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Adversarial actions and other attacks on the network;
● Potential misuse and gaming of the smart contracts;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial of Service (DoS) and other security exploits that would impact the intended use of the

smart contracts or disrupt their execution;
● Vulnerabilities in the smart contracts’ code;
● Protection against malicious attacks and other ways to exploit the smart contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team performed a security audit of Fungify's Pools smart contracts, which is a lending protocol
extending Compound to facilitate NFT lending/borrowing with a unique interest market token.

In addition to auditing the security of the system and the areas of concern listed above, we examined the
smart contracts for vulnerabilities and implementation errors and to assess adherence to best practice
recommendations. More specifically, we scrutinized functions within the Markets vaults to identify
potential logic errors, namely concerning liquidation and borrowing. We additionally reviewed the
implementation for unchecked external smart contract calls, any kind of reentrancy attacks, front running
attacks, storage collisions or unauthorized access, and incorrect mathematical operations, and could not
identify any exploitable weaknesses.

System Design
Our team examined the design of the implementation and found that the Fungify smart contracts
demonstrate robust security practices. The review revealed that security has been taken into
consideration in the design and implementation of the contracts.

However, our team identified an issue whereby, at the initiation of a pool, an attacker can front run the first
depositor, which can result in the depositor being unable to receive any tokens in exchange (Issue A).
In addition, we found that doNFTTransferOut always returns the last NFT in an array, which would allow
a malicious user to target and retrieve a desired NFT from a pool (Issue B).

Security Audit Report | Smart Contracts | Fungify 3
10 January 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://blog.fungify.it/p/introducing-fungify-lending-pools?utm_source=profile&utm_medium=reader2
https://blog.fungify.it/p/introducing-fungify-lending-pools?utm_source=profile&utm_medium=reader2
https://docs.fungify.it/protocol/pools
https://docs.soliditylang.org/en/v0.8.1/types.html?highlight=division#division

Code Quality
We performed a manual review of the repositories in scope and found that the Fungify smart contracts
are generally well-organized and adhere to best practices. However, we identified several best practice
suggestions that would improve overall quality, reliability, and readability of the codebase (Suggestion 4)
(Suggestion 5) (Suggestion 6).

Tests

Our team found that sufficient test coverage of the smart contracts has been implemented.

Documentation and Code Comments
The documentation provided for this review offered an overview of the system, which was helpful. The
diagrams included in the documentation are conceptual and give some technical details about the
formulas used in the project.
Additionally, code comments sufficiently describe the intended behavior of security-critical components
and follow the NatSpec format, thus facilitating the comprehension of the system.

Scope
The scope of this review included all security-critical components.

Dependencies

Our team examined all the dependencies implemented in the codebase and found that the
implementation uses standard, well-audited libraries.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Minting Process Is Susceptible to Inflation / Sandwich Attacks Resolved

Issue B: doNFTTransferOut Deterministically Returns the Last NFT Resolved

Suggestion 1: Enter Market in receive Function Resolved

Suggestion 2: Upgrade Solidity Version and Lock the Pragma Resolved

Suggestion 3: Use Correct ERC20 Interface Resolved

Suggestion 4: Initialize Variables Before Use Resolved

Suggestion 5: Check Return Values of View Function Calls and
collectInterest

Resolved

Suggestion 6: Avoid Comparison to Boolean Constants Resolved

Security Audit Report | Smart Contracts | Fungify 4
10 January 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue A: Minting Process Is Susceptible to Inflation / Sandwich Attacks

Location

contracts/CErc20.sol#L53

contracts/CToken.sol#L310

contracts/CErc20InterestMarket.sol#L154

Synopsis

When a user mints CTokens, the exchangeRateStoredInternal function is eventually called, which
checks the totalSupply of tokens in circulation. If the totalSupply is zero, the
exchangeRateStoredInternal function uses the initial exchange rate; otherwise, it applies the
formula: exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply

At the initiation of a pool, if the pool is empty, an attacker can front run the first depositor and deposit a
small amount. Consequently, due to the manner in which solidity handles rounding, the depositor could
end up with zero CTokens.

Note that this attack is inherited by the fork of the Compound Protocol and is leveraged to exploit
different projects.

Impact

This Issue could result in a depositor losing their shares and the attacker owning the totalSupply.

Preconditions

This attack can occur if the pool is empty at initiation, and an attacker has sufficient funds to execute the
attack.

Technical Details

An attacker mints a small amount of CTokens (e.g. 100e4 wei) using the mint function and then transfers
a large amount of underlying tokens (e.g.1e18 wei) directly to the CToken contract. As a result, the
depositor mints, but obtains zero CTokens. The attacker would then own all the minted cTokens and have
the ability to redeem them.

Remediation

We recommend preventing the pools from being empty. For example, one option could be to perform the
first deposit in the same transaction as the deployment, thus preventing a malicious actor from front
running it. However, given that such a remediation requires special attention and would need to be
repeated multiple times, another solution would be to hard code a mint of some tokens to the zero
address directly in the smart contract.

Status

The Fungify team acknowledged this Issue and decided to mint and burn at deployment to prevent it.

Verification

Resolved.

Security Audit Report | Smart Contracts | Fungify 5
10 January 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/d3c397888f3c005f81b1b696952fd0bd6ef70645/contracts/CErc20.sol#L53
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/d3c397888f3c005f81b1b696952fd0bd6ef70645/contracts/CToken.sol#L310
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/f03121e20c8a0aaf37cf66b1382a1dbc37a818fc/contracts/CErc20InterestMarket.sol#L154
https://docs.soliditylang.org/en/v0.8.1/types.html?highlight=division#division

Issue B: doNFTTransferOut Deterministically Returns the Last NFT

Location

contracts/CErc721.sol#L684

Synopsis

Although users are aware that they will be unable to reclaim the exact NFT that they supplied, it is
possible for a malicious user to inspect the pools and retrieve a desired NFT since doNFTTransferOut
always returns the last NFT in the array.

