o

Least Authority

PRIVACY MATTERS

Sylow
Security Audit Report

Warlock

Final Audit Report: 6 January 2025

Table of Contents

Overview

Background
Project Dates
Review Team
Coverage
Target Code and Revision
Supporting Documentation
Areas of Concern
Findings
General Comments
System Design
Sylow
SolBLS

Code Quality
Documentation and Code Comments
Scope
Specific Issues & Suggestions
Issue A: Incorrect Square Check in F_(p*2
Issue B: Exposed Discrete Log Relations Between Random Elements in G,
Issue C: Potential Exposure of Secret Keys
Issue D: Insufficient Test Coverage
Issue E: Scalar Multiplication Vulnerable To Timing Attacks
Issue F: Missing Subgroup Check
Issue G: Improve Validation for Domain Separation Tag length
Issue H: Incomplete Group Membership Check in G1Projective::new
Suggestions
Suggestion 1: Implement Extension Field Default as Base Field Default Extension
Suggestion 2: Make Codebase for Complex Extensions Generic Over Quadratic Non-Residue
Suggestion 3: Correct Typographical Errors and Incorrect References in Code Comments
Suggestion 4: Improve Code Comments
Suggestion 5: Correct Tracing Variable
Suggestion 6: Add Note Clarifying Bugs in Reference Article
Suggestion 7: Rename Function To Match Functionality
Suggestion 8: Use Standard Terminology for Domain Separation Tag
Suggestion 9: Upgrade Solidity Version and Lock the Pragma
About Least Authority
Our Methodology

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background

Warlock has requested that Least Authority perform a security audit of Sylow and Sol1BLS. Sylowis a
Rust library for elliptic curve cryptography, specifically tailored for the BN254 curve, and SolBLS is a
Solidity library optimized for on-chain BLS signature verification.

Project Dates

October 7, 2024 - October 22, 2024: Initial Code Review (Completed)
October 24, 2024: Delivery of Initial Audit Report (Completed)
October 25, 2024: Delivery of Updated Initial Audit Report (Completed)

January 3, 2024: Verification Review (Completed)
January 6, 2025: Delivery of Final Audit Report (Completed)

Review Team

e Poulami Das, Security / Cryptography Researcher and Engineer
e Mirco Richter, Cryptography Researcher and Engineer
e Will Sklenars, Security Researcher and Engineer

Coverage

Target Code and Revision

For this audit, we performed research, investigation, and review of the Sylow and SolBLS followed by
issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
e Sylow: https://github.com/warlock-labs/sylow
e So01BLS: https://github.com/warlock-labs/solbls

Specifically, we examined the following Git revisions for our initial review:

e Sylow: 0f9f55adc3657299edcee9db031896¢11b0b2782
e So0l1BLS: 1ac7407a38df580d3a678aa4b9701667c387ef04

For the review, these repositories were cloned for use during the audit and for reference in this report:

e Sylow: https://github.com/LeastAuthority/warlock-labs-sylow

e So01BLS: https://github.com/LeastAuthority/warlock-labs-solbls

For the verification, we examined the following Git revisions:

e Sylow: aeOcc6fb85bb20d5f3e4b5a92e1d3edfe7b7c0el
e S01BLS: a7894c69defabb076a8de0154f4abbd044c3a94f

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/warlock-labs/sylow
https://github.com/warlock-labs/solbls
https://github.com/LeastAuthority/warlock-labs-sylow
https://github.com/LeastAuthority/warlock-labs-solbls

Supporting Documentation

The following documentation was available to the review team:
e Dev Guide:

https://x.com/warlock_xyz/status/18331736199855556767s=46
e Website:

e SolBLS - Zellic Audit Report Draft.pdf (shared with Least Authority via Telegram on 21 October
2024)

In addition, this audit report references the following documents:

e D.F Aranha, P.S. L. M. Barreto, P. Longa, and J. E. Ricardini, “The Realm of Pairings.” IACR
Cryptology ePrint Archive, 2013, [ABL+13

e P S.L. M. Barreto and M. Naehrig, "Pairing-Friendly Elliptic Curves of Prime Order." IJACR
Cryptology ePrint Archive, 2005, [BNQO5]

e J.Beuchat, J. E. Gonzalez-Diaz, S. Mitsunari, E. Okamoto, F. Rodriguez-Henriquez, and T. Teruya,
“High-Speed Software Implementation of the Optimal Ate Pairing over Barreto—Naehrig Curves.”
IACR Cryptology ePrint Archive, 2010, [BGM+10]

e D.Brumley and D. Boneh, “Remote Timing Attacks are Practical."USENIX Security Symposium,
2003, [BB03]

e J. Chavez-Saab, F. Rodriguez-Henriquez, and M. Tibouchi, “SwiftEC: Shallue—van de Woestijne
Indifferentiable Function To Elliptic Curves.” IACR Cryptology ePrint Archive, 2022, [CRT22]

