Pinocchio — Short Signatures for Computation

— A Pen&Paper Example —

Mirco Richter!
October 22, 2019

1LeastAuthority

Introduction

What we do today

e Major takeaway: Some understanding of zero knowledge, verified

computations.

e Use an actual (3-bit security) cryptographic scheme on an oversimplified

problem as running example.

e Use the Pinocchio protocol to derive a toy verified computation.

References and Further Readings

e Original Source: Gentry, Howell, Parno and Raykova (2013): " Pinocchio:
Nearly Practical Verifiable Computation”. In: 2013 IEEE Symposium on
Security and Privacy.

e Optimized version: Jens Groth (2016): " On the Size of Pairing-based
Non-interactive Arguments”. Cryptology ePrint Archive, Report 2016/260.

e Great introduction: Maksym Petkus (2019): "Why and How zk-SNARK
Works: Definitive Explanation”

e Companion paper: Mirco Richter (2018): "A (somewhat) easy pen &
paper example of the Pinocchio protocol”.
https://drive.google.com /file/d /0B-
WxC9ydKhIRZG92dnJORmdWRkZKUXR5Q3FTd0pZMI9TdnlIn/view

Introduction

What is verified computing?

Public key signatures are short proofs of static data.

But there is static data and dynamic computation.

e Can we have signatures (short proofs) for computation?

Can we keep certain details of the computation private, but still get
verifiable signatures?

o ZK-SNARK & Zero Knowledge Succinct Non-interactive Arguments (of)
Knowledge.

Introduction

Why do we need this?
One Example: Zero Knowledge Proof of Knowledge

e Task: Convince everyone, that you know a dataset, which hashes to a
publicly known digest string (Knowledge of a preimage).

e Naive Solution: Publish the dataset. If the hashes are equal, everyone is
convinced.

e Problem: Publishing the dataset might not be an option.

e Better Solution: Implement the hash function not native (e.g. in
x86-assembly), but as a ZK-SNARK.

Steps:

The 3-bit cryptographic scheme.
The toy example function.

The algebraic circuit.

The quadratic arithmetic program.
The setup phase.

The worker phase.

Noe @ o @y =

The verifier phase.

Cryptographic Scheme

The cryptographic scheme
The Pinocchio protocol requires:

e A finite cyclic group (G,)
e A generator g of that group.
e A bilinear map B(:,-) : G x G — G, such that:

e Order: Gt and G have same order
e Biliniearity: B(g/, h*) = B(g, hy' for all j,k € Z,g,h € G
o Non-triviality: Es gibt ein g € G mit B(g, g) # idg,

= Usually realized by cryptographically strong, pairing friendly elliptic curves.

Cryptographic Scheme

Our 3,5-Bit System

o G=1{1,2,3,4,6,8,9,12,13,16,18}.

e Multiplication: x @ y := x - y(mod3), e.g. ordinary integer multiplication
modulo 23.

e Generator: 2.

e Non-trivial bilinear map:

B(-,-) : G x G — Z33; (g, h) — 2828 18(0) (o)

Cryptographic Scheme

Our 3,5-Bit System
To get familiar with the scheme, lets compute something:

e 0013 =

9 13(mod>3) =
117(modh3) =

(5-23 + 2)(modx3) =
o2

Cryptographic Scheme

Our 3,5-Bit System
The underlying finite field:

e Prime field is F1; = {0,1,2,3,4,5,6,7,8,9,10}
e Addition: Normal integer addition modulo 11

e Multiplication: Normal integer multiplication modulo 11

Cryptographic Scheme

Our 3,5-Bit System
To get familiar with the scheme, lets solve an equation for x in Fi;

e (3-x+4)-5=3x
e 3-5-x+4-5=3x
o 4.x+4+9=3x

¢ 4.x—3x=-9

e 4.x+8x=2
(4+8)-x=2

o 1l.-x=2

o x=2

Cryptographic Scheme

Our 3,5-Bit System

Exponentiation and Logarithms:

e 2 is a generator:
e 20—=1 21=222—-4 23=8 24=16,2°=09,
e 26 =18,2"=13,286=3,29=6,210=12, 211 =1

e Base 2 logarithms:

o 0=logx(1), 1 =logs(2), 2= logx(4), 3 = log»(8)
o 4 = |ogy(16), 5 = logx(9), 6 = logx(18)
o 7 = logx(13), 8 = loga(3), 9 = logz(6), 10 = logy(12)

e |nterconnection is
2° :Fu1 + G : logx(e)

Cryptographic Scheme

Our 3,5-Bit System

Why not use ordinary numbers?

