
Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Pinocchio – Short Signatures for Computation

– A Pen&Paper Example –

Mirco Richter1

October 22, 2019

1LeastAuthority



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Introduction

What we do today

• Major takeaway: Some understanding of zero knowledge, verified

computations.

• Use an actual (3-bit security) cryptographic scheme on an oversimplified

problem as running example.

• Use the Pinocchio protocol to derive a toy verified computation.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

References and Further Readings

• Original Source: Gentry, Howell, Parno and Raykova (2013): ”Pinocchio:

Nearly Practical Verifiable Computation”. In: 2013 IEEE Symposium on

Security and Privacy.

• Optimized version: Jens Groth (2016): ”On the Size of Pairing-based

Non-interactive Arguments”. Cryptology ePrint Archive, Report 2016/260.

• Great introduction: Maksym Petkus (2019): ”Why and How zk-SNARK

Works: Definitive Explanation”

• Companion paper: Mirco Richter (2018): ”A (somewhat) easy pen &

paper example of the Pinocchio protocol”.

https://drive.google.com/file/d/0B-

WxC9ydKhlRZG92dnJ0RmdWRkZKUXR5Q3FTd0pZMl9Tdnln/view



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Introduction

What is verified computing?

• Public key signatures are short proofs of static data.

• But there is static data and dynamic computation.

–

• Can we have signatures (short proofs) for computation?

• Can we keep certain details of the computation private, but still get

verifiable signatures?

–

• ZK-SNARK ⇔ Zero Knowledge Succinct Non-interactive Arguments (of)

Knowledge.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Introduction

Why do we need this?

One Example: Zero Knowledge Proof of Knowledge

• Task: Convince everyone, that you know a dataset, which hashes to a

publicly known digest string (Knowledge of a preimage).

• Naive Solution: Publish the dataset. If the hashes are equal, everyone is

convinced.

• Problem: Publishing the dataset might not be an option.

• Better Solution: Implement the hash function not native (e.g. in

x86-assembly), but as a ZK-SNARK.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Roadmap

Steps:

1. The 3-bit cryptographic scheme.

2. The toy example function.

3. The algebraic circuit.

4. The quadratic arithmetic program.

5. The setup phase.

6. The worker phase.

7. The verifier phase.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Cryptographic Scheme

The cryptographic scheme

The Pinocchio protocol requires:

• A finite cyclic group (G, ·)

• A generator g of that group.

• A bilinear map B(·, ·) : G×G→ GT , such that:

• Order: GT and G have same order

• Biliniearity: B(g j , hk ) = B(g , h)j·k for all j , k ∈ Z, g , h ∈ G
• Non-triviality: Es gibt ein g ∈ G mit B(g , g) 6= idGT

⇒ Usually realized by cryptographically strong, pairing friendly elliptic curves.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Cryptographic Scheme

Our 3,5-Bit System

• G = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}.

• Multiplication: x • y := x · y(mod23), e.g. ordinary integer multiplication

modulo 23.

• Generator: 2.

• Non-trivial bilinear map:

B(·, ·) : G×G→ Z∗23; (g , h) 7→ 2log2(g)·log2(h)(mod23)



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Cryptographic Scheme

Our 3,5-Bit System

To get familiar with the scheme, lets compute something:

• 9 • 13 =

• 9 · 13(mod23) =

• 117(mod23) =

• (5 · 23 + 2)(mod23) =

• 2



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Cryptographic Scheme

Our 3,5-Bit System

The underlying finite field:

• Prime field is F11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• Addition: Normal integer addition modulo 11

• Multiplication: Normal integer multiplication modulo 11



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Cryptographic Scheme

Our 3,5-Bit System

To get familiar with the scheme, lets solve an equation for x in F11

• (3 · x + 4) · 5 = 3x

• 3 · 5 · x + 4 · 5 = 3x

• 4 · x + 9 = 3x

• 4 · x − 3x = −9

• 4 · x + 8x = 2

• (4 + 8) · x = 2

• 1 · x = 2

• x = 2



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Cryptographic Scheme

Our 3,5-Bit System

Exponentiation and Logarithms:

• 2 is a generator:

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 9,

• 26 = 18, 27 = 13, 28 = 3, 29 = 6, 210 = 12, 211 = 1

• Base 2 logarithms:

• 0 = log2(1), 1 = log2(2), 2 = log2(4), 3 = log2(8)

• 4 = log2(16), 5 = log2(9), 6 = log2(18)

• 7 = log2(13), 8 = log2(3), 9 = log2(6), 10 = log2(12)

• Interconnection is

2• : F11 ↔ G : log2(•)



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Cryptographic Scheme

Our 3,5-Bit System

Why not use ordinary numbers?

In groups like G, certain computations are much harder (even for computers),

than similar computations for ordinary numbers are. For example it is believed

that finding a solution x to the equation

ax = b

is infeasible in actual cryptographic schemes (This is known as the discrete

logarithm problem).



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

The Main Example

Task: Implement the following function as a SNARK in our 3,5-bit

cryptographic scheme.

Function:

f : F11 × F11 × F11 → F11; (x1, x2, x3) 7→ (x1 · x2) · x3



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Algebraic Circuit Representation

The Algebraic Circuit DAG

• Algebraic circuits (over field F) are directed acyclic graphs, that represent
computation:

• vertices with only outgoing edges (leafs, sources) represent inputs to the

computation.

• vertices with only ingoing edges (roots, sinks) represent outputs from the

computation.

• internal vertices represent field operations (Either addition or

multiplication).

• Circuit execution: Send input values from leafs along edges, through

internal vertices to roots.

• Algebraic circuits are usually derived by Compilers, that transform higher

languages to circuits.

Note: Different Compiler give very different circuit representations and

Compiler optimization is important.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Algebraic Circuit Representation

Example Circuit

Valid circuit for f : F11 × F11 × F11 → F11; (x1, x2, x3) 7→ (x1 · x2) · x3 is given by:

•
in1

!!

•
in2

}}
•m1

mid1

((

•
in3

~~
•m2

out1

��
•

• Two multiplication vertices m1 and m2

• Index set I := {in1, in2, in3,mid1, out1}



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Algebraic Circuit Representation

What are Assignments?

• An Assignment associates field elements to all edges (indices) in an

algebraic circuit.

• An Assignment is valid, if the field element arise from executing the circuit.

• Every other assignment is invalid.

• Valid assignments are proofs for proper circuit execution.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Algebraic Circuit Representation

Example Assignments

Valid assignment: Ivalid := {in1, in2, in3,mid1, out1} = {2, 3, 4, 6, 2}

•
2

!!

•
3

}}
•m1

6

((

•
4

~~
•m2

2

��
•

Appears from multiplying the input values at m1, m2 in F11



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Algebraic Circuit Representation

Example Assignments

Non valid assignment: Ierr := {in1, in2, in3,mid1, out1} = {2, 3, 4, 7, 8}

•
2

!!

•
3

}}
•m1

7

((

•
4

~~
•m2

8

��
•

Can not appear from multiplying the input values at m1, m2 in F11



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

The QAP of a Circuit

• QAPs are sets of polynomials.

• QAPs are building blocks to encode circuits into polynomials t and

assignments into polynomials p.

• First major point: p is divisible by t, if and only if p is derived from a valid

assignment. Then another polynomial h exists with

p = h · t

• Second major point: With overwhelmingly high probability, the equation

can be verified in a single point s. E.g. its enough to check

p(s) = h(s) · t(s)

• Checking knowledge of p and h in a single point leads towards short proofs.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

• How do we compute QAPs?

• I circuit indices: QAP := {t, {vk}k∈I , {wk}k∈I , {yk}k∈I}

• Choose random elements {m1, · · ·mk} from base field for every

multiplication vertex in the circuit.

• Target polynomial: t(x) = (x −m1) · . . . · (x −mk)

• Polynomial from {vk}k∈I is 1 at mj , if edge k is left input to multiplication

gate •mj and zero at mj , otherwise.