e M. Joye, “Elliptic Curves and Side-Channel Analysis.” ST Journal of System Research, 2003,
[Joye03]

e P Longa, "Efficient Algorithms for Large Prime Characteristic Fields and Their Application to
Bilinear Pairings." IACR Cryptology ePrint Archive, 2022, [Longa22

e A Menezes, P. V. Oorschot, and S. Vanstone, “Chapter 14: Efficient Implementation.” In Handbook
of Applied Cryptography. CRC Press, 1996, [MOV96]

e H. Prodinger, "On Binary Representations of Integers With Digits -1, 0, 1." Colgate University, 2000,
[Prodinger00]

e J. Renes, C. Costello, and L. Batina, "Complete addition formulas for prime order elliptic curves."
IACR Cryptology ePrint Archive, 2015, [RCB15]

e A Shallue and C. E. V. D. Woestijne, "Construction of rational points on elliptic curves over finite
fields." ACM Digital Library, 2006, [SWO06]

e Pedersen Hash — iden3 0.1 documentation:
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standar

ds-workshop-2/pedersen-hash/pedersen.html
e Sylow: Elliptic Curve Cryptography Suite for BN254:

https://docs.rs/sylow/latest/sylow

e EIP-197: Precompiled contracts for optimal ate pairing check on the elliptic curve alt_bn128:

https://eips.ethereum.org/EIPS/eip-197
e RFC 9380 | Hashing to Elliptic Curves:

https://www.rfc-editor.org/rfc/rfc9380.html
e OWASP Risk Rating Methodology:

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Areas of Concern

Our investigation focused on the following areas:

e Correctness of the implementation;
e Vulnerabilities within each component and whether the interaction between the components is
secure;

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://x.com/warlock_xyz/status/1833173619985555676?s=46
https://warlock.xyz
https://eprint.iacr.org/2013/722
https://eprint.iacr.org/2005/133.pdf
https://eprint.iacr.org/2010/354.pdf
https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
https://eprint.iacr.org/2022/759
https://marcjoye.github.io/papers/Joy03ecc.pdf
https://eprint.iacr.org/2022/367.pdf
https://cacr.uwaterloo.ca/hac/about/chap14.pdf
https://math.colgate.edu/~integers/a8/a8.pdf
https://eprint.iacr.org/2015/1060.pdf
https://dl.acm.org/doi/10.1007/11792086_36
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://docs.rs/sylow/latest/sylow
https://eips.ethereum.org/EIPS/eip-197
https://www.rfc-editor.org/rfc/rfc9380.html
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Whether requests are passed correctly to the network core;

Key management, including secure private key storage and management of encryption and
signing keys;

Protection against malicious attacks and other ways to exploit;

Inappropriate permissions and excess authority;

Data privacy, data leaking, and information integrity; and

Anything else as identified during the initial analysis phase

Findings

General Comments

Our team performed a security audit of Sylow, a Rust-based cryptographic library that implements
cryptographic methods for the BLS signature scheme over the BN254 curve and So1BLS, which is a
smart contract for BLS signature over the same curve.

System Design

Our team reviewed Sylow and SolBLS and found the system to be well-designed, with a strong emphasis
on security. We audited the code under the assumption that it can potentially be used by third parties
different from the Warlock team.

Sylow

The Sylow repository is overall well-designed with two crates for handling field and group operations
respectively. It also contains dedicated modules for performing hash operations, point mapping
operations using the Shallue-van de Woestijne method [SWO06], and elliptic curve pairing operations,
among others.

We found that the code generally follows security best practices. However, during our review we identified
a few issues, which we summarize below:

We found that the is_square function in fields/fp2.rsis implemented incorrectly (Issue A) and that
this was not detected by the tests currently implemented in the codebase (Issue D). We additionally found
that the use of random point generation in groups/g2 . rs potentially exposes discrete log relations
among random elements in G, (Issue B). We also found that the scalar multiplication algorithm
implemented in groups/group.rs follows a double-and-add algorithm that is not resistant against
timing attacks, which can potentially leak the secret key (Issue E). Our team further noted that secret keys
might be recoverable from unprotected memory (Issue C).

Furthermore, we noticed that the function inverse computes the inverse of a base field element x using
Fermat'’s little theorem (i.e, x*(-1) = x*(p-2) for x != 8), but has no check to throw an error in
case x = 0. This is expected behavior, as it is required by REC 9380. Our team did not identify any issues
relating to this area of investigation.

In fields/fp2.rs, we found that certain functions are implemented specifically with the quadratic
non-residue set to B=-1, which is suitable for the case of the curve BN254; however, this value will not be
valid for other choices of B or curves. We recommend using the quadratic non-residue as a parameter to
support generic choices of B or curves (Suggestion 2).