In groups like G, certain computations are much harder (even for computers),
than similar computations for ordinary numbers are. For example it is believed
that finding a solution x to the equation

a=b

is infeasible in actual cryptographic schemes (This is known as the discrete
logarithm problem).

The Main Example

Task: Implement the following function as a SNARK in our 3,5-bit
cryptographic scheme.

Function:

f:Fi X Fi1 X F11 — Fag; (xa, %2, x3) = (x1 - x2) - X3

Setup — Algebraic Circuit Representation

The Algebraic Circuit DAG

e Algebraic circuits (over field IF) are directed acyclic graphs, that represent
computation:

e vertices with only outgoing edges (leafs, sources) represent inputs to the
computation.

e vertices with only ingoing edges (roots, sinks) represent outputs from the
computation.
e internal vertices represent field operations (Either addition or
multiplication).
e Circuit execution: Send input values from leafs along edges, through
internal vertices to roots.

e Algebraic circuits are usually derived by Compilers, that transform higher
languages to circuits.

Note: Different Compiler give very different circuit representations and
Compiler optimization is important.

Setup — Algebraic Circuit Representation

Example Circuit

Valid circuit for £ : Fi1 X Fi1 X F11 — Fa1; (x1, %2, x3) — (x1 - x2) - X3 is given by:

ing iny

e Two multiplication vertices m; and m»

e Index set | := {in, in2, in3, midy, out; }

Setup — Algebraic Circuit Representation

What are Assignments?

e An Assignment associates field elements to all edges (indices) in an

algebraic circuit.
e An Assignment is valid, if the field element arise from executing the circuit.
e Every other assignment is invalid.

e Valid assignments are proofs for proper circuit execution.

Setup — Algebraic Circuit Representation

Example Assignments

Valid assignment: lyajig := {in1, ino, ins, midy, out:} = {2,3,4,6,2}

Appears from multiplying the input values at mi, m; in Fi1

Setup — Algebraic Circuit Representation

Example Assignments
Non valid assignment: Il := {iny, inz, in3, mich, out:} = {2,3,4,7,8}

Can not appear from multiplying the input values at mi, my in F11

Setup — Quadratic Arithmetic Programs

The QAP of a Circuit

e QAPs are sets of polynomials.

e QAPs are building blocks to encode circuits into polynomials t and
assignments into polynomials p.

e First major point: p is divisible by t, if and only if p is derived from a valid
assignment. Then another polynomial h exists with

p=h-t

e Second major point: With overwhelmingly high probability, the equation
can be verified in a single point s. E.g. its enough to check

p(s) = h(s) - t(s)

e Checking knowledge of p and h in a single point leads towards short proofs.

Setup — Quadratic Arithmetic Programs

e How do we compute QAPs?
e / circuit indices: QAP := {ty{vk}kel7{Wk}kely{yk}kel}

e Choose random elements {mz, - - - my} from base field for every
multiplication vertex in the circuit.

e Target polynomial: t(x) = (x — my) - ... (x — mx)

e Polynomial from {vi}kes is 1 at mj, if edge k is left input to multiplication
gate o, and zero at mj, otherwise.

e Polynomial from {wx}kes is 1 at mj, if edge k is right input to
multiplication gate e, and zero at point mj, otherwise.

e A polynomial from {yx}«es is 1 at mj, if edge k is output of multiplication
gate o, and zero at point mj, otherwise.

e Circuit assignment {ck }«es defines the polynomial

pi=0av) O aw) - ay

kel kel kel

Setup — Quadratic Arithmetic Programs

Compute Example QAP

e Two multiplication vertices. Random choice: m; =5 and my, =7
Target polynomial:

t(x) = (x = m)(x — mp) =

(x=5)(x—-7)=

(x+6)(x+4) =

x2 +10x + 2

Setup — Quadratic Arithmetic Programs

Compute Example QAP

e Compute the building blocks of p at m; =5 and my, =7
L] {Vinp Viny s Ving s Vmidy » Vout}
L] {Win1 > Wing s Wing s Wmidy » Wout}
L {anlz}//'ny%’ny}’midy}’out}

