

Token-2022 Confidential Transfer
Security Audit Report
Anza Technology
Final Audit Report: 10 November 2025

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Issue A: Mismatch Between Actual and Expected Upper Bound for pending_balance_hi When
Applying the Pending Balance

Issue B: Soundness Proofs Incorrect Due to Rewinding Lemma Definition

Issue C: Deriving Serialize/Deserialize/Debug for PedersenOpening Risks Leakage of Secret
Openings via Unzeroized Heap/Log Copies

Issue D: Secrets Not Zeroized in Range Proof

Issue E: Vulnerable Dependencies

Suggestions

Suggestion 1: Improve Description of Error Messages

Suggestion 2: Improve Code Quality

Suggestion 3: Correct Zero-Balance Proof

Suggestion 4: Correct Public Key Validity Proof

Suggestion 5: Correct Ciphertext-Ciphertext Equality Proof

Suggestion 6: Correct Ciphertext-Commitment Equality Proof

Suggestion 7: Correct Ciphertext Validity Proof

Suggestion 8: Correct Percentage Proof

Suggestion 9: Customize Domain Separators

Suggestion 10: Implement a Public Key Consistency Check in ElGamalKeypair::try_from

Suggestion 11: Expand Security-Critical Comment on Extra Hashing Rationale

About Least Authority

Our Methodology

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 1
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Solana Foundation has requested that Least Authority perform a security audit of their Confidential
Transfer component of the Solana Token-2022 program. Two primary components enable confidential
transfers: the ZK ElGamal Proof program and the on-chain Token-2022 program.

Project Dates
●​ August 28, 2025 - September 17, 2025: Initial Code Review (Completed)
●​ September 19, 2025: Delivery of Initial Audit Report (Completed)
●​ November 10: Verification Review (Completed)
●​ November 10, 2025: Delivery of Final Audit Report (Completed)

Review Team
●​ Poulami Das, Security / Cryptography Researcher and Engineer
●​ Anna Kaplan, Cryptography Researcher and Engineer
●​ Miguel Quaresma, Security Researcher and Engineer
●​ Mirco Richter, Cryptography Researcher and Engineer
●​ Burak Atasoy, Project Manager
●​ Jessy Bissal, Technical Editor

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Confidential Transfer component of
the Solana Token-2022 program followed by issue reporting, along with mitigation and remediation
instructions as outlined in this report.

The following code repositories are considered in scope for the review:
●​ zk-sdk: ​

https://github.com/solana-program/zk-elgamal-proof/tree/main/zk-sdk
●​ Token-2022 program: ​

https://github.com/solana-program/token-2022/tree/main/program
●​ ZK ElGamal Proof Program:

https://github.com/anza-xyz/agave/tree/master/programs/zk-elgamal-proof

Specifically, we examined the following Git revisions for our initial review:

●​ Zk-sdk: 2e45d33cf231ae5eb816b7a7a1f526d8c34c841d
●​ Token-2022 program: 3986e684a115590c91cd476b4f503e6ecf4de82c
●​ ZK ElGamal Proof Program: 703da254d7891aeafe085ce343b5048f80886a41

For the verification, we examined the following Git revisions:

●​ Zk-sdk: 981504bb18add323e3368d35c7b0d67b1d7146a7
●​ Token-2022 program: 08692efe0e84c6740780ed8b4da2bbe3efd34307
●​ ZK ElGamal Proof Program: 2d407495d518293186f29408bf22783535cd14aa​

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 2
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/solana-program/zk-elgamal-proof/tree/main/zk-sdk
https://github.com/solana-program/token-2022/tree/main/program
https://github.com/anza-xyz/agave/tree/master/programs/zk-elgamal-proof

For the review, these repositories were cloned for use during the audit and for reference in this report:

●​ anza-xyz-agave:​
https://github.com/LeastAuthority/anza-xyz-agave

●​ solana-program-token-2022:​
https://github.com/LeastAuthority/solana-program-token-2022

●​ solana-program-zk-elgamal-proof:​
https://github.com/LeastAuthority/solana-program-zk-elgamal-proof

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

●​ Websites:
○​ https://solana.org
○​ https://www.anza.xyz

●​ ZK ElGamal Proof Program: ​
https://edge.docs.anza.xyz/runtime/zk-elgamal-proof

●​ Token-2022 Program: ​
https://www.solana-program.com/docs/confidential-balances

●​ Previous audits: ​
https://github.com/anza-xyz/security-audits

●​ Previous security advisories for the ElGamal program:
○​ https://solana.com/tr/news/post-mortem-may-2-2025
○​ https://solana.com/tr/news/post-mortem-june-25-2025

In addition, this audit report references the following documents:

●​ D. Boneh and V. Shoup, “A Graduate Course in Applied Cryptography.” toc, 2023, [BS23].
●​ B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, et al., “Bulletproofs: Short Proofs for

Confidential Transactions and More.” IACR Cryptology ePrint Archive, 2017, [BBB+17]
●​ Y. Chen, X. Ma, C. Tang, and M. H. Au, “PGC: Decentralized Confidential Payment System with

Auditability.” IACR Cryptology ePrint Archive, 2019, [CMT+19]
●​ Q. Dao, J. Miller, O. Wright, and P. Grubbs, “Weak Fiat-Shamir Attacks on Modern Proof Systems.”

IACR Cryptology ePrint Archive, 2023, [DMW+23]

Areas of Concern
Our investigation focused on the following areas:

●​ Correctness of the implementation;
●​ Vulnerabilities within each component and whether the interaction between the components is

secure;
●​ Whether requests are passed correctly to the network core;
●​ Key management, including secure private key storage and management of encryption and

signing keys;
●​ Denial of Service (DoS) and other security exploits that would impact the intended use or disrupt

the execution;
●​ Protection against malicious attacks and other ways to exploit;

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 3
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/anza-xyz-agave
https://github.com/LeastAuthority/solana-program-token-2022
https://github.com/LeastAuthority/solana-program-zk-elgamal-proof
https://solana.org
https://www.anza.xyz
https://edge.docs.anza.xyz/runtime/zk-elgamal-proof
https://www.solana-program.com/docs/confidential-balances
https://github.com/anza-xyz/security-audits
https://solana.com/tr/news/post-mortem-may-2-2025
https://solana.com/tr/news/post-mortem-june-25-2025
https://toc.cryptobook.us/book.pdf
https://eprint.iacr.org/2017/1066.pdf
https://eprint.iacr.org/2019/319.pdf
https://eprint.iacr.org/2023/691.pdf

●​ Inappropriate permissions and excess authority;
●​ Data privacy, data leaking, and information integrity; and
●​ Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team performed a security audit of the Confidential Transfer component of the Solana Token-2022
program. The project, combining the Token-2022 extensions with the zk-elGamal/zk‑sdk, delivers
privacy‑preserving token operations while keeping balances and transaction validity cryptographically
verifiable via homomorphic twisted ElGamal and Bulletproofs‑based range proofs.