Additionally, we compared the code against the specified algorithms and found two bugs in [BGM+10],
Algorithm 17 (Suggestion 6).

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://dl.acm.org/doi/10.1007/11792086_36
https://datatracker.ietf.org/doc/rfc9380/
https://eprint.iacr.org/2010/354.pdf

SolBLS

During our investigation of So1BLS, we reviewed the smart contracts for potential exposure to re-entrancy
attacks, and did not identify any issues. While BLS . sol does contain some calls to external contracts,
these contracts are Ethereum precompiles - specifically the precompiles at address 8x05 (Modexp),
address 0x06 (ecAdd), and address 8x08 (ecPairing) — and do not pose significant exposure to
re-entrancy attacks.

We observe that the naming of the function isValidSignature is misleading since it only checks
whether the input point is in the group G,. We suggest updating the function either by renaming it or

changing the functionality (Suggestion 7).

We noted that the function verifySingle does not perform input validation in order to check that the
arguments signature, pubkey, and message are on the curves G, and G,. These inputs are used to call
the ecPairing precompile at address 8x08. We checked the precompile specification and found that
the precompile reverts if inputs are invalid. It is therefore not required for the verifySingle function to
perform the validations. However, we found one area where input validations could be improved to better
adhere to technical specifications (Issue G).

Code Quality

We performed a manual review of the repositories in scope and found the code to be clean,
well-organized, and of high quality, in that it adheres closely to development best practices.

Tests

The repositories in scope include some tests; however, we found that test coverage, especially with
regards to some of the complex functionalities, can be improved. Our team also noted that Issue A could
have been detected if tests were implemented to check for it (Issue D). Additionally, although So1BLS has
sufficient test coverage overall, it could be improved with more unit testing.

Documentation and Code Comments

The project documentation provided by the Warlock team is comprehensive and sufficiently describes the
intended functionality of the system. However, we found some typographical errors and inconsistencies in
the code documentation, which we recommend be corrected and updated (Suggestion 3).

Moreover, we found that code comments sufficiently describe the intended behavior of security-critical
components and functions and serve as an additional, helpful source of documentation. Our team
additionally identified further opportunities for improving the code comments (Suggestion 4 and

Suggestion 6).

Scope

The scope of this review was sufficient and included all security-critical components.

Dependencies

We examined all the dependencies implemented in the codebase and identified two issues:
RUSTSEC-2024-0375 (atty is unmaintained) and RUSTSEC-2021-0139 (ansi_termis unmaintained).
The Warlock team is aware of these issues, as noted in Issue #39 and |ssue #30.

Additionally, our team noted that So1BLS does not contain any dependencies.

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eips.ethereum.org/EIPS/eip-197
https://github.com/warlock-labs/sylow/issues/39
https://github.com/warlock-labs/sylow/issues/30

Specific Issues & Suggestions

We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION SEVERITY STATUS

Issue A: Incorrect Square Check in F_(p*2) Low Resolved
Issue B: Exposed Discrete Log Relations Between Random Elements Low Resolved
in G,

Issue C: Potential Exposure of Secret Keys Medium Resolved
Issue D: Insufficient Test Coverage Low Resolved
Issue E: Scalar Multiplication Vulnerable To Timing Attacks Medium Resolved
Issue F: Missing Subgroup Check Low Resolved
Issue G: Improve Validation for Domain Separation Tag length Low Resolved
Issue H: Incomplete Group Membership Check in G1Projective::new High Resolved
Suggestion 1: Implement Extension Field Defaults as Base Field Informational = Resolved

Default Extension

Suggestion 2: Make Codebase for Complex Extensions Generic Over Informational Unresolved
Quadratic Non-Residue

ion 3: Correct T raphical Errors and Incorrect Referen Informational = Partially
in Code Comments Resolved
Suggestion 4: Improve Code Comments Informational Resolved
Suggestion 5: Correct Tracing Variable Informational = Resolved
Suggestion 6: Add Note Clarifying Bugs in Reference Article Informational Resolved
Suggestion 7: Rename Function To Match Functionality Informational = Unresolved
Suggestion 8: Use Standard Terminology for Domain Separation Tag Informational = Unresolved
Suggestion 9: Upgrade Solidity Version and Lock the Pragma Informational = Unresolved

Issue A: Incorrect Square Check in F_(p”"2)

Location

src/fields/fp2.rs#L178

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp2.rs#L178

Synopsis
Our team found an incorrect check for quadratic residues in the extension field F_ (p*2)and identified a
typographical error in its implementation.

Severity

Low.

Impact

The function is currently not called anywhere in the codebase.