• Polynomial from {wk}k∈I is 1 at mj , if edge k is right input to

multiplication gate •mj and zero at point mj , otherwise.

• A polynomial from {yk}k∈I is 1 at mj , if edge k is output of multiplication

gate •mj and zero at point mj , otherwise.

• Circuit assignment {ck}k∈I defines the polynomial

p := (
∑
k∈I

ckvk) · (
∑
k∈I

ckwk)−
∑
k∈I

ckyy



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

Compute Example QAP

• Two multiplication vertices. Random choice: m1 = 5 and m2 = 7

• Target polynomial:

• t(x) = (x −m1)(x −m2) =

• (x − 5)(x − 7) =

• (x + 6)(x + 4) =

• x2 + 10x + 2



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

Compute Example QAP

• Compute the building blocks of p at m1 = 5 and m2 = 7

• {vin1
, vin2

, vin3
, vmid1

, vout}
• {win1

,win2
,win3

,wmid1
,wout}

• {yin1
, yin2

, yin3
, ymid1

, yout}



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

Compute Example QAP

• Apply Pinocchio rules to the ”left edge” polynomials vk∈I :

• vin1
(5) = 1, vin1

(7) = 0

• vin2
(5) = 0, vin2

(7) = 0

• vin3
(5) = 0, vin3

(7) = 0

• vmid1
(5) = 0, vmid1

(7) = 1

• vout(5) = 0, vout(7) = 0



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

Example QAP

• Apply Pinocchio rules to the ”right edge” polynomials wk∈I :

• win1
(5) = 0, win1

(7) = 0

• win2
(5) = 1, win2

(7) = 0

• win3
(5) = 0, win3

(7) = 1

• wmid1
(5) = 0, wmid1

(7) = 0

• wout(5) = 0, wout(7) = 0



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

Example QAP

• Apply Pinocchio rules to the ”outgoing edge” polynomials yk∈I :

• yin1
(5) = 0, yin1

(7) = 0

• yin2
(5) = 0, yin2

(7) = 0

• yin3
(5) = 0, yin3

(7) = 0

• ymid1
(5) = 1, ymid1

(7) = 0

• yout(5) = 0, yout(7) = 1



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

Example QAP

• Derive the actual polynomials from this.

• Our polynomials specified on two values 5 and 7.

• Linear Polynomial q(x) = m · x + b is fully determined by this.

• Example: For vin1 (x) = m · x + b computation looks like this:

• vin1
(5) = m · 5 + b and vin1

(7) = m · 7 + b.

• 1 = m · 5 + b and 0 = m · 7 + b.

• Solve this linear equation gives m = 5 and b = 9.

• vin1
(x) = 5x + 9

Note: Doing this is computationally expensive and a major part in the overhead

of the setup phase.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

Example QAP

vin1 (x) = 5x + 9 win1 (x) = 0 yin(x) = 0

vin2 (x) = 0 win2 (x) = 5x + 9 yin(x) = 0

vin3 (x) = 0 win3 (x) = 6x + 3 yin3 (x) = 0

vmid1 (x) = 6x + 3 wmid1 (x) = 0 ymid1 (x) = 5x + 9

vout(x) = 0 wout(x) = 0 yout(x) = 6x + 3



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

Example QAP

QAPF11 (Cf ) = {x2 + 10x + 2,


{5x + 9, 0, 0, 6x + 3, 0}
{0, 5x + 9, 6x + 3, 0, 0}
{0, 0, 0, 5x + 9, 6x + 3}

}



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

Example – Circuit Satisfiability and Polynomial Devision

• Remember: {ck}k∈I is valid assignment ⇔ p is divisible by t.

p := (
∑
k∈I

ckvk) · (
∑
k∈I

ckwk)−
∑
k∈I

ckyy

• Valid example I = {2, 3, 4, 6, 2}:

• (2(5x + 9) + 6(6x + 3)) · (3(5x + 9) + 4(6x + 3))− (6(5x + 9) + 2(6x + 3)) =

• (2·5x+2·9+6·6x+6·3)·(3·5x+3·9+4·6x+4·3)−(6·5x+6·9+2·6x+2·3) =

• (10x + 7 + 3x + 7) · (4x + 5 + 2x + 1)− (8x + 10 + 1x + 6) =

• (2x + 3) · (6x + 6)− (9x − 5) =

• x2 + x + 7x + 7 + 2x + 6

• ⇒ p(x) = x2 + 10x + 2 – Equal to t hence divisible



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Quadratic Arithmetic Programs

Example – Circuit Satisfiability and Polynomial Devision

• Remember: {ck}k∈I is valid assignment ⇔ p is divisible by t.

p := (
∑
k∈I

ckvk) · (
∑
k∈I

ckwk)−
∑
k∈I

ckyy

• Non valid example I = {2, 3, 4, 5, 9}:

• (2(5x + 9) + 5(6x + 3)) · (3(5x + 9) + 4(6x + 3))− (5(5x + 9) + 9(6x + 3)) =

• (2·5x+2·9+5·6x+5·3)·(3·5x+3·9+4·6x+4·3)−(5·5x+5·9+9·6x+9·3) =

• (10x + 7 + 8x + 4) · (4x + 5 + 2x + 1)− (3x + 1 + 10x + 5) =

• 7x · (6x + 6)− (2x + 6) =

• (9x2 + 9x) + 9x + 5 =

• ⇒ p(x) = 9x2 + 7x + 5

• Not divisible by t: (9x2 + 7x + 5) : (x2 + 10x + 2) = 9 + 5x+4
x2+10x+2



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Common Reference String

The trusted setup phase

Suppose cryptographic scheme, circuit and QAP is public knowledge now.

Trusted third party then generates the following data:

• random elements rv , rw , s, αv , αw , αy , β, γ ∈ F

• Proofer key PKQAP(Cf ).

• Verifier key VKQAP(Cf ).

• Toxic waste: Must delete random elements after key generation.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Common Reference String

Proofer Key PKQAP(Cf )

• Given generator g and circuit degree d :
{g rv vk (s)}k∈Imid {g rwwk (s)}k∈Imid {g rv rw yk (s)}k∈Imid

{g rvαv vk (s)}k∈Imid {g rwαwwk (s)}k∈Imid {g rv rwαy yk (s)}k∈Imid

{g s i }i∈{1,...,d} {gβ(rv vk (s)+rwwk (s)+rv rw yk (s))}k∈Imid


• Set of group elements, used to encrypt the non I/O-related part of

polynomial p.

• Size depends linear on the number of internal (non I/O) edges in the

circuit.

• Not unique.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Common Reference String

Verifier Key VKQAP(Cf )

• Given generator g :
g 1 gαv gαw gαγ

gγ gβγ g t(s)

{g rv vk (s), g rwwk (s), g rv rw yk (s)}k∈II/O


• Set of group elements, used to encrypt the I/O part of polynomial p.

• Size depends linear on the number of I/O-edges in the circuit.

• Not unique.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Common Reference String

Example Random Elements

• rv = 9, rw = 8, s = 7, αv = 6, αw = 5

• αy = 4, β = 3, γ = 2

• ry = rv · rw = 9 · 8 = 6



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Common Reference String

Encrypted Random Elements

• Using our generator 2, we write these elements in the exponent:

• gv = g rv = 29 = 6

• gw = g rw = 28 = 3

• gy = g ry = 26 = 18

• gαv = 26 = 18

• gαw = 25 = 9

• gαy = 24 = 16

• gγ = 22 = 4

• gβγ = 26 = 18



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Common Reference String

Example Proofer key


{6vmid1

(7)}, {3wmid1
(7)}, {18ymid1

(7)},
{66·vmid1

(7)}, {35·wmid1
(7)}, {184·ymid1

(7)}
{27, 272

}, {63·vmid1
(7) · 33·wmid1

(7) · 183·ymid1
(7)}


{66·7+3}, {30}, {185·7+9},
{66·(6·7+3)}, {35·0}, {184·(5·7+9)}
{27, 272

}, {63·(6·7+3) · 33·0 · 183·(5·7+9)}


{69+3}, {30}, {182+9},
{66·(9+3)}, {35·0}, {184·(2+9)}
{27, 25}, {63·(9+3) · 33·0 · 183·(2+9)}





Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Common Reference String

Example Proofer key

PKQAP(Cf ) =


{6}, {1}, {1},
{12}, {1}, {1}
{13, 9}, {9}





Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Common Reference String

Example Verifier key



g 1 gαv gαw gαy

gγ gβγ g t(s)

g
v0(s)
v g

w0(s)
w g

y0(s)
y

g
vin1

(s)
v g

win1
(s)

w g
yin1

(s)
y

g
vin2

(s)
v g

win2
(s)

w g
yin2

(s)
y

g
vin3

(s)
v g

win3
(s)

w g
yin3

(s)
y

g
vout (s)
v g

wout (s)
w g

yout (s)
y



2 18 9 16

4 18 2t(7)

60 30 180

6vin1
(7) 3win1

(7) 18yin1
(7)

6vin2
(7) 3win2

(7) 18yin2
(7)

6vin3
(7) 3win3

(7) 18yin3
(7)

6vout (7) 3wout (7) 18yout (7)





Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Common Reference String

Example Verifier key

VK(PKQAP(Cf )) =



2 18 9 16

4 18 1

1 1 1

1 1 1

1 1 1

1 3 1

1 1 18





Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Setup – Common Reference String

Example Common Reference String

CRSQAP(Cf ) =




{6}, {1}, {1},
{12}, {1}, {1}
{13, 9}, {9}

 ,



2 18 9 16

4 18 1

1 1 1

1 1 1

1 1 1

1 3 1

1 1 18







Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Worker phase

Proof generation

• Computation: Given input set Iin, execute circuit Cf to compute

intermediate values Imid and result Iout .

• Proof Generation:

• Use valid assignment I and QAP to compute polynomial p.

• Derive quotient polynomial h = p/t.

• Use proofer key PKQAP(Cf ) to compute πPKQAP(Cf )
(I ):

g rv vm(s), g rwwm(s), g rv rw ym(s), gh(s)

g rvαv vm(s), g rwαwwm(s), g rv rwαy ym(s)

g rvβvm(s) · g rwβwm(s) · g rv rwβym(s)





Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Worker phase

Proof generation

• vm(x) =
∑

k∈Imid
ckvk(x)

• wm(x) =
∑

k∈Imid
ckwk(x)

• ym(x) =
∑

k∈Imid
ckyk(x)

• Proof has constant size and consists of exactly 8 group elements,

independent from the circuit size.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Worker phase

How is a proof generated from the proofer key?

• All vk ’s, wk ’s and yk ’s are part of the QAP.

• Worker does not know g rv , g rw , g rv rw , αv , αw ,αy , s, or β, because deleted

after key generation by trusted party.

• Worker uses Proofer-key and exponential laws to generate the proof

• gx · gy = gx+y

• (gx )y = gx·y

• Since all ck are known from execution and all g rv vk (s), g rvαv vk (s) are

provided in the proofer key:

g rv vm(s) = g
rv

∑
k∈Imid

ck vk (s)
= Πk∈Imid (g rv vk (s))ck

g rvαv vm(s) = g
rv

∑
k∈Imid

ckαv vk (s)
= Πk∈Imid (g rvαvk (s))ck



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Worker phase

Example Proof generation

• Since we only have a single middle index cmid = 6 we get the proof
66, 16, 16, 2

126, 16, 16

96


•

πPKQAP(Cf )
(2, 3, 4; 2) =


12, 1, 1, 2

9, 1, 1

3


• Middle values (details of computation) are invisible.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Verifier Phase

Proof verification

• Last Step: Proof Verification.

• Task: Given input set Iin, output set Iout and proof π, verify proof

correctness.