We examined the confidential transfer component of the Solana Token-2022 program and found the
system to be designed with a strong emphasis on security, as demonstrated by confidential transfers,
supported by high‑quality cryptographic implementations, and multiple independent audits. In addition,
the Anza team has provided security proofs for components of the system.

We audited the zk-elGamal/zk-sdk implementation against best practices. Our review included a
comparison with the published specifications ([BBB+17] and [CMT+19]) and a detailed examination of the
Fiat–Shamir heuristic [DMW+23]. We generally found the cryptographic implementation to be robust,
largely adhering to cryptographic best practices, including zeroizing secrets. However, we identified some
minor issues (Issue C and Issue D) and recommend two improvements (Suggestion 10 and Suggestion
11). We identified no deviations from the referenced protocol specifications. We also observed no
deviations from strong Fiat–Shamir practice, but we recommend starting the transcript from a
customizable global domain separator to mitigate cross-protocol risks (Suggestion 9). Based on these
findings, we consider the zk-sdk a mature codebase.

We additionally reviewed the six Sigma protocol specifications covering the zero-balance proof, public-key
validity proof, ciphertext-and-commitment equality proof, ciphertext-and-ciphertext equality proof,
percentage proof, and ciphertext validity proof. Our review focused on the soundness proofs of these
protocols, where we identified a number of typographical errors and omissions (Suggestion 3, Suggestion
4, Suggestion 5, Suggestion 6, Suggestion 7, and Suggestion 8). In all of these proofs, the description of
the rewinding lemma did not match the proving technique. We recommend updating the lemma and
revising all proofs accordingly (Issue B). However, we note that implementation of these changes within
the proofs is straightforward and does not impact the completeness, soundness, or zero-knowledge
property of the Sigma protocols as described and implemented.

System Design
The Confidential Mint and Burn extension supports private minting and burning through six core
instructions. The extension maintains two encrypted states: confidential_supply, which is encrypted
under the ElGamal public key for the supply, and pending_burn, which accumulates burned tokens until
they are applied to the supply.

For mint operations, the zero-knowledge proofs verify three properties:

●​ CiphertextCommitmentEquality verifies that the minted amount is consistently encrypted
across different public keys;

●​ BatchedGroupedCiphertext3HandlesValidity verifies that the ciphertext is correctly
formed under several necessary ElGamal public keys (destination, auditor, supply); and

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 4
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/anza-xyz/security-audits
https://eprint.iacr.org/2017/1066.pdf
https://eprint.iacr.org/2019/319.pdf
https://eprint.iacr.org/2023/691.pdf

●​ BatchedRangeProofU128 verifies that minted amounts fall within permitted ranges.

The balance calculation uses homomorphic encryption via
ciphertext_arithmetic::add_with_lo_hi() to update the encrypted supply without decryption.
Burn operations follow a similar pattern when updating account balances and pending burns.​
​
Confidential Transfer enables private token operations through eight primary instructions. Each
confidential account maintains three encrypted balance states: available_balance (ready for use),
pending_balance_lo and pending_balance_hi (awaiting application), along with a
decryptable_available_balance encrypted with AES for authorized decryption.

For transfer operations, the zero-knowledge proofs verify three properties:

●​ CiphertextCommitmentEquality verifies that transfer amounts are consistently encrypted
across sender, receiver, and auditor keys;

●​ BatchedGroupedCiphertext3HandlesValidity verifies proper ciphertext formation across
multiple public keys; and

●​ BatchedRangeProofU128 verifies that amounts fall within permitted ranges and prevents
negative balances or overflows.

The balance calculations use ElGamal encryption’s linear homomorphism property. Similar to minting
operations, ciphertext_arithmetic::add_to() updates pending balance components when
depositing or transferring tokens. Additionally, ciphertext_arithmetic::add_with_lo_hi()
combines these values into the total pending balance and adds them to the account’s available balance.​
​
The Confidential Transfer Fee supports private fee collection on transfers through four core instructions.
The extension maintains encrypted fee states both at the mint level (aggregated fees under the withdraw
authority’s ElGamal key) and at the account level (per-account fee accumulation via withheld_amount).

Fee calculations (deduct and credit) are performed using similar additive homomorphic encryption over
ciphertexts. The CiphertextCiphertextEquality proof verifies that withheld_amount (under the
authority’s ElGamal key) matches the amount credited to the destination account (under the recipient’s
public key), thereby preventing malicious fee extraction.

Dependencies

We examined the dependencies implemented in the codebase and identified several instances of
vulnerable dependencies. We recommend improving dependency management (Issue E).

Code Quality
We performed a manual review of the repositories in scope and found the code to be well organized, of
high quality, and closely aligned with development best practices for cryptography.

Tests

The Token-2022 program contains sufficient tests under program/tests; however, overall coverage was
not measured.

Documentation and Code Comments
The project documentation provided by the Anza team clearly outlines the Token-2022 program’s purpose
and sufficiently describes the system’s intended functionality. In particular, project documentation
includes clearly written custom Sigma protocols, with explicit statements of desired security properties
such as completeness, soundness, and zero-knowledge, along with the underlying assumptions. The

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 5
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

inclusion of proofs was especially valuable for assessing the security of the system. Overall, the
codebase demonstrates a strong emphasis on maintainability, clarity, and adherence to cryptographic
best practices.

Additionally, the codebase includes descriptive comments, which aid in understanding the intended
behavior of the relevant components.