Technical Details

The code logic should verify whether an element b=(b@ + b1v) € F_(p"2) is a square; that s,
whether another element a=(a@ + alv) € F_(p”2) exists witha*2 = b. In order to verify this, the
Warlock team implemented a check to confirm that the expression b822 + Bb1%2 is a square in the
base field, assuming that (b@® + b1v) isasquarein F_(p”2) if and only if b0*2 + Bb122is a square
in F. In our review, we found that a typographical coding error was introduced and that the Warlock team
actually implements b842 + Bb0*2, which for =-1 is always zero, leading to a situation where the
team’s insufficient tests for squares always passes since the Legendre symbol of zero is always zero.

However, the actual issue is not the typographical error but rather that the assumption that (b8 + b1v)
isasquarein F_(p”*2) ifand only if b822 + Bb172is asquare in F is incorrect. To further clarify,
consider the counterexample b8=0 and b1=1. Then b@® + b1v will have the following square root (a8 +
alv) € F_(p*2):

ag =
1984896282610772322736469595847441141741676063097978478177030864971284304388
al=
1984896282610772322736469595847441141741676063097978478177030864971284304388

However, the term b022 + Bb122 = Bis not a square in F by assumption on B. (Otherwise, F_(p"2)
= FO(X) / (X2 - B) would not be an extension field).

On the code level, to see that the typographical error is not the actual issue, assume the code was
corrected as follows:

sum = self.0[0].square() + FP_QUADRATIC_NON_RESIDUE * (-self.@[1]).square()
Then the following test would fail:

#[test]
fn test_is_square() {
let b = create_field_extension([0, @, @, 0], [1, 0, 0, 0]);
let is_square = b.is_square();
assert!(bool::from(is_square), "b = [@8, 1] should be a square in Fp2");

}

Remediation

We recommend implementing a proper squaring check in F_(p*2).

Status
The Warlock team has removed this function from the codebase.

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://b.is

Verification

Resolved.

Issue B: Exposed Discrete Log Relations Between Random Elements in G,

Location

src/qroups/g2.rs#L227

Synopsis

In the referenced part of the code, a random group element in the pairing group G, is computed as
rand_g2 = [rand_f] * g, where rand_f is randomness from the base field, and g is a generator of
G,. This construction exposes discrete log relations between different random elements that are
generated in this manner.

Severity

Low.

Impact

The severity of the impact depends on how the randomness generation is used in the code. Best practices
recommend constructing randomness in algebraic structures that have no known relations between
different instantiations.

This is crucial, for example, in Pederson hashes, where the generators in the group should be constructed
in such a way that no discrete log relations can be computed between them (see here for more details). In
Warlock’s case, the function is to be used only for elliptic curve point generation and not as a
(cryptographic) random number generator or as a pseudorandom function.

Remediation
We recommend refraining from using a random point generation that exposes discrete log relations.

Status

The Warlock team has reported that the function rand will not be used as a (cryptographic) random
number generator, and has added detailed explanations in the comments, clarifying the correct use of the
function. Hence, for this particular function in question, our team did not identify any issues.

Verification

Resolved.

Issue C: Potential Exposure of Secret Keys

Location
src/lib.rs#L165

Synopsis

Since the Warlock team implements a constant time codebase, it might therefore be possible for an
attacker to gain physical access to the machine/computer. In such a case, secrets stored in non-protected
memory pose additional risks.

Severity

Medium.

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/g2.rs#L227
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://github.com/warlock-labs/sylow/blob/LEAST_AUTHORITY_REMEDIATION/src/groups/g2.rs#L208
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/lib.rs#L105

Impact

The impact depends on the threat model. If physical access or compromised machines are considered a
threat, an attacker could gain access to secret keys either by inspection of the non-protected memory or
due to potential leaks into logs.

Preconditions
This exploit requires physical access or a compromised machine.

Remediation

The Warlock team is aware of this issue. Our team agrees with the development team’s comment that
Rust’'s secrets crate can be integrated to remediate this issue.

Status

The Warlock team has updated the code to use the secrets crate to store generated key pairs and
signatures.

Verification

Resolved.

Issue D: Insufficient Test Coverage

Location

warlock-labs-sylow

Synopsis

There is insufficient test coverage implemented to test the correctness of the implementation and that the
system behaves as expected. Tests help identify coding implementation errors, which could lead to
security vulnerabilities.

Sufficient test coverage should include tests for success and failure cases (all possible branches), which
helps identify potential edge cases, and protect against errors and bugs that may lead to vulnerabilities. A
test suite that includes sufficient coverage of unit tests and integration tests adheres to development best
practices. In addition, end-to-end testing is also recommended to assess if the implementation behaves
as intended.

Below, we list a few opportunities for improving test coverage:

e The tests in F_(p"6) are insufficient. Only a small amount of hard coded elements are used to test
basic properties. We recommend using random elements with fixed seeds for predictability.
Additionally, the Warlock team did not test edge cases and whether x*2 = x*xor x* xA(-1)
= 1forx != 0.

e Thetests in F_(p*12) are insufficient. There are no tests using random elements and
sparce_mul, in particular, is not tested at all. We recommend increasing testing for
sparce_mul, as it might have several errors due to its complexity. We also recommend running
the tests on multiple random elements.