Setup — Quadratic Arithmetic Programs

Compute Example QAP

e Apply Pinocchio rules to the "left edge” polynomials vie;:
Ving (5) =1, Viny (7) =0

Viny (5) =0, Viny (7) =0

Ving (5) = 0, Vjny (7) =0

V,,,,'d1 (5) = 0, V,,,,'d1 (7) E

Vout(5) =0, vout(7) =0

Setup — Quadratic Arithmetic Programs

Example QAP

e Apply Pinocchio rules to the "right edge” polynomials wie;:
Winy (5) =0, Winy (7) =0

Winz(s) =1, Win2(7) =0

W,',,3(5) = 0, W,'n3(7) EN

Wid; (5) = 0, Wpmig, (7) =0

Wout(5) = 0, Wout(7) =0

Setup — Quadratic Arithmetic Programs

Example QAP

e Apply Pinocchio rules to the "outgoing edge” polynomials yie:
Ying (5) =0, Ying (7) =0

yin2(5) =0, yin2(7) =0

yin3(5) =0, yin3(7) =0

Ymidy (5) = 1, Ymia (7) = 0

}/out(5) =0, }/out(7) =1

Setup — Quadratic Arithmetic Programs

Example QAP

Derive the actual polynomials from this.

Our polynomials specified on two values 5 and 7.

e Linear Polynomial g(x) = m - x + b is fully determined by this.

Example: For vj, (x) = m - x + b computation looks like this:
Vin,(5) = m -5+ b and vj, (7) = m -7 + b.
l1=m-5+band0=m-7+b.

Solve this linear equation gives m =5 and b = 9.

Ving (x) = 5x+9

Note: Doing this is computationally expensive and a major part in the overhead
of the setup phase.

Setup — Quadratic Arithmetic Programs

Example QAP
Viny (X) =5x +9 Win, (X) = 0 Yin(x) =0
Vi (x) =0 Winy(X) =5x+9 | yin(x) =0
Viny (X) = 0 Winy (x) = 6x +3 | yiny(x) =0

Vimidy (X) =6x+3

Wmid, (X) =0

Ymidy (X) =5x+4+9

Vour(x) =0

Wout(x) =0

Yout(x) = 6x + 3

Setup — Quadratic Arithmetic Programs

Example QAP

{5x +9,0,0,6x + 3,0}
QAPx, (Cr) = {xX* +10x +2,¢{ {0,5x +9,6x +3,0,0} 7}
{0,0,0,5x + 9, 6x + 3}

Setup — Quadratic Arithmetic Programs

Example — Circuit Satisfiability and Polynomial Devision

e Remember: {ck}kes is valid assignment < p is divisible by t.

) = (Z CkVk) - (Z CkWk) — Z CkYy

kel kel kel

e Valid example | = {2,3,4,6,2}:

o (2(5x+9)+6(6x+3))-(3(5x+9)+4(6x+3))— (6(5x+9)+2(6x+3)) =
e (2:5x+2:946-6x+6-3)-(3-5x+3:9+4-6x+4-3)—(6-5x+6-9+2-6x+2-3) =
o (10x+7+43x+7)-(4x+5+2x+1) — (8x + 10+ 1x 4 6) =

o (2x+3)-(6x+6)— (9x —5) =

o X+ x+Tx+7+2x+6

e = p(x) = x* + 10x + 2 — Equal to t hence divisible

Setup — Quadratic Arithmetic Programs

Example — Circuit Satisfiability and Polynomial Devision

e Remember: {ck}kes is valid assignment < p is divisible by t.

pi= (Z AR (Z CkWk) — Z CkYy

kel kel kel

e Non valid example | = {2,3,4,5,9}:

o (2(5x+9)+5(6x+3))-(3(5x+9)+4(6x+3)) — (5(5x+9)+9(6x+3)) =
o (2:5x+2-9+5-6x+5-3)(3-5x+3-9+4-6x+4-3)—(5-5x+5-9+9-6x+9-3) =
® (10x+7+8x+4) (4x+5+2x+1)— (3x+1+10x +5) =

7x - (6x+6) — (2x 4+ 6) =

(9x® +9x) +9x + 5 =

= p(x) =9x* +7x+5

Not divisible by t: (9x* 4 7x 4 5) : (x® + 10x 4 2) = 9 + >t

x2410x+2

Setup — Common Reference String

The trusted setup phase

Suppose cryptographic scheme, circuit and QAP is public knowledge now.
Trusted third party then generates the following data:

e random elements r,, fw, s, v, w, ay, B,y € F
e Proofer key PKgap(c;)-
e Verifier key VKoap(c;)-

e Toxic waste: Must delete random elements after key generation.