Scope
The scope of this review was sufficient and included all security-critical components.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Mismatch Between Actual and Expected Upper Bound for
pending_balance_hi When Applying the Pending Balance

Unresolved

Issue B: Soundness Proofs Incorrect Due to Rewinding Lemma Definition Partially Resolved

Issue C: Deriving Serialize/Deserialize/Debug for PedersenOpening Risks
Leakage of Secret Openings via Unzeroized Heap/Log Copies

Resolved

Issue D: Secrets Not Zeroized in Range Proof Resolved

Issue E : Vulnerable Dependencies Unresolved

Suggestion 1: Improve Description of Error Messages Resolved

Suggestion 2: Improve Code Quality Partially Resolved

Suggestion 3: Correct Zero-Balance Proof Resolved

Suggestion 4: Correct Public Key Validity Proof Resolved

Suggestion 5: Correct Ciphertext-Ciphertext Equality Proof Partially Resolved

Suggestion 6: Correct Ciphertext-Commitment Equality Proof Partially Resolved

Suggestion 7: Correct Ciphertext Validity Proof Resolved

Suggestion 8: Correct Percentage Proof Partially Resolved

Suggestion 9: Customize Domain Separators Unresolved

Suggestion 10: Implement a Public Key Consistency Check in
ElGamalKeypair::try_from

Resolved

Suggestion 11: Expand Security-Critical Comment on Extra Hashing Resolved

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 6
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Rationale

Issue A: Mismatch Between Actual and Expected Upper Bound for
pending_balance_hi When Applying the Pending Balance

Location

program/src/extension/confidential_transfer/account_info.rs#L111

Synopsis

The Token-2022 Confidential Transfer design permits pending_balance_hi to accumulate up to 48
bits of value across several incoming transfers. The program, however, decrypts pending_balance_hi
as a 32-bit integer when constructing an ApplyPendingBalance instruction. Once the accumulated
high part exceeds 32 bits, decrypt_u32 fails, causing ApplyPendingBalance to abort with
AccountDecryption for an otherwise valid account state.

Impact

Medium.​
​
Affected accounts might be unable to apply their pending balance and, as a result, update their available
balance (that is, their spendable balance) unless an alternative is provided. Since the
ApplyPendingBalance instruction is the standard way to update the available balance, this can lead to
a denial of service in certain scenarios.

Feasibility

Medium.

Since any third party is allowed to transfer tokens to the target account, and the default configuration
allows up to 216 transfers before applying and resetting the pending balance, a repeated number of
high-value incoming transfers can result in a pending_balance_hi value greater than the value of
232-1 supported by decrypt_u32.

Severity

Medium.

Preconditions

The target account must have the Confidential Transfer extension enabled and receive enough incoming
transfers until the accumulated high component of the pending balance overflows 32 bits.

Technical Details

The ApplyPendingBalanceAccountInfo data type stores the information necessary to create an
ApplyPendingBalance instruction. This includes the pending_balance_lo,
pending_balance_hi, and decryptable_available_balance values. To update the available
balance, the two pending balance components are combined and added to the current available balance.
Each pending balance component is decrypted using the decrypt_u32 function, which fails if the
plaintext exceeds 32 bits. The specification permits pending_balance_hi to accumulate values of up
to 48 bits, so in certain scenarios, the decrypt_u32 function may fail for valid states and return None
instead of the expected plaintext value.

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 7
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_transfer/account_info.rs#L111

Mitigation

We suggest the following measures to mitigate the issue:

●​ Configure a lower maximum_pending_balance_credit_counter value to limit the number of
consecutive incoming transfers before updating the available balance.

●​ Apply the pending balance more frequently to prevent pending_balance_hi from storing
values that can trigger the error.

Remediation

We recommend the following remediation strategies:

●​ Implement a decrypt function that supports up to 48-bit plaintext values and use it to decrypt
pending_balance_hi.

●​ Alternatively, if decryption efficiency or performance is the main concern, limit
pending_balance_hi to 32 bits and update the documentation accordingly.

●​ Add invariant checks for the result of the decryption operations, both for pending_balance_lo
(≤ 216-1) and pending_balance_hi (≤ 248-1).

Status

The Anza team determined that this issue does not represent a practically feasible vulnerability, although,
in theory, the pending balance can overflow and there is no protocol-level mechanism to prevent it.

The standard procedure for decrypting the pending balance involves retrieving all incoming transfer
transactions associated with an account, decrypting the ciphertexts corresponding to these transactions,
and summing the resulting values to compute the pending balance. The encrypted values in these
ciphertexts are limited to 16 and 32 bits, and within this range, decryption (discrete log) is fast.

For typical use cases, several practical optimizations are implemented. A mint can be configured with a
cap on the maximum number of credits an account may receive before an ApplyPendingBalance
instruction must be invoked on the account. This value is typically set to 2^16. Consequently,
pending_balance_lo (which can encrypt up to 2^16) is capped at 2^32 and the
pending_balance_hi (which can encrypt up to 2^32) is capped at 2^48. Under these conditions, the
pending_balance_lo will always be decryptable. While the pending_balance_hi may exceed 2^32,
based on our measurements, computing a discrete log of approximately 2^40 requires only a few
seconds. It is also unlikely that an average user would transfer amounts of this magnitude frequently
enough to cause the balance to exceed 2^40, as doing so would require receiving 2^32 credits for 2^8
times without invoking ApplyPendingBalance.

Verification

Unresolved.

Issue B: Soundness Proofs Incorrect Due to Rewinding Lemma Definition

Location

runtime/zk-docs/zero_proof.pdf

runtime/zk-docs/percentage_with_cap.pdf

runtime/zk-docs/ciphertext_validity.pdf

runtime/zk-docs/pubkey_proof.pdf

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 8
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/zero_proof.pdf
https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/percentage_with_cap.pdf
https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/ciphertext_validity.pdf
https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/pubkey_proof.pdf

runtime/zk-docs/ciphertext_ciphertext_equality.pdf

runtime/zk-docs/ciphertext_commitment_equality.pdf

Synopsis

Lemma 1.2, the “Rewinding Lemma,” as used in the proofs, is stated with mutual independence of X, Y,
Y', Z, and Z'. In the protocol, however, Z and Z′ (the responses) are functions of (X, Y) and (X, Y′), and
therefore are not independent of the challenges.