Impact

An attacker could retrieve a desired NFT.

Preconditions

The attacker would need to have provided an NFT before the desired one was supplied.

Feasibility

Straightforward.

Remediation

We recommend that the Fungify team implement either the Prevrandao opcode (fork >= paris) or
the Chainlink VRF to obtain a random number and retrieve a random NFT.

Status

The Fungify team acknowledged the Issue but stated that the Last-In First-Out (LIFO) method was by
design and that users may receive different NFTs than the one they supplied to the pool.

Verification

Resolved.

Suggestions

Suggestion 1: Enter Market in receive Function

Location

contracts/CEther.sol#L221

Synopsis

The CEther contract implements a receive function, which is used to receive any Ether sent to the
contract. The function calls the mintInternal function, which results in tokens being minted for
msg.sender. However, it is never logged (stored) that the user uses this particular market.

The functions autoEnterMarkets (for users added by the protocol) and enterMarket (for users who
add themselves) are used to include a user in the market. However, autoEnterMarket is not used in the
receive function.

Although we could not find a way to exploit this, our team noted that it could lead to issues in further
development in the future.

Security Audit Report | Smart Contracts | Fungify 6
10 January 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/1ad59cc73da1a2475670acfc9111653fbd2aefbe/contracts/CErc721.sol#L684
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/f03121e20c8a0aaf37cf66b1382a1dbc37a818fc/contracts/CEther.sol#L221

Mitigation

We recommend either calling comptroller.autoEnterMarkets before calling mintInternal or
calling mint instead of mintInternal.

Status

The Fungify team has resolved this suggestion by calling comptroller.autoEnterMarkets before
calling mintInternal.

Verification

Resolved.

Suggestion 2: Upgrade Solidity Version and Lock the Pragma

Location

All of the contracts.

Synopsis

A floating pragma is an error-prone practice that could lead to deployment issues in the case that an
incorrect compiler version is used. The older compiler versions have known and fixed issues and can be
used maliciously.

Mitigation

We recommend upgrading to the most recent compiler version, as it may include features and bug fixes
for issues that were present in previous versions, and locking the pragma.

Status

The Fungify team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 3: Use Correct ERC20 Interface

Location

contracts/CEther.sol#L7

contracts/CErc20.sol#L133

Synopsis

The aforementioned contracts use an incorrect ERC20 interface. According to EIP-20, approve,
transfer, and transferFrom should return Boolean values; however, some ERC20 tokens do not
return the result value. The false return value could result in action failure and must therefore be
taken into consideration when processing ERC20 tokens.

Mitigation

We recommend using the SafeERC20 library to process ERC20 tokens.

Security Audit Report | Smart Contracts | Fungify 7
10 January 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/CEther.sol#L7
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/CErc20.sol#L133

Status

The Fungify team stated that they utilize EIP20NonStandardInterface where appropriate. Our team
investigated the EIP20NonStandardInterface and did not identify any issues in the current
implementation.

Verification

Resolved.

Suggestion 4: Initialize Variables Before Use

Location

contracts/CToken.sol#L980

Synopsis

The actualAddAmount function is not initialized before use.

Mitigation

We recommend explicitly setting a variable to zero to improve code readability.

Status

The Fungify team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 5: Check Return Values of View Function Calls and
collectInterest

Location

contracts/Comptroller.sol#L1151

contracts/CErc20.sol#L42

contracts/CErc721.sol#L43

contracts/CErc721.sol#L139

contracts/CErc721.sol#L253

contracts/CErc721.sol#L471

Synopsis

In the aforementioned locations, the codes call view functions but do not use the return values.
Additionally, the collectInterest function returns zero only if the transaction succeeds. In case of
failure, other values are returned. Hence, no check is implemented to verify the return value of the
function.

Mitigation

We recommend performing a sanity check on the return values of the functions.

Security Audit Report | Smart Contracts | Fungify 8
10 January 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/CToken.sol#L980
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/Comptroller.sol#L1151
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/CErc721.sol#L42C6-L42C6
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/CErc721.sol#L43
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/CErc721.sol#L139
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/CErc721.sol#L253
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/CErc721.sol#L471

Status

The Fungify team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 6: Avoid Comparison to Boolean Constants

Location

contracts/Comptroller.sol#L156

contracts/Comptroller.sol#L1248

contracts/Comptroller.sol#L1264

contracts/Comptroller.sol#L1277

contracts/Comptroller.sol#L1290

contracts/Comptroller.sol#L1303

contracts/Comptroller.sol#L1316

contracts/Comptroller.sol#L1383

Synopsis

Boolean variables can be used directly as an if condition and do not need to be compared against true
or false.

Mitigation

We recommend using Boolean variables directly without comparing them against true or false.

Status

The Fungify team has implemented the mitigation as suggested.

Verification

Resolved.

Security Audit Report | Smart Contracts | Fungify 9
10 January 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/Comptroller.sol#L156
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/Comptroller.sol#L1248
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/Comptroller.sol#L1264
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/Comptroller.sol#L1277
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/Comptroller.sol#L1290
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/Comptroller.sol#L1303
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/Comptroller.sol#L1316
https://github.com/LeastAuthority/fungify-taki-contracts-estimation/blob/a259825b8e1feea0f339d16e6565b6ba159017f2/contracts/Comptroller.sol#L1383

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Smart Contracts | Fungify 10
10 January 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Smart Contracts | Fungify 11
10 January 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