Setup — Common Reference String

Proofer Key PKgap(c)

e Given generator g and circuit degree d:

{e"" ety {g™™C }kelm,d {&"" N} ety
{e" " “Nery 18" Ohiciy {87 D} ici
i i i
s B(ry vk (s)+rwwi (s)+rv rwyx (s
{g }:e{l.m,d} {g }kelm,d

e Set of group elements, used to encrypt the non 1/O-related part of
polynomial p.

Size depends linear on the number of internal (non 1/O) edges in the
circuit.

e Not unique.

Setup — Common Reference String

Verifier Key VKoap(c)

e Given generator g:

Cy

g

{gvak(S)’ ngWk(S)7 grvrw}/k(s)}ke”/o
e Set of group elements, used to encrypt the 1/O part of polynomial p.
e Size depends linear on the number of |/O-edges in the circuit.

e Not unique.

Setup — Common Reference String

Example Random Elements

er,=9r=8s=7a =6 a,=5
e ay=4,=3v7=2

er=r-rn=9-8=6

Setup — Common Reference String

Encrypted Random Elements

e Using our generator 2, we write these elements in the exponent:
sg=g"=2=6

° gW:g’W:28=3

o g =g =20=18

o g =20-18

o g =25=9

o g =2"=16

o g7 = 22 =4

o g7 =2°=18

Setup — Common Reference String

Example Proofer key

{6"miss (7)}7 {3"misy (7) I {18/miss (7)}7
{66'V”"d1(7)}, {35‘Wrm'd1 (7)}7 {184‘Ymid1 (7)}
{27’ 272}, {63'Vmid1 () . 33 Wimiay (7) . 183 Ymisy (7)}

{66-7-%—3}7 {30}’ {185-7-%—9}7
{66-(6-7+3)}7 {35-0}7 {184-(5»7+9)}
{2, 272} {63-(6-7+3) . 330, 183-(5-7+9)}

{67y, {3°%, {18*"°},
{66~(9+3)}7 {3540}7 {1844(2+9)}
(27,21, (6303 330 1g3(+9

Setup — Common Reference String

Example Proofer key

{6}, {13, {1},
PKoap(chy = {12}, {1}, {1}
{13, 9}, {9}

Setup — Common Reference String

Example Verifier key

g

gvvo(s)
Ving (8)
“//inz (s)
V‘/in3 ©)
Vout(5)

8v

60
6Vin (7
6Vin (7

6Vin3 (7

6Vout(7

t(s)
g}‘YO(S)
Yin (8)

Yiny (5)
y
Ying (5)

Yout ()

Qy

16

Setup — Common Reference String

Example Verifier key

16

VK(PKQAP(Cf)) =

e = = B = N)
e e)

Setup — Common Reference String

Example Common Reference String

2 18 9 16
4 18 1
{6}, {1}, {1}, 11 1
CRSqap(cr) = {12}, {1}, {1} ,,q 1 1 1
{13,9}, {9} 11 1
1 3 1
1 1 18

Worker phase

Proof generation

e Computation: Given input set /i, execute circuit Cr to compute
intermediate values I,,jy and result /ou:.
e Proof Generation:

e Use valid assignment | and QAP to compute polynomial p.
e Derive quotient polynomial h = p/t.
e Use proofer key PKqap(c;) to compute WPKQAP(Q)(I):

g grewm(s) grvrevn(s), e
gfvav‘/m(s)7 g’wame(s)’ grvfway}/m(s)

g/’vBVm(S) .gfwﬁwm(5) .g’vfwﬁ)/m(s)

Worker phase

Proof generation

o vn(x) = Siery, i)

o win(X) =D kel kWi(X)

o ym(xX) = Dkt kye(X)

e Proof has constant size and consists of exactly 8 group elements,
independent from the circuit size.