Impact

Low. This cannot be exploited by an adversary since the theorems still hold true.

Feasibility

Low.

Severity

Low.

Technical Details

In a Sigma protocol, the response Z is a function of the first message and the challenge, for example,
Z=g(X,Y). It is not independent of Y. Lemma 1.2, as written, requires Z, Z′ to be mutually independent of
X, Y, Y′, which does not hold in the protocol and makes the lemma inapplicable to the interactive setting.
The correct form used in rewinding analyses quantifies a predicate over (X, Y) (or treats Z as a
deterministic function of (X, Y)), not over independent Z and Z′.

Remediation

We recommend correcting Lemma 1.2 and replacing the statement with a version appropriate for
public‑coin Sigma protocols (for example, the version in Boneh's book, p. 758, Lemma 19.2: “Rewinding
Lemma,” [BS23]).

Status

The Anza team has partially resolved the issue, with a typographical error remaining in the probability
equation across all relevant documents.

Verification

Partially Resolved.

Issue C: Deriving Serialize/Deserialize/Debug for PedersenOpening Risks
Leakage of Secret Openings via Unzeroized Heap/Log Copies

Location

zk-sdk/src/encryption/elgamal.rs

Synopsis

PedersenOpening represents the blinding factor r used in Pedersen commitments and in the twisted
ElGamal construction. The type currently derives Serialize, Deserialize, and Debug. While the
struct itself is annotated #[zeroize(drop)], serialization and debugging create unprotected heap or
string copies (for example, Vec<u8>, String, JSON) that Zeroize will not clear, and these copies can

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 9
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/ciphertext_ciphertext_equality.pdf
https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/ciphertext_commitment_equality.pdf
https://toc.cryptobook.us/book.pdf
https://github.com/anza-xyz/agave/pull/8871
https://github.com/solana-program/zk-elgamal-proof/blob/main/zk-sdk/src/encryption/elgamal.rs

persist in process memory, logs, crash dumps, or files. This increases the risk that r is recovered
postmortem or via telemetry or logging.

Impact

High. ​
​
Leakage of the opening r undermines the hiding of Pedersen commitments and twisted ElGamal
ciphertexts. With r and a public commitment C, an adversary can compute v·G and then recover the clear
value for u32‑bounded amounts using the built‑in discrete log decoder. This breaks confidentiality of
encrypted or committed amounts for common ranges.

Feasibility

Low.

Exploitation requires access to memory or artifacts where serialized or debugged values are written (for
example, logs, telemetry, crash dumps, or temporary files) or execution of code paths that serialize
openings (as demonstrated in tests).

Severity

Low.

Preconditions

For this issue to occur, the code paths in the SDK consumer or in tests and tools must serialize or
deserialize PedersenOpening (for example, JSON or bincode), or print or format it via Debug, or
otherwise copy it into unprotected buffers. In addition, an attacker or post‑incident analyst must have
access to the process memory, logs, crash or core dumps, swap or page files, or persisted artifacts.

Remediation

We recommend removing the automatic derives Serialize, Deserialize, and Debug from
PedersenOpening and instead, providing explicit conversion methods such as to_bytes() and
from_bytes().

Status

The Anza team has resolved the issue as recommended.

Verification

Resolved.

Issue D: Secrets Not Zeroized in Range Proof

Location

src/range_proof/mod.rs#L168

Synopsis

Private scalars, such as blinding factors used during Bulletproofs range-proof construction, are not
zeroized after use, leaving sensitive material resident in process memory until reclaimed by the allocator.

Impact

Low. ​
​

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 10
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/solana-program/zk-elgamal-proof/pull/115/files
https://github.com/solana-program/zk-elgamal-proof/blob/main/zk-sdk/src/range_proof/mod.rs#L168

Leakage of ephemeral witnesses or randomness can aid post‑compromise analysis but does not, by
itself, enable proof forgery or immediate value recovery.

Feasibility

Low. ​
​
An adversary with host or process introspection (for example, core dumps, swap, crash reporting, or
memory forensics) can retrieve remnants from the heap or stack.

Severity

Low.

Preconditions

Attackers must be able to read process memory or artifacts (core dumps, swap, crash logs) from a
system running range‑proof generation with this library.

Technical Details

The range proof module inherits behavior from dalek‑bulletproofs, which does not zeroize private
variables. As a result, temporary scalars and witness material are dropped without explicit clearing. This
differs from other components such as ElGamal ciphertext and Sigma proofs, which were written to
zeroize for safety.

Remediation

We recommend the following steps to remediate this issue:

●​ Wrap secret scalars and points in zeroize::Zeroizing; and
●​ Enable zeroization features in dependencies where available.

Status

The Anza team has resolved the issue as recommended.

Verification

Resolved.

Issue E: Vulnerable Dependencies

Synopsis

Analyzing the project’s dependencies with cargo audit reveals four vulnerable crates:

●​ curve25519-dalek v3.2.0: timing variability as described in this security advisory.
●​ ed25519-dalek v1.0.1: double public key signing function oracle attack as described in this

security advisory.
●​ idna v0.1.5: improper parsing of Punycode labels as described in this security advisory.
●​ tracing-subscriber v0.3.19: log injection with user-controlled ANSI escape sequences as

described in this security advisory.

Impact
Consult the listed advisories on a case-by-case basis.

Feasibility
Consult the listed advisories on a case-by-case basis.

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 11
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/solana-program/zk-elgamal-proof/pull/117/files
https://rustsec.org/advisories/RUSTSEC-2024-0344
https://rustsec.org/advisories/RUSTSEC-2022-0093
https://rustsec.org/advisories/RUSTSEC-2024-0421
https://rustsec.org/advisories/RUSTSEC-2025-0055

Severity
Consult the listed advisories on a case-by-case basis.

Technical Details

The Token-2022 program includes dependencies with known security issues that have since been
resolved in updated versions of these dependencies.

