

Keychain Module
Security Audit Report
Wallet V
Updated Final Audit Report: 2 April 2025

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Issue A: Setting up Wallets Can Result in Race Condition

Issue B: Private Keys Are Vulnerable to Supply Chain Attack

Issue C: Private Keys Can Migrate To Other iOS Devices Without User Knowledge

Issue D: Runtime Error Occurs When Importing A Wallet

Issue E: deleteWallet Function Deletes Private Keys for All Wallets

Suggestions

Suggestion 1: Implement Error Handling

Suggestion 2: Use Actively Maintained Dependencies

Suggestion 3: Add More Tests

About Least Authority

Our Methodology

Security Audit Report | Keychain Module | Wallet V 1
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Wallet V Labs has requested that Least Authority perform a security audit of the Wallet V. Wallet V is a
Web3 wallet that facilitates crypto trading in a simple and cost-effective manner for Global Clients.

Project Dates
● February 10, 2025 - February 12, 2025: Initial Code Review (Completed)
● February 13, 2025: Delivery of Initial Audit Report (Completed)
● March 11, 2025: Delivery of Updated Initial Audit Report (Completed)
● February 28, 2025: Verification Review (Completed)
● February 28, 2025: Delivery of Final Audit Report (Completed)
● March 17, 2025: Delivery of Updated Final Audit Report (Completed)
● April 2, 2025: Delivery of Updated Final Audit Report (Completed)

Review Team
● Will Sklenars, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Wallet V followed by issue
reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● wallet_audit.js:

https://github.com/walletv-web3/Audit/blob/main/wallet_audit.js

Specifically, we examined the Git revision for our initial review:

● 511090a1dc5d100e99832b0a858f01cff0790079

For the verification, we examined the Git revision:

● cdfea0c11765614139d54992303e94aff3d04444

For the review, this repository was cloned for use during the audit and for reference in this report:

● https://github.com/LeastAuthority/virgocx-wallet-audit

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Website:
https://wallet.io

Security Audit Report | Keychain Module | Wallet V 2
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/walletv-web3/Audit/blob/main/wallet_audit.js
https://github.com/LeastAuthority/virgocx-wallet-audit
https://wallet.io

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Adversarial actions and other attacks on the wallet;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Malicious attacks and security exploits that would impact the wallet;
● Vulnerabilities in the wallet code, and whether the interaction between the related network

components is secure;
● Exposure of any critical or sensitive information during user interactions with the wallet and use

of external libraries and dependencies;
● Proper management of encryption and storage of private keys;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team performed a security audit of a core module from the V react-native wallet application. The
core module is responsible for creating wallets and storing private keys. It is also responsible for signing
blockchain transactions. The module interacts with a backend service, which was out of the scope of this
audit.

The module supports several wallet creation mechanisms, such as restoring from a private key or
mnemonic, or, alternatively, generating a new account. While users also have the ability to delete a wallet,
we found that this functionality has been incorrectly implemented, such that deleting a wallet results in all
wallets being deleted (Issue E).

When a wallet is created, it is assigned a walletId, which is an auto-incrementing integer. To facilitate
the increment functionality, the latest walletId is stored using react-native-async-storage.
When a new wallet is created, this ID is incremented and saved back to
react-native-async-storage. We identified a potential race condition where creating two wallets
concurrently could result in a walletId collision (Issue A).

The module we reviewed leverages the react-native-keychain module for the secure storage of
private keys. Our team found the choice of react-native-keychain to be an acceptable one, as it is
used by several well-audited wallets, such as MetaMask. However, we identified several shortcomings in
the configuration and use of react-native-keychain, which subjects user private keys to
unnecessary risk. We found that user private keys are rendered accessible whenever the device is
unlocked (Issue B), and also identified that user accounts can be vulnerable to an attacker who is able to
compromise a user’s Apple credentials. Furthermore, due to the current react-native-keychain
configuration, private keys will be backed up to iCloud and downloaded by any other iOS devices the user
has, further increasing the attack surface.

Security Audit Report | Keychain Module | Wallet V 3
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Dependencies

The code provided for the audit only shows the dependencies used, and not their versions. Due to this, our
team was unable to check the specific dependency versions for vulnerabilities. However, we identified one
dependency that is deprecated, and another that has been archived and moved (Suggestion 2).

Code Quality
We performed a manual review of the repositories in scope and found the codebases to be generally
organized and well-written. The functions are split up into logical units, and the code is systematically
structured, enhancing readability. However, we found that the module appears to represent a work in
progress rather than a finished module, as there are several bugs and inconsistencies throughout. For
example, lines 245-248 are not contextually relevant within a module, and are presumed to serve as a
form of documentation, illustrating how to use key functions within the module. Additionally, we found
that importing a wallet will result in a runtime error (Issue D), and that no error handling has been
implemented yet (Suggestion 1).