Severity
Low.

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/lib.rs#L96
https://github.com/warlock-labs/sylow
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp6.rs
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp12.rs
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp12.rs#L426

Impact

Insufficient tests could lead to potential edge cases and errors being missed, which may lead to
vulnerabilities. In addition, the lack of sufficient test coverage would hinder the ability to assess whether
the implementation behaves as intended.

Remediation
We recommend that comprehensive unit test coverage be implemented in order to identify any
implementation errors and to verify that the implementation behaves as expected.

Status

The Warlock team has added tests for missing edge cases, as well as a basic implementation check for
the sparse multiplication of elements in F_(p*12), with an additional square check test. Furthermore, for
the F_(p"6) and F_(p”12) extension fields, the Warlock team has removed the instantiation of
concrete elements for the tests, wherever possible, in favor of arbitrary random ones.

Verification
Resolved.

Issue E: Scalar Multiplication Vulnerable To Timing Attacks

Location

src/qroups/qroup.rs#L649-L667

Synopsis

In a scalar multiplication, an elliptic curve point P is multiplied by a scalar chosen from the underlying
field. The code snippet referenced above implements a scalar multiplication that is not resistant against
timing attacks. In particular, the code first derives a non-adjacent form (NAF) representation of the scalar.
This is followed by a naive multiplication, which includes an iterative doubling operation and a conditional
addition or subtraction operation, depending on the NAF bits. The conditional operation makes the code
vulnerable to timing attacks (see [Joye03] and [BB03]).

Severity

Medium.

Impact

A successful timing attack reveals information about the scalar used, which can potentially correspond to
the secret key of a signature.

Remediation
We recommend implementing a timing attack-resistant scalar multiplication algorithm. For example, a
classic remediation is the Montgomery ladder [Joye0Q3]:

function montgomery_ladder(k, P):
RO = Point at infinity

R1 =P
for bit in k (from most significant to least significant):
if bit ==
R1T = RO + R1
RO = 2 * RO
else:
RO = RO + R1
R1T = 2 * R1

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/group.rs#L649-L667
https://marcjoye.github.io/papers/Joy03ecc.pdf
https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
https://marcjoye.github.io/papers/Joy03ecc.pdf

return RO

Another possible solution would be to randomize the NAF representation of the scalar, each time the
algorithm is called. This way, the algorithm would execute a different branching pattern at each call,
effectively protecting against timing analysis.

Status

The Warlock team has implemented the recommended Montgomery Ladder approach for the scalar
multiplication of elements in G,, G,, and G+ using Algorithm 2c of [Joye03]. In addition, the team has
adjusted the cyclotomic exponentiation in pairing. rs to use this same constant-time approach.

Verification

Resolved.

Issue F: Missing Subgroup Check

Location

src/BLS.sol#L132

Synopsis
The function isValidPublicKey only checks that the given data satisfies the curve equation of the
quadratic twist curve of BN254, but does not check that the point is actually in G,.

Severity
Low.

Impact

The name isValidPublicKey suggests that the function correctly checks whether the given data
represents a BLS public key; that is, an element of the pairing group G,. However, since the function only
checks that the data is an element in the twist curve, keys that are outside of G, would pass the test.
Additionally, since those keys would not be usable in the EVM precompile for pairings (because the
subgroup test is done in the precompile independently), it might lead to other consequences depending
on where this function is used.

Preconditions

The attacker would need to generate a point in BN254_twist (F_(p"2))\G,, which is trivial.

Feasibility
Straightforward.

Remediation
We recommend implementing the cofactor check r* P == 0 for any claimed public key P and group
order r.

Status

The Warlock team has implemented the cofactor check by calling the precompiled contract at address 8
(the “BN256 pairing” precompile) that enforces the inputs to be in the appropriate subgroup.

Verification
Resolved.

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://marcjoye.github.io/papers/Joy03ecc.pdf
https://github.com/LeastAuthority/warlock-labs-solbls/blob/master/src/BLS.sol#L132

Issue G: Improve Validation for Domain Separation Tag length

Location

src/BLS.sol#1246

Synopsis

RFC 9380, which describes the hashing of elliptic curves, specifies that the Domain Separation Tag (DST)
should have a length between 1 and 255 bytes. Our team noted that expandMsgTo96 correctly enforces
the upper bound for DST length; however, no lower bound is enforced. Using an empty string as the DST
does not throw an exception. This violates the REC 9380 specification.

Severity

Low.

Impact

An empty domain separator could potentially allow replay attacks in other contracts.

Remediation

We recommend reverting if the DST length is 0, in accordance with REC 9380.