Remediation

We recommend updating these crates and following a process that emphasizes secure crate usage to
avoid introducing vulnerabilities into the Token-2022 program and to mitigate supply-chain attacks. This
process includes:

●​ Manually reviewing and assessing currently used crates;
●​ Upgrading crates with known vulnerabilities to patched versions with fixes;
●​ Replacing unmaintained crates with secure and battle-tested alternatives, if possible;
●​ Pinning crates to specific versions, including pinning build-level crates in the Cargo.toml file to

a specific version;
●​ Only upgrading crates upon careful internal review for potential backward compatibility issues

and vulnerabilities; and
●​ Including Automated Dependency auditing reports in the project’s CI/CD workflow.

Status

At the time of the verification, the issue had not been resolved.

Verification

Unresolved.​

Suggestions

Suggestion 1: Improve Description of Error Messages

Location

program/src/extension/confidential_mint_burn/account_info.rs

program/src/extension/confidential_transfer_fee/account_info.rs

program/src/extension/confidential_transfer_fee/processor.rs

program/src/extension/confidential_transfer/account_info.rs

program/src/extension/confidential_transfer/processor.rs

Synopsis

Some of the error messages displayed when an intended operation fails do not reflect the corresponding
error with full clarity. This can obscure the actual reason for the failure.

Mitigation

We recommend improving the error messages to make them more descriptive and contextual. Below, we
provide a non-exhaustive list of suggested improvements:

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 12
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_mint_burn/account_info.rs
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_transfer_fee/account_info.rs
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_transfer_fee/processor.rs
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_transfer/account_info.rs
https://github.com/LeastAuthority/solana-program-token-2022/blob/690985e54d84b428ea4a37b6735192cf2f89d601/program/src/extension/confidential_transfer/processor.rs

●​ Use CiphertextDecryption (or similar) instead of MalformedCiphertext here, here, and
here.

●​ Use CiphertextConversion (or similar) instead of MalformedCiphertext here, here, here,
here, here, here, here, here, here, and here.

●​ Replace the incorrect message here with CiphertextConversion.
●​ Use TokenError::CiphertextArithmeticFailed instead of

ProgramError::InvalidInstructionData here, here, here, and here.
●​ Use TokenError::ConfidentialTransferBalanceMismatch instead of

ProgramError::InvalidInstructionData here.

Status

The Anza team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 2: Improve Code Quality

Location

●​ Code comments mismatch:​
program/src/extension/confidential_transfer/account_info.rs#L191-L192

●​ Redundant logic:​
program/src/extension/confidential_transfer/account_info.rs#L131-L135

●​ Variable naming inconsistency:​
program/src/extension/confidential_transfer/verify_proof.rs#L48-L49

●​ Performance inefficiency:​
program/src/extension/confidential_transfer_fee/processor.rs#L224-L255

Synopsis

During our extensive review of the codebase, our team identified practices that impact its quality,
readability, and maintainability. To illustrate, the following is a non-exhaustive list of examples:

●​ Correct the comment to specify the appropriate instruction type when creating a Withdraw
instruction.

●​ Remove the implementation that calls to get_pending_balance to reduce code footprint and
prevent inconsistencies if the implementation changes.

●​ Update the return variable naming in verify_withdraw_proof to accurately represent the
proof type.

●​ Perform the validity checks before computing aggregate_withheld_amount to improve
performance and avoid unnecessary computation.

Mitigation

We recommend addressing the items listed above to improve overall code quality, and using them as a
baseline for identifying and remediating similar issues across the codebase.

Status

The Anza team has partially implemented the mitigation.

Verification

Partially Resolved.

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 13
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_mint_burn/account_info.rs#L64
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_mint_burn/account_info.rs#L77
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_mint_burn/account_info.rs#L219
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_mint_burn/account_info.rs#L106
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_mint_burn/account_info.rs#L127
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_mint_burn/account_info.rs#L189
https://github.com/LeastAuthority/solana-program-token-2022/blob/725254c276f9d0597bfac07f2ae3c82ca938e874/program/src/extension/confidential_transfer/account_info.rs#L50
https://github.com/LeastAuthority/solana-program-token-2022/blob/725254c276f9d0597bfac07f2ae3c82ca938e874/program/src/extension/confidential_transfer/account_info.rs#L96
https://github.com/LeastAuthority/solana-program-token-2022/blob/725254c276f9d0597bfac07f2ae3c82ca938e874/program/src/extension/confidential_transfer/account_info.rs#L109
https://github.com/LeastAuthority/solana-program-token-2022/blob/725254c276f9d0597bfac07f2ae3c82ca938e874/program/src/extension/confidential_transfer/account_info.rs#L221
https://github.com/LeastAuthority/solana-program-token-2022/blob/725254c276f9d0597bfac07f2ae3c82ca938e874/program/src/extension/confidential_transfer/account_info.rs#L291
https://github.com/LeastAuthority/solana-program-token-2022/blob/725254c276f9d0597bfac07f2ae3c82ca938e874/program/src/extension/confidential_transfer/account_info.rs#L326-L327
https://github.com/LeastAuthority/solana-program-token-2022/blob/725254c276f9d0597bfac07f2ae3c82ca938e874/program/src/extension/confidential_transfer/account_info.rs#L331
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_transfer_fee/account_info.rs#L39
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_transfer_fee/processor.rs#L158
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_transfer_fee/processor.rs#L237
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_transfer_fee/processor.rs#L248
https://github.com/LeastAuthority/solana-program-token-2022/blob/audit/program/src/extension/confidential_transfer_fee/processor.rs#L351
https://github.com/LeastAuthority/solana-program-token-2022/blob/690985e54d84b428ea4a37b6735192cf2f89d601/program/src/extension/confidential_transfer/processor.rs#L382-L383
https://github.com/solana-program/token-2022/pull/747
https://github.com/LeastAuthority/solana-program-token-2022/blob/725254c276f9d0597bfac07f2ae3c82ca938e874/program/src/extension/confidential_transfer/account_info.rs#L191-L192
https://github.com/LeastAuthority/solana-program-token-2022/blob/725254c276f9d0597bfac07f2ae3c82ca938e874/program/src/extension/confidential_transfer/account_info.rs#L131-L135
https://github.com/LeastAuthority/solana-program-token-2022/blob/3986e684a115590c91cd476b4f503e6ecf4de82c/program/src/extension/confidential_transfer/verify_proof.rs#L48-L49
https://github.com/LeastAuthority/solana-program-token-2022/blob/1d37eb9cf34418d570c9f6108a1a70545b9a3d6a/program/src/extension/confidential_transfer_fee/processor.rs#L224-L255
https://github.com/LeastAuthority/solana-program-token-2022/blob/725254c276f9d0597bfac07f2ae3c82ca938e874/program/src/extension/confidential_transfer/account_info.rs#L191-L192
https://github.com/LeastAuthority/solana-program-token-2022/blob/725254c276f9d0597bfac07f2ae3c82ca938e874/program/src/extension/confidential_transfer/account_info.rs#L131-L135
https://github.com/LeastAuthority/solana-program-token-2022/blob/3986e684a115590c91cd476b4f503e6ecf4de82c/program/src/extension/confidential_transfer/verify_proof.rs#L48-L49
https://github.com/LeastAuthority/solana-program-token-2022/blob/1d37eb9cf34418d570c9f6108a1a70545b9a3d6a/program/src/extension/confidential_transfer_fee/processor.rs#L224-L255
https://github.com/LeastAuthority/solana-program-token-2022/blob/1d37eb9cf34418d570c9f6108a1a70545b9a3d6a/program/src/extension/confidential_transfer_fee/processor.rs#L224-L255
https://github.com/solana-program/token-2022/pull/748