Tests

During our review, we noted that the codebase provided did not include tests and reported this as
Suggestion 3, recommending the addition of both manual and unit testing, as Issue D could have been
detected through these testing approaches. However, the Wallet V team later clarified that manual testing
had been performed prior to submission, with test records maintained separately. Following the initial
review, these tests were incorporated into the codebase and subsequently reviewed by our team, thereby
resolving the suggestion.

Documentation and Code Comments
There was no documentation provided for the wallet. However, some of the functions have minimal code
comments and the module was sufficiently self-documenting; hence, the lack of documentation was not
an issue.

Scope
The scope of this review included one module within the wallet system. As a result, the scope was
sufficient to assess the implementation of the module but insufficient to evaluate the security of the
wallet system as a whole.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Setting up Wallets Can Result in Race Condition Resolved

Issue B: Private Keys Are Vulnerable to Supply Chain Attack Resolved

Issue C: Private Keys Can Migrate To Other iOS Devices Without User
Knowledge

Resolved

Issue D: Runtime Error Occurs When Importing A Wallet Resolved

Security Audit Report | Keychain Module | Wallet V 4
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vcx-devs/Audit/blob/511090a1dc5d100e99832b0a858f01cff0790079/wallet_audit.js#L245-L248

Issue E: deleteWallet Function Deletes Private Keys for All Wallets Resolved

Suggestion 1: Implement Error Handling Resolved

Suggestion 2: Use Actively Maintained Dependencies Resolved

Suggestion 3: Add More Tests Resolved

Issue A: Setting up Wallets Can Result in Race Condition

Location

vcx-devs/Audit/wallet_audit.js#L143

Synopsis

If multiple wallet creation operations run simultaneously, there is a risk of naming collisions due to
non-atomic writes.

Impact

Two wallets could be given the same walletId. This could cause unexpected behavior when rendering
wallets in the application, or when sending blockchain transactions.

Preconditions

Two or more wallets would need to be created concurrently, either by creating a new wallet, or by restoring
a wallet using a private key or mnemonic.

Feasibility

As this module is designed to service a mobile application, it is unlikely a user will create wallets in quick
succession. Hence, this issue is unlikely to occur.

Technical Details

The getNextWalletId function increments the walletId value stored in AsyncStorage. The
increment involves a read, followed by a write with the incremented value. If getNextWalletId is called
concurrently, two calls may read the same walletId value and save the same incremented value
walletId + 1. This would result in getNextWalletId being called twice, although walletId would
only be incremented by 1 (rather than 2). The flow on effect is that two wallets will be created with the
same walletId.

Remediation

AsyncStorage does not provide support for atomic operations, or a compare-and-set functionality. To
remediate this issue, we recommend using a data storage service that provides atomic operations, such
as sqlite, for which there is a react-native implementation. Alternatively, we recommend
implementing a locking mechanism in the JavaScript code that rejects any concurrent calls to
getNextWalletId.

Status

The Wallet V team has implemented a client-side locking mechanism, which rejects concurrent calls to
getNextWalletId.

Security Audit Report | Keychain Module | Wallet V 5
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vcx-devs/Audit/blob/511090a1dc5d100e99832b0a858f01cff0790079/wallet_audit.js#L143

Verification

Resolved.

Issue B: Private Keys Are Vulnerable to Supply Chain Attack

Location

vcx-devs/Audit/wallet_audit.js#L11

Synopsis

The private keys are stored in react-native-keychain, which provides data encrypted at rest.
However, react-native-keychain has been insufficiently configured, resulting in keys that are
vulnerable when the device is unlocked.

Impact

Since the private keys are always accessible when the phone is unlocked, the application is able to sign
transactions without requiring explicit confirmation from the user. Since no explicit confirmation is
required, a bug in the wallet code could sign a transaction without the user’s awareness. Additionally, any
malicious code that infiltrates the application and is imported into the core module–for example, through
a supply chain attack–will be able to access the keys at any time. Either scenario could result in the loss
of user funds.

Preconditions

The device must be unlocked, and an attacker must be able to inject malicious code into the codebase,
either through a supply chain attack, or by an insider who is able to deploy an update.

Feasibility

If the preconditions are met, the extraction of private keys or signing of arbitrary transactions would be
trivial.

Technical Details

The module applies the react-native-keychain setting storage:
Keychain.STORAGE_TYPE.AES_GCM_NO_AUTH, which the react-native-keychain documentation
describes as a medium security setting that is suitable for application-level secrets and cached data. With
this setting, authorization is not required to access the data. This is insufficient protection for private
keys. Furthermore, the keychain is misconfigured with the setting accessControl:
Keychain.ACCESS_CONTROL.ALWAYS. This is incorrect and is equivalent to setting accessControl:
undefined, as the property ALWAYS does not exist on the ACCESS_CONTROL enum.