Status

The Warlock team has added an explicit check for a non-zero DST length, and an error is thrown when the
DST length is zero.

Verification

Resolved.

Issue H: Incomplete Group Membership Check in G1Projective::new

Location
src/qroups/gl.rs#L.383

Synopsis
The G1Projective::new(v: [Fp; 3]) method incorrectly checks group membership for the point at
infinity, potentially allowing points on the line at infinity to pass the test.

Severity

High.

Impact

Points from the projective plane that do not satisfy the curve equation can have unintended
consequences in the BLS signature scheme.

Technical Detail

Inthe G1Projective::new(v: [Fp; 3]) method, the code checks if a given projective point
[X:Y:Z] is a point on the BN254 curve using:

let is_on_curve = lhs.ct_eq(&rhs) | Choice::from(v[2].is_zero() as u8);

Here, v[2] corresponds to Z and the is_on_curve test passes for Z==08. Hence, any element of the

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/warlock-labs-solbls/blob/1ac7407a38df580d3a678aa4b9701667c387ef04/src/BLS.sol#L246
https://datatracker.ietf.org/doc/rfc9380/
https://datatracker.ietf.org/doc/rfc9380/
https://datatracker.ietf.org/doc/rfc9380/
https://github.com/warlock-labs/solbls/blob/a7894c69defabb076a8de0154f4abbd044c3a94f/src/BLS.sol#L233
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/g1.rs#L383

form [X:Y :0] will pass the check, which is incorrect since only the point at infinity [8:Y :0] but not the
line at infinity [X:Y :0] should pass this branch of the test.

Remediation

We recommend implementing a test that checks that both v[@] and v[z] are zero.

Status

The Warlock team has modified the is_on_curve check to be passed by the point at infinity but not the
line at infinity, by checking if both the X and Z coordinates are zero.

Verification
Resolved.

Suggestions

Suggestion 1: Implement Extension Field Default as Base Field Default
Extension

Location

src/fields/extensions.rs#L189

Synopsis

The Warlock team has implemented the default of an extension field as a vector of defaults of the base
field, while the default of an extension field should be implemented as the default of the base field
instead. In Warlock’s case, both approaches lead to the same result because the default of the base is
defined as zero. However, for other values, the Warlock team’s approach would lead to unexpected
results. Therefore, it would be conceptually better to write:

fn default() -> Self {
let mut retval = [F::zero(); NI;
retval[@] = F::default();
Self::new(&retval)

}

This way, the default of any extension field would always be the default of the base field.

Mitigation
We recommend implementing the base field default extension as the extension field default.

Status
The Warlock team has updated the default function as suggested.

Verification
Resolved.

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/extensions.rs#L189
https://github.com/warlock-labs/sylow/blob/LEAST_AUTHORITY_REMEDIATION/src/fields/extensions.rs#L189

Suggestion 2: Make Codebase for Complex Extensions Generic Over
Quadratic Non-Residue

Location

src/fields/fp2.rs

Synopsis

As explained in the description of the quadratic extension fields implementation, the codebase should be

generic over a quadratic non-residue 8, such that the associated extension field is defined as:
F_(p"2)= FO(X) / (X* - B)

However, in some instances in the codebase, it is assumed that B=-1; therefore, the code would not be

valid for other values of B. While this approach may be appropriate in the case of BN254 because -1 is a

quadratic non-residue in the associated base field, it might not work for other curves or choices of B.

Mitigation
We recommend making the code fully generic over the quadratic non-residue .

Status

The Warlock team has stated that this change is harder to implement in practice. The team added that
they will eventually support multiple curves, but doing so will require both algorithmic and structural
changes to the code that are out of scope for this engagement.

Verification

Unresolved.

Suggestion 3: Correct Typographical Errors and Incorrect References in
Code Comments

Location

Examples (non-exhaustive):
src/groups/group. rs#l 340-1342
src/groups/group. rs#l 536
src/groups/group.rs#l 98

src/svdw.rs

src/pairing.rs#1496-1497
src/fields/fp6.rs#1283
src/pairing.rs#l756
src/pairing.rs#l798

src/fields/fp6.rs#l3

src/aroups/g2.rs#lL 121

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp2.rs
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp.rs#L71
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp.rs#L71
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp2.rs#L104
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/group.rs#L340-L342
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/group.rs#L536
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/group.rs#L98
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/svdw.rs
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/pairing.rs#L496-L497
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp6.rs#L283
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/pairing.rs#L756
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/pairing.rs#L798
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp6.rs#L3
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/g2.rs#L121

Synopsis

During our review, our team identified typographical errors and incorrect references in the code comments
that impact the quality, readability, and maintainability of the codebase. To illustrate, the following is a
non-exhaustive list of examples:

e Insrc/groups/group.rs#L340-1342, the reference corresponding to Algorithm 9 for
doublingis [2], not [1].

e |Insrc/groups/group.rs#L536, similarly, the reference corresponding to Algorithm 10 for
additionis [2],not [1].

e Insrc/groups/group.rs#L98, the equation should be updatedto (x', y') |-> (w*2x',
wA3y').

e Insrc/svdw.rs, although the main concepts are explained in the provided reference present in
the comment, the algorithmic steps followed in find_z_svdw, precompute_constants and
unchecked_map_to_point were referred to from RFC 9380, Section 6.6.1. We recommend
adding this reference to the relevant locations.