Suggestion 3: Correct Zero-Balance Proof

Location

runtime/zk-docs/zero_proof.pdf

Synopsis

Several errors and omissions were identified in the soundness proof of the zero-balance proof:

●​ Page 6, “Witness validity”: The final equality sign should be replaced with a multiplication symbol
in “This means that (z−z′)⋅P=(c−c′)=H […].”

●​ Page 5, Section 4.2, “Description of extractor”: The acceptance checks for transcripts with c and
z are missing from the description of extractor E. The extractor should explicitly verify the two
equations before computing s; otherwise, it may return an invalid witness.

●​ Page 5, 4.2, “Description of extractor”: The extractor E is described as doing exactly two runs. For
witness‑extended emulation (Def. 2.3), the emulator must return a valid witness for (almost)
every accepting transcript. That is, the probability that tr is an accepting transcript but E fails to
extract must be negligible. To achieve this, E should repeat the “rewind with a fresh challenge”
step a polynomially bounded number of times until it obtains two accepting transcripts with
distinct challenges. With repetition, the failure probability becomes negligible. The current proof
omits this step.

●​ Page 5f, “Abort probability”: The probability statement for abort is inverted and requires the
insertion of an additional “not.” The rewinding bound (even when corrected according to Issue B)
shows that the probability of obtaining two accepting transcripts with distinct challenges (that is,
the extractor E succeeding) is at least ε² - ε/p. Then, when ε is non-negligible, the probability
of E succeeding is also non-negligible. The non-negligible probability applies to E’s success, not
to its abort. The abort probability is at most 1 - (ε² - ε/p).

Mitigation

We recommend addressing and correcting the points described above.

Status

The Anza team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 4: Correct Public Key Validity Proof

Location

runtime/zk-docs/pubkey_proof.pdf

Synopsis

Several errors and omissions were identified in the public key validity proof:

●​ Page 4, Section 4.1: The last line should be “z*H = [...] = c*P + Y” and not “z*H = c*P
+ y*Y.”

●​ Page 5, Section 4.2: The last bullet point “return s as the witness” should be “s⁻¹.” To match the
relation R, E should return w=s=(s⁻¹)⁻¹."

●​ Page 5, Section 4.2, “Description of extractor”: According to Definition 2.3 (witness-extended
emulation (WEE)), the extractor E should return a transcript and a witness. The text has the
emulator produce two runs and “return s as the witness,” but it never explicitly specifies which

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 14
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/zero_proof.pdf
https://github.com/anza-xyz/agave/pull/8871
https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/pubkey_proof.pdf

transcript it outputs to the environment in the WEE game (Definition 2.3). The simplest approach
is to output the first transcript produced in the emulation and perform any rewinding or extraction
after fixing that transcript.

●​ Page 5, 4.2, “Description of extractor”: The acceptance checks for transcripts with c and z are not
included in the description of extractor E. The extractor should explicitly verify those transcripts
and repeat the rewind if they fail; otherwise, it may return an invalid witness.

●​ Page 5, 4.2, “Description of extractor”: The extractor E is described as doing exactly two runs. For
witness‑extended emulation (Def. 2.3), the emulator must return a valid witness for (almost)
every accepting transcript. That is, the probability that tr is an accepting transcript but E fails to
extract must be negligible. To achieve this, E should repeat the “rewind with a fresh challenge”
step a polynomially bounded number of times until it obtains two accepting transcripts with
distinct challenges. With repetition, the failure probability becomes negligible. The current proof
omits this step.

●​ Page 5f, “Abort probability”: The probability statement for abort is inverted and requires the
insertion of an additional “not.” The rewinding bound (even when corrected according to Issue B)
shows that the probability of obtaining two accepting transcripts with distinct challenges (that is,
the extractor E succeeding) is at least ε² − ε/p. When ε is non-negligible, the probability of E
succeeding is also non-negligible. The non-negligible probability applies to E’s success, not to its
abort. The abort probability is at most 1 − (ε² − ε/p).

Mitigation

We recommend addressing and correcting the points described above.

Status

The Anza team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 5: Correct Ciphertext-Ciphertext Equality Proof

Location

runtime/zk-docs/ciphertext_ciphertext_equality.pdf

Synopsis

Several errors and omissions were identified in the soundness proof of the ciphertext-ciphertext equality
proof:

●​ Page 7, “Witness validity”: “z_s” should be used instead of “z_x” in “z_x * P_0 = c * H +
Y_0” and “z’_x * P_0 = c’ * H + Y_0”, as the verifier’s first check is for “z_s.”

●​ Page 5, 4.1 Proof of Theorem 3.1: “D_1” should be “H” in the third verifier equation in the
completeness proof.