• Verify that worker knows polynomial p, such that

• p is divisible by t

• p is build from alleged input and output values:

B(g rv vI/O (s)g rv vmid (s), g rwwI/O (s)g rwwmid (s)) =

B(g rv rw t(s), gh(s))B(g rv rw yI/O (s)g rv rw ymid (s), g)

• B(g rvαv vmid (s), g) = B(g rv vmid (s), gαv )

• B(g rwαwwmid (s), g) = B(g rwwmid (s), gαw )

• B(g rv rwαy ymid (s), g) = B(g rv rwαy ymid (s), gαy )

• B(gZ , gγ) = B(g rvVmid g rwWmid g rv rwYmid , gβγ)



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Verifier Phase

Proof verification

• Task: Verify p = t · h for some h

• Succinct version p(s) = t(s) · h(s) is enough with high probability.

• However, we check the encrypted version kp(s) = k t(s)·h(s).

• Point is: Encrypted version is

B(g rv vI/O (s)g rv vmid (s), g rwwI/O (s)g rwwmid (s)) =

B(g rv rw t(s), gh(s))B(g rv rw yI/O (s)g rv rw ymid (s), g)



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Verifier phase

• To see that, define k := B(g rv , g rw )

• Task: Proof kp(s) = k t(s)·h(s)

• B(g rv , g rw )p(s) = B(g rv , g rw )t(s)·h(s)

• B(g , g)rv rw p(s) = B(g , g)rv rw t(s)·h(s)

• B(g , g)rv rw (vI/O (s)+vmid (s))·(wI/O (s)+wmid (s))−rv rw (yI/O (s)+ymid (s)) =

B(g , g)rv rw t(s)·h(s)

• B(g , g)rv (vI/O (s)+vmid (s))·rw (wI/O (s)+wmid (s)) =

B(g , g)rv rw t(s)·h(s)B(g , g)rv rw (yI/O (s)+ymid (s))

• B(g rv (vI/O (s)+vmid (s)), g rw (wI/O (s)+wmid (s))) =

B(g rv rw t(s), gh(s))B(g rv rw (yI/O (s)+ymid (s)), g)

• B(g rv vI/O (s)g rv vmid (s), g rwwI/O (s)g rwwmid (s)) =

(g rv rw t(s), gh(s))B(g rv rw yI/O (s)g rv rw ymid (s), g)



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Verifier phase

Example Proof Verification

• B(g rv vI/O (s)g rv vmid (s), g rwwI/O (s)g rwwmid (s)) =

B(g rv rw t(s), gh(s))e(g rv rw yI/O (s)g rv rw ymid (s), g)

• B(1 · 12, 1 · 12 · 1) = B(1, 2)B(2 · 1, 2)

• B(12, 12) = B(1, 2)B(2, 2)

• 2log2(12)·log2(12)(mod23) = 2log2(1)·log2(2)(mod23) · 2log2(2)·log2(2)(mod23)

• 210·10(mod23) = 20·1(mod23) · 21·1(mod23)

• 210·10(mod23) = 1 · 21·1(mod23)

• 2 = 2

• The other checks are analog and left to the reader as an exercise ;-)



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

Zero Knowledge Protocol Extension

Zero Knowledge and Randomization

• Suppose the worker does not want to publish (some of) the inputs.

• Setup: Extend verifier key in setup phase with

{g rvαv t(s), g rwαw t(s), g ryαy t(s), g rvβt(s), g rwβt(s), g ryβt(s)}

• Worker: Generate random elements Rv , Rw , Ry , use

vR(x) = v(x) + Rv t(x), wR(x) = w(x) + Rw t(x) and

yR(x) = y(x) + Ry t(x) instead.

• p := (
∑

k∈I ckvk +Rv t(x)) · (
∑

k∈I ckwk +Rw t(x))− (
∑

k∈I ckyy +Ry t(x))

has the same divisibility properties w.r.t. t.

• ”Spread” the randomness across the I/O and middle parts of vR , wR and

yR , to get the required randomness in the proof and the zero knowledge

on the I/O.



Introduction Roadmap Crypto Scheme Example Circuits QAPs CRS Worker Verifier zero knowledge

THAT’s ALL FOR TODAY. [...]


	Introduction
	Roadmap
	Crypto Scheme
	Example
	Circuits
	QAPs
	CRS
	Worker
	Verifier
	zero knowledge