Insrc/pairing.rs#L496-1L497, there are some typographical errors that should be corrected.
Insrc/fields/fp6.rs#lL283, the referenced algorithm is incorrect. It should be equation 9,
page 14 from [Longa22].

e Insrc/pairing.rs#L756,the doubling_step follows equation 11 of [ABL+13]. The
reference in the comment is currently incorrect.

e Insrc/pairing.rs#L798,the addition_step follows equation 12 of [ABL+13]. The
reference in the comment is currently incorrect.

Mitigation
We recommend correcting the errors in the code comments by addressing the items listed above.

Status

The Warlock team has corrected most of the typographical errors. However, some errors still remain in
the following locations:

e Insrc/pairing.rs#lL503, “betwixt” should be updated to “between.”
e Insrc/fields/fp6.rs#L297, “Algo 9” should be updated to “Equation 9.”

Verification

Partially Resolved.

Suggestion 4: Improve Code Comments

Location

Examples (non-exhaustive):

src/fields/fp.rs#1653
src/qroups/ql.rs#1.165-168
Synopsis

While most of the code comments are comprehensive and helpful, we did identify a few opportunities for
improvement. Below, we list some of our findings:

e Insrc/fields/fp.rs#l1653,the compute_naf function uses the Prodinger algorithm

correctly. However, it is not clear where the algorithm is explained in [Prodinger00]. A more exact
reference of the Prodinger algorithm should be provided.

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/group.rs#L340-L342
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/group.rs#L536
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/group.rs#L98
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/svdw.rs
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/svdw.rs#L39
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/svdw.rs#L81
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/svdw.rs#L123
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/svdw.rs#L180
https://datatracker.ietf.org/doc/rfc9380/
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/pairing.rs#L496-L497
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp6.rs#L283
https://eprint.iacr.org/2022/367.pdf
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/pairing.rs#L756
https://eprint.iacr.org/2013/722
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/pairing.rs#L798
https://eprint.iacr.org/2013/722
https://github.com/warlock-labs/sylow/blob/LEAST_AUTHORITY_REMEDIATION/src/pairing.rs#L503
https://github.com/warlock-labs/sylow/blob/LEAST_AUTHORITY_REMEDIATION/src/fields/fp6.rs#L297
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp.rs#L653
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/g1.rs#L165-168
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp.rs#L653
https://math.colgate.edu/~integers/a8/a8.pdf

e |Insrc/groups/gl.rs#L165-168, areference to “expectation / convention used by Geth /
Reth” should be included.

e Insrc/groups/g2.rs#L.123, the code comment is misleading and should specify that the
function must return a generator of G,, not the full twisted curve.

e Insrc/hasher.rs#L6,there are multiple instances in the code comments where XMD (Expand
Message XMD) is implemented, while the comments incorrectly reference XOF (Expand Message
XOF) instead.

e Insrc/fields/fp6.rs#L3,the module implements the cubic extension of the quadratic
extension or the sextic extension of the base.

e Insrc/groups/g2.rs#L121, it should be specified that the generator of G, is returned.

Mitigation
We recommend improving the comments as detailed above.

Status
The comments have been updated as suggested. More specifically:

e The compute_naf function has been removed, so the suggestion is no longer relevant.
e The rest of the comments (here, here, here and here) have been improved as recommended.

Verification
Resolved.

Suggestion 5: Correct Tracing Variable

Location

src/groups/group.rs#l.543

Synopsis
Insrc/groups/group. rs#l 543, three variables t90, t1, and t2 should be traced. However, the third
variable should be t2 and not t1 in order for the values to be traced correctly.

Mitigation
We recommend correcting the code as detailed above.

Status
The Warlock team has rectified the typographical error.

Verification

Resolved.