●​ Page 7, “Witness validity”: “Y_4” should be “Y_3” since the protocol only defines “Y_0 … Y_3.”
●​ Page 6, 4.1 Proof of Theorem 3.2: “two executions of the ciphertext equality protocol” should

replace “two executions of the zero‑balance protocol.”
●​ Page 6, third bullet point: In the transcript (Y_0, … Y_3, c, z’_s, z’_x, z’_r) of the

second execution after rewinding, “c’” should be used instead of “c.”
●​ Page 5f, “Abort probability”: The probability statement for abort is inverted and requires the

insertion of an additional “not.” The rewinding bound (even when corrected according to Issue B)
shows that the probability of obtaining two accepting transcripts with distinct challenges (that is,
the extractor E succeeding) is at least ε² − ε/p. When ε is non-negligible, the probability of E

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 15
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/anza-xyz/agave/pull/8871
https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/ciphertext_ciphertext_equality.pdf

succeeding is also non-negligible. The non-negligible probability applies to E’s success, not to its
abort. The abort probability is at most 1 − (ε² − ε/p).

Mitigation

We recommend addressing and correcting the points described above.

Status

The Anza team has partially implemented the recommended mitigation, with one outstanding item
remaining. Specifically, on page 6, the third bullet point, in (Y_0, … Y_3, c, z’_s, z’_x, z’_r) of
the second execution after rewinding, “c’” should be used instead of “c.”

Verification

Partially Resolved.

Suggestion 6: Correct Ciphertext-Commitment Equality Proof

Location

runtime/zk-docs/ciphertext_commitment_equality.pdf

Synopsis

Several errors and omissions were identified in the soundness proof of the ciphertext-commitment
equality proof:

●​ Page 7, “Witness validity”: “z_s” should be used instead of “z_x” in “z_x * P_EG = c * H +
Y_0” and “z’_x * P_EG = c’ * H + Y_0”, as the verifier’s first check is for “z_s.”

●​ Page 6, third bullet point: In the transcript (Y_0, Y_1, Y_2, c, z’_s, z’_x, z’_r) of the
second execution after rewinding, “c’” should be used instead of “c.”

●​ Page 5, 4.1 Proof of Theorem 3.1: “D_EG” should be “H” in the third verifier equation in the
completeness proof. Additionally, “Y_0 = y_s * P_EG” should be used instead of “Y_0 = y_s
* P” in the definition of Y_0.

●​ Page 5, 4.1 Proof of Theorem 3.2: “two executions of the ciphertext commitment equality protocol”
should replace “two execution of the zero‑balance protocol.”

●​ Page 6, Section 4.2, “Description of extractor”: According to Definition 2.3 (witness-extended
emulation (WEE)), the extractor E should return a transcript and a witness. The text has the
emulator produce two runs and return a witness “(s,x,r),” but it never explicitly specifies which
transcript it outputs to the environment in the WEE game (Definition 2.3). The simplest approach
is to output the first transcript produced in the emulation and perform any rewinding or extraction
after fixing that transcript.

●​ Page 6, “Abort probability”: The probability statement for abort is inverted and requires the
insertion of an additional “not.” The rewinding bound (even when corrected according to Issue B)
shows that the probability of obtaining two accepting transcripts with distinct challenges (that is,
the extractor E succeeding) is at least ε² − ε/p. When ε is non-negligible, the probability of E
succeeding is also non-negligible. The non-negligible probability applies to E’s success, not to its
abort. The abort probability is at most 1 − (ε² − ε/p).

Mitigation

We recommend addressing and correcting the points described above.

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 16
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/anza-xyz/agave/pull/8871/files
https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/ciphertext_commitment_equality.pdf

Status

The Anza team has partially implemented the recommended mitigation, with one outstanding item
remaining. Specifically, on page 6, the third bullet point, in (Y_0, … Y_3, c, z’_s, z’_x, z’_r) of
the second execution after rewinding, “c’” should be used instead of “c.”

Verification

Partially Resolved.

Suggestion 7: Correct Ciphertext Validity Proof

Location

runtime/zk-docs/ciphertext_validity.pdf

Synopsis

Several errors and omissions were identified in the soundness proof of the ciphertext validity proof:

●​ Page 5f, Description of the emulator: According to Definition 2.3 (witness-extended emulation
(WEE)), the extractor E should return a transcript and a witness. The text has the emulator
produce two runs and return a witness “(r, x),” but it never explicitly specifies which transcript
it outputs to A_2 in the WEE game (Definition 2.3). The simplest approach is to output the first
transcript produced in the emulation and perform any rewinding or extraction after fixing that
transcript.

●​ Page 5f, Description of the emulator: The emulator E is described as doing exactly two runs and
aborting if c=c′or the second run is not an accepting transcript. For witness‑extended emulation
(Def. 2.3), the emulator must return a valid witness for (almost) every accepting transcript. That
is, the probability that tr is an accepting transcript but E fails to extract must be negligible. To
achieve this, E should repeat the “rewind with a fresh challenge” step a polynomially bounded
number of times until it obtains two accepting transcripts with distinct challenges. Repetition
reduces the failure probability to negligible. The current proof omits this step.

●​ Page 5, 4.1 Proof of Theorem 3.2: “two executions of the ciphertext validity protocol” should
replace “four executions of the zero‑balance protocol.”

●​ Page 5f, “Abort probability”: The probability statement for abort is inverted and requires the
insertion of an additional “not.” The rewinding bound (even when corrected according to Issue B)
shows that the probability of obtaining two accepting transcripts with distinct challenges (that is,
the extractor E succeeding) is at least ε² − ε/p. When ε is non-negligible, the probability of E
succeeding is also non-negligible. The non-negligible probability applies to E’s success, not to its
abort. The abort probability is at most 1 − (ε² − ε/p).

Mitigation

We recommend addressing and correcting the points described above.

Status

The Anza team has implemented the mitigation as recommended.

Verification

Resolved.