Remediation
We recommend minimizing private key exposure to application code as much as possible without
compromising user experience, and requiring user confirmation whenever the private keys are accessed.
For the accessControl setting, we recommend configuring the keychain to either require a passcode, or
biometric input, depending on user preference.
For the storage setting, the react-native-keychain default is 'Best available storage,’
according to the documentation. We therefore recommend removing the configuration property to use the
default setting.

Status

The Wallet V team has updated the keychain configuration to require a biometric or device passcode to
access stored data.

Security Audit Report | Keychain Module | Wallet V 6
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vcx-devs/Audit/blob/511090a1dc5d100e99832b0a858f01cff0790079/wallet_audit.js#L11
https://github.com/oblador/react-native-keychain/blob/14355bc7be85bf0abf7d51822f3f3839001ca8f2/src/enums.ts#L26-L27

Verification

Resolved.

Issue C: Private Keys Can Migrate To Other iOS Devices Without User
Knowledge

Location

vcx-devs/Audit/wallet_audit.js#L19

Synopsis

Due to the way react-native-keychain is configured, user private keys can migrate to another
device, which is logged in with the same Apple credentials.

Impact

If a user’s Apple credentials are compromised, an attacker may be able to steal the user’s funds.
Additionally, a user’s wallets may automatically migrate to their other devices, which might not align with
the user’s intentions and expose their funds to unnecessary risk.

Preconditions

The user must have a wallet set up on an Apple device.

Feasibility

As this is the default behavior of the system, both the attack scenario through compromised Apple
credentials, as well as the unintended wallet migration scenario, are feasible.

Technical Details

react-native-keychain is configured with accessible:
Keychain.ACCESSIBLE.WHEN_UNLOCKED, rather than the more secure setting
Keychain.ACCESSIBLE.WHEN_UNLOCKED_THIS_DEVICE_ONLY. By default on iOS, Keychain items
that are marked ThisDeviceOnly do not get backed up or synced to new devices, whereas items that
are not marked ThisDeviceOnly can migrate via an encrypted backup restore or via the iCloud
Keychain. Since Android does not follow this pattern, the private keys will not be backed up and
migrated by default on Android devices.

Mitigation

We suggest warning current users of the system (iOS only) that wallet migration may have occurred so
they can take steps to secure their wallets and Apple accounts.

Remediation

We recommend using the setting Keychain.ACCESSIBLE.WHEN_UNLOCKED_THIS_DEVICE_ONLY to
prevent private keys from being backed up.

Status

The Wallet V team has updated the configuration to use
ACCESSIBLE.WHEN_UNLOCKED_THIS_DEVICE_ONLY; therefore, the sensitive data is no longer backed
up to cloud services.

Verification

Resolved.

Security Audit Report | Keychain Module | Wallet V 7
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vcx-devs/Audit/blob/511090a1dc5d100e99832b0a858f01cff0790079/wallet_audit.js#L19

Issue D: Runtime Error Occurs When Importing A Wallet

Location

vcx-devs/Audit/wallet_audit.js#L132

Synopsis

The createWalletByPrivateKey function references a property on an object that is not defined in the
appropriate scope. This will result in an error at runtime.

Impact

Due to this error, it will be impossible for a user to import a wallet for a given private key.

Preconditions

The user would need to be in possession of the private key for an account they intend to import into the
application.

Feasibility

This error will occur every time a user tries to create a wallet for a given private key.

Technical Details

In the return statement of the createWalletByPrivateKey function, there is the expression
wallet.address. However, wallet is not defined within the return statement’s scope. Due to this,
accessing the address property will result in an error similar to TypeError: Cannot read property
'address' of undefined. Furthermore, we note that the Solana and EVM blocks declare different
variable names and datatypes.

Remediation

We recommend defining the wallet variable in a scope that the return statement has access to. To
improve consistency, we suggest updating the EVM and Solana code blocks so that they express a
common API. We also suggest performing manual testing on the function, and writing unit tests.
Furthermore, we recommend migrating to TypeScript, which eliminates the possibility of such runtime
errors occurring.

Status

The Wallet V team has updated the createWalletByPrivateKey function, eliminating the runtime
error.

Verification

Resolved.

Issue E: deleteWallet Function Deletes Private Keys for All Wallets

Location

vcx-devs/Audit/wallet_audit.js#L185

Synopsis

The deleteWallet function takes as an argument the uuid of the wallet to be deleted. The function
should delete the mnemonic and private key for that wallet only, but instead deletes the private keys for all
of the user’s wallets.

Security Audit Report | Keychain Module | Wallet V 8
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vcx-devs/Audit/blob/511090a1dc5d100e99832b0a858f01cff0790079/wallet_audit.js#L132
https://github.com/vcx-devs/Audit/blob/511090a1dc5d100e99832b0a858f01cff0790079/wallet_audit.js#L185

Impact

After a user deletes a wallet, they will not be able to sign transactions for any of their accounts and will
have to set them all up again. If the user does not have their account mnemonics backed up, irreversible
loss of funds could occur.