Suggestion 6: Add Note Clarifying Bugs in Reference Article

Location

[BGM+10]

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/g1.rs#L165-168
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/g2.rs#L123
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/hasher.rs#L6
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp6.rs#L3
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/g2.rs#L121
https://github.com/warlock-labs/sylow/blob/LEAST_AUTHORITY_REMEDIATION/src/groups/g1.rs#L166
https://github.com/warlock-labs/sylow/blob/LEAST_AUTHORITY_REMEDIATION/src/groups/g2.rs#L121
https://github.com/warlock-labs/sylow/blob/LEAST_AUTHORITY_REMEDIATION/src/hasher.rs#L6
https://github.com/warlock-labs/sylow/blob/LEAST_AUTHORITY_REMEDIATION/src/groups/g2.rs#L121
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/group.rs#L543
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/groups/group.rs#L543
https://github.com/warlock-labs/sylow/blob/LEAST_AUTHORITY_REMEDIATION/src/groups/group.rs#L543
https://eprint.iacr.org/2010/354.pdf

Synopsis

In [BGM+10], Algorithm 17 contains two errors. Firstly, Step 6 should be: t_5 — a_1*a_2. Secondly, Step
9shouldbe:c_2 — t_1 - t_4. The code behaves correctly and is hence currently inconsistent with
Algorithm 17 from the reference.

Mitigation
To avoid confusion and for better code maintenance, we recommend adding a note in the code
comments regarding the inconsistencies present in [BGM+10], Algorithm 17.

Status

The Warlock team has updated the relevant comment in the codebase to highlight the typographical
errors in the referenced article.

Verification

Resolved.

Suggestion 7: Rename Function To Match Functionality

Location

src/BLS.sol#L121

Synopsis

The function isValidSignature currently checks if the input is a point in the group G,. However, for a
signature to be valid, the input also needs to satisfy the signature verification algorithm. Hence, it is
confusing to name a function “IsValidSignature” if the intended behavior is to only check if the point
is in G,. Otherwise, if the intended behavior is to actually check for a valid signature, then the code must
add a check for signature verification.

Mitigation
We recommend adjusting the function IsValidSignature accordingly.

Status
This suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 8: Use Standard Terminology for Domain Separation Tag

Location
Multiple functions within BLS . sol.

Examples (non-exhaustive):
src/BLS.sol#L95
src/BLS.sol#1244

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2010/354.pdf
https://github.com/LeastAuthority/warlock-labs-sylow/blob/main/src/fields/fp6.rs#L415-L424
https://eprint.iacr.org/2010/354.pdf
https://github.com/warlock-labs/sylow/blob/LEAST_AUTHORITY_REMEDIATION/src/fields/fp6.rs#L415-418
https://github.com/LeastAuthority/warlock-labs-solbls/blob/master/src/BLS.sol#L121
https://github.com/LeastAuthority/warlock-labs-solbls/blob/master/src/BLS.sol#L121
https://github.com/LeastAuthority/warlock-labs-solbls/blob/1ac7407a38df580d3a678aa4b9701667c387ef04/src/BLS.sol#L95
https://github.com/LeastAuthority/warlock-labs-solbls/blob/1ac7407a38df580d3a678aa4b9701667c387ef04/src/BLS.sol#L244

Synopsis

In some instances in the codebase, the domain separation tag is referred to as “domain” (e.g., in
hashToPoint), while in other locations, it is sometimes referred to as “dst” (e.g., in expandMsgTo96).
Standardizing on either domain or dst would facilitate easier understanding of the code and allow both
maintainers and reviewers of the codebase to comprehensively understand the intended functionality of
the implementation, which increases the likelihood for identifying potential errors that may lead to
security vulnerabilities.

Mitigation
To improve code comprehensibility, we recommend being consistent in naming by using either domain or
dst.

Status
This suggestion remains unresolved at the time of verification.

Verification
Unresolved.

Suggestion 9: Upgrade Solidity Version and Lock the Pragma

Location

src/BLS.sol#L2
src/ModExp.sol#L2

Synopsis

Smart contracts in the project have their pragma set to >=0.8.23. Compiling with different versions of
the compiler might lead to unexpected results. In addition, older versions of the Solidity compiler may
contain bugs that have been fixed in more recent versions of the compiler, including up-to-date security
patches.

Mitigation
In order to maintain consistency and to prevent unexpected behavior, we recommend that the Solidity
compiler version be pinned by removing ">=" and using the latest version of the Solidity compiler.

Status
This suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/warlock-labs-solbls/blob/1ac7407a38df580d3a678aa4b9701667c387ef04/src/BLS.sol#L2
https://github.com/LeastAuthority/warlock-labs-solbls/blob/1ac7407a38df580d3a678aa4b9701667c387ef04/src/ModExp.sol#L2

About Least Authority

We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis

Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing, along with the use of tools, including Al, to support our code review efforts. We look at the
project's website to get a high level understanding of what functionality the software under review
provides. We then meet with the developers to gain an appreciation of their vision of the software. We
install and use the relevant software, exploring the user interactions and roles. As we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review other audit results,
search for similar projects, examine source code dependencies, skim open issue tickets, and generally
investigate details other than the implementation. We hypothesize what vulnerabilities may be present
and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation and
Remediation process.

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results

We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions

We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing

Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Sylow | Warlock
6 January 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