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 17
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/anza-xyz/agave/pull/8871/files
https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/ciphertext_validity.pdf
https://github.com/anza-xyz/agave/pull/8871/files

Suggestion 8: Correct Percentage Proof

Location

runtime/zk-docs/percentage_with_cap.pdf

Synopsis

Several errors and omissions were identified in the soundness proof of the percentage proof:

●​ Page 6, Protocol table and Page 7, section “Fee equal to max fee”: “y_max” should be used
instead of “r_max.” This matches the prose underneath and is consistent with committing to its
value. The prose underneath also needs refinement, since, for example, “z_r” is not defined.

●​ Page 5, Protocol table: “y_x” should be used instead of “y_s” in “z_x \arrow c_equality *
x + y_s.”

●​ Page 7, “Protocol”: “we denote D \in G to denote the commitment C_fee * G” should be
replaced with “C_fee - max_fee * G” instead.

●​ Page 7, “Fee equal to max fee”, Step 1: “sample random challenge c_max” should be “sample
random challenge c_equality” (since it is for the equality proof)

●​ Page 6, “Specification”: The language description of L^{fee}_{G, H, bp, maxfee} could be
rewritten for clarity, since this language should capture the existential statements that each
Sigma protocol proves. By defining “C_delta := C_fee * 10000 - bp * C_amt”, the
witness statements can be expressed as: “There exist x, r_delta, r_claimed such that
C_delta = x * G + r_delta * H and such that C_claimed = x * G + r_claimed *
H” for the percentage part. (The original description is the group equality, which also fixes the
random values). In addition, the statement “There exists a r_max such that D = r_max * H”
should be included for the cap part of the proof.

●​ Page 8, Theorem 3.2: The description of the extractor is missing and should be added.

Mitigation

We recommend addressing and correcting the points described above.

Status

The Anza team has partially implemented the recommended mitigation, with one outstanding item
remaining. Specifically, on page 7, under “Fee equal to max fee,” the computation “Y_max ←
r_max*H” is incorrect and should be “Y_max ← y_max*H.”

Verification

Partially Resolved.

Suggestion 9: Customize Domain Separators

Location

zk-elgamal-proof/main/zk-sdk

Synopsis

Generator H is fixed across protocol instantiations by hashing only the basepoint, which creates
cross‑protocol context confusion when different systems reuse the same curve and parameters.
Parameterizing H with a protocol‑scoped domain separator would bind commitments to their intended
context.

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 18
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/anza-xyz-agave/blob/audit/docs/src/runtime/zk-docs/percentage_with_cap.pdf
https://github.com/anza-xyz/agave/pull/8871/files
https://github.com/solana-program/zk-elgamal-proof/tree/main/zk-sdk

Mitigation

We suggest the following measures:

●​ Derive H via hash_to_group(DOMAIN ∥ basepoint_bytes) with a configurable global
DOMAIN per protocol instance.

●​ Keep the empty string as the default for backward compatibility, for example: ​
DOMAIN = “PROTOCOL_XYZ | curve25519 | solana zk‑elgamal | v1 | G”

●​ Require that operators treat and verify commitments as protocol‑scoped and refrain from
cross-domain artifact mixing until an update is released.

Status

The Anza team acknowledged the value of the suggestion but decided against implementing it, noting
that doing so would break compatibility with previous versions.

Verification

Unresolved.

Suggestion 10: Implement a Public Key Consistency Check in
ElGamalKeypair::try_from

Location

zk-sdk/src/encryption/elgamal.rs#L270

Synopsis

ElGamalKeypair::try_from accepts a keypair without verifying that the provided public key matches
the public key derived from the secret key, which enables inconsistent key pairs.

Mitigation

We recommend adding a check in try_from that derives the public key from the secret key, compares it
to the provided value, and returns an error on mismatch. We further recommend requiring callers to
recompute and verify before use until an update is released.

Status

The Anza team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 11: Expand Security-Critical Comment on Extra Hashing
Rationale

Location

zk-sdk/src/range_proof/mod.rs#L277

Synopsis

The inline comment fails to explain the security rationale for the “extra hashing” introduced after a prior
bug in which some scalar proof components were not hashed. This omission renders verification
assumptions opaque and reduces auditability.

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 19
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/solana-program/zk-elgamal-proof/blob/main/zk-sdk/src/encryption/elgamal.rs#L270
https://github.com/solana-program/zk-elgamal-proof/pull/90
https://github.com/solana-program/zk-elgamal-proof/blob/main/zk-sdk/src/range_proof/mod.rs#L277

Mitigation

We recommend expanding security-critical comments to explain the rationale for additional hashing.

Status

The Anza team has implemented the mitigation as recommended.

Verification

Resolved.

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 20
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/solana-program/zk-elgamal-proof/pull/89

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.​

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 21
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Token-2022 Confidential Transfer | Anza Technology ​ 22
10 November 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Token-2022 Confidential Transfer
	Overview
	Background
	Project Dates
	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	System Design
	Dependencies

	Code Quality
	Tests

	Documentation and Code Comments
	Scope

	Specific Issues & Suggestions
	Issue A: Mismatch Between Actual and Expected Upper Bound for pending_balance_hi When Applying the Pending Balance
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Mitigation
	Remediation
	Status
	Verification

	Issue B: Soundness Proofs Incorrect Due to Rewinding Lemma Definition
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Technical Details
	Remediation
	Status
	Verification

	Issue C: Deriving Serialize/Deserialize/Debug for PedersenOpening Risks Leakage of Secret Openings via Unzeroized Heap/Log Copies
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Remediation
	Status
	Verification

	Issue D: Secrets Not Zeroized in Range Proof
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Remediation
	Status
	Verification

	Issue E: Vulnerable Dependencies
	Synopsis
	Technical Details
	Remediation
	Status
	Verification

	Suggestions
	Suggestion 1: Improve Description of Error Messages
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 2: Improve Code Quality
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: Correct Zero-Balance Proof
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 4: Correct Public Key Validity Proof
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 5: Correct Ciphertext-Ciphertext Equality Proof
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 6: Correct Ciphertext-Commitment Equality Proof
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 7: Correct Ciphertext Validity Proof
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 8: Correct Percentage Proof
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 9: Customize Domain Separators
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 10: Implement a Public Key Consistency Check in ElGamalKeypair::try_from
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 11: Expand Security-Critical Comment on Extra Hashing Rationale
	Location
	Synopsis
	Mitigation
	Status
	Verification

	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