Preconditions

A user would need to have several wallets loaded in the application and have the intention to delete one of
them.

Feasibility

Given the preconditions, the issue will occur.

Technical Details

The deleteWallet function contains the following statement:

for (let i = 0; i < wallets.length; i++) {
 await removeKeychainValue('address_' + wallets[i].address + '_type_' +
wallets[i].generateType)
}

The for loop iterates over all wallets in the wallets array and deletes the private key for each.
wallets is assumed to be an array of all wallets, although this detail cannot be confirmed from the code
available to us.

Mitigation

To mitigate the issue, a user who has deleted a wallet can reimport their other wallets. Alternatively, if
users simply use the application with a single wallet, this issue will not occur.

Remediation

When iterating through the array of wallets, we recommend only deleting private keys for the wallet that
matches the supplied uuid.

Status

The Wallet V team has added a check before deleting the private key so that a private key is only deleted if
it matches the uuid passed into the deleteWallet function.

Verification

Resolved.

Suggestions

Suggestion 1: Implement Error Handling

Location

Throughout the module.

Security Audit Report | Keychain Module | Wallet V 9
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Synopsis

None of the functions within the module handle errors gracefully. When an exception occurs, the software
will fail silently, and the user may not be aware that an error has occurred.

Mitigation

We recommend implementing error handling with descriptive messages that can be relayed to the user.

Status

The Wallet V team has improved the code so that each catch block now throws an error with a
descriptive message.

Status

Resolved.

Suggestion 2: Use Actively Maintained Dependencies

Location

vcx-devs/Audit/wallet_audit.js#L8

vcx-devs/Audit/wallet_audit.js#L6

Synopsis

The micro-ed25519-hdkey library has been deprecated, and the @solana/web3.js library has been
archived and moved.

Mitigation

We recommend replacing these dependencies with other libraries that are being actively maintained.

Status

The Wallet V team has removed the deprecated micro-ed25519-hdkey library and replaced it with the
actively maintained version, micro-key-producer. The archived @solana/web3.js library has also
been replaced with tweetnacl-js..

Verification

Resolved.

Suggestion 3: Add More Tests

Location

wallet_audit.js

Synopsis

Currently, there are no tests at all within the codebase. Having good test coverage can help with the early
identification of bugs and also facilitate refactoring.

Mitigation

We recommend conducting thorough manual testing and implementing unit tests.

Security Audit Report | Keychain Module | Wallet V 10
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vcx-devs/Audit/blob/511090a1dc5d100e99832b0a858f01cff0790079/wallet_audit.js#L8
https://github.com/vcx-devs/Audit/blob/511090a1dc5d100e99832b0a858f01cff0790079/wallet_audit.js#L6
https://github.com/vcx-devs/Audit/blob/main/wallet_audit.js

Status

The Wallet V team has implemented a suite of unit tests, which provides adequate coverage.

Verification

Resolved.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and

Security Audit Report | Keychain Module | Wallet V 11
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test

Security Audit Report | Keychain Module | Wallet V 12
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Keychain Module | Wallet V 13
2 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Keychain Module
	Overview
	Background
	Project Dates
	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	Dependencies
	Code Quality
	Tests

	Documentation and Code Comments
	Scope

	Specific Issues & Suggestions
	​Issue A: Setting up Wallets Can Result in Race Condition
	Location
	Synopsis
	Impact
	Preconditions
	Feasibility
	Technical Details
	Remediation
	Status
	Verification

	Issue B: Private Keys Are Vulnerable to Supply Chain Attack
	Location
	Synopsis
	Impact
	Preconditions
	Feasibility
	Technical Details
	Status
	Verification

	Issue C: Private Keys Can Migrate To Other iOS Devices Without User Knowledge
	Location
	Synopsis
	Impact
	Preconditions
	Feasibility
	Technical Details
	Mitigation
	Remediation
	Status
	Verification

	Issue D: Runtime Error Occurs When Importing A Wallet
	Location
	Synopsis
	Impact
	Preconditions
	Feasibility
	Technical Details
	Remediation
	Status
	Verification

	Issue E: deleteWallet Function Deletes Private Keys for All Wallets
	Location
	Synopsis
	Impact
	Preconditions
	Feasibility
	Technical Details
	Mitigation
	Remediation
	Status
	Verification

	Suggestions
	Suggestion 1: Implement Error Handling
	Location
	Synopsis
	Mitigation
	Status
	Status

	Suggestion 2: Use Actively Maintained Dependencies
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: Add More Tests
	Location
	Synopsis
	Mitigation
	Status
	Verification

	
	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