Worker phase

How is a proof generated from the proofer key?

e All v's, wi's and yi's are part of the QAP.

e Worker does not know g, g™, g™, a,, aw,qy, s, or B, because deleted
after key generation by trusted party.
e Worker uses Proofer-key and exponential laws to generate the proof
o g¥.g¥ =gty
o (g) =g
e Since all ¢, are known from execution and all g™"(®), gvev¥(s) 5re
provided in the proofer key:

ryvm(s

g =g

v 2okl SkVk(S vak(S))Ck

= nke/mid(g

gh/Oéva(S) = g’v Zke’mid ko k(s

rvavk(s))ck

) = I_Ikelmr'd (g

Worker phase

Example Proof generation

e Since we only have a single middle index cmig = 6 we get the proof

6%, 1%, 15 2

126, 1%, 1°
96
]
12, 1, 1, 2
WPKQAP(C,:)(2’374;2) = 9, 1, 1

e Middle values (details of computation) are invisible.

Verifier Phase

Proof verification

e Last Step: Proof Verification.

e Task: Given input set /i, output set /o, and proof m, verify proof
correctness.

e Verify that worker knows polynomial p, such that

e p is divisible by t

e pis build from alleged input and output values:

B(gfv"//o(s)g’vvmid(s)7g’wWI/O(s)nger’d(s)) _

B(grvrwt(S)7 gh(S))B(grvrwy//o(S)grerymfd(S)’ g)

3 B(grvavvm,d(s) g) = B(g’vvmid(5)7gav)
(grwawwm,d ,g) — B(g’mefd(5)7gC"W)

o B(grvrwayym,d g) (rvrway)/mid(s)7go‘}/)
(g

e B Z gY) = B(gfvvm/dg Wm/‘dg’v’vv mid "r)

°
oy}

Verifier Phase

Proof verification

e Task: Verify p =t - h for some h
e Succinct version p(s) = t(s) - h(s) is enough with high probability.
e However, we check the encrypted version kP(5) = kH):h(s),

e Point is: Encrypted version is

B(g’v V//o(S)grvvmid(S)7 g Wl/o(S)grw Wmid(s))

B(grvfwf(s)7 gh(s))B(grvfwy//o(S)gfer}/mid(S)7 g)

Verifier phase

e To see that, define k := B(g",g™)

e Task: Proof kP(s) = k!():h(s)

. B(grv ng)P(S) = B("v "W)t(s)'h(s)

 Blg,8)""+) = B(g,g)" "

ryrw(Vl/o)HVmid () (W) /0 (8)+Wmid (5)) —rv rw (v1 /0 (S)+Ymid(s)) —

v (V17 0(8)+Vimia (5))-rw (W) / 0 () +Wpmia(s))

)
18)
)
18)

n & 0y 0

1y t(s) (g g)rvrw(y//o()+Ymid(s))

o
g
3
<
=
0
0
=
w
=
oy}
=
o
2
3
<
S
~
e}
2
O
+
<
3
Q
=
o
=

(grvrwt(S)7 gh(S))B(g" ’WYI/O(S)g’vaYmr’d(s)’ g)

Verifier phase

Example Proof Verification

. B(rvviso(s rv"mrd(),g’WWI/O(S)g’meid(S)) _

B(ngrW s) s))e(grvrwy//o(S)gfvfw,med(S)7 g)

B(1-12,1-12-1) = B(1,2)B(2-1,2)

o B(12,12) = B(1,2)B(2,2)

o D2l0g2(12)-log>(12) (modas) = Dlog>(1 /0g2(2)(mod23) Dlog2(2)-log>(2) (moda3)
° 210'10(mod23) =20 (m0d23) > (mOd23)

° 210‘10(mod23) E R 21‘1(mod23)

e 2=2

e The other checks are analog and left to the reader as an exercise ;-)

Zero Knowledge Protocol Extension

Zero Knowledge and Randomization

e Suppose the worker does not want to publish (some of) the inputs.

e Setup: Extend verifier key in setup phase with
{grvavt(s)7grwawt(s)’gryayt(s)7gr‘/6t(s)’grwﬁt(s)7gryﬁt(s)}

e Worker: Generate random elements R,, R, Ry, use
vr(x) = v(x) + R/ t(x), wr(x) = w(x) + Rwt(x) and
yr(x) = y(x) + R, t(x) instead.

® p:i= (Zkel Ckvk + Ry t(x)) - (Zkel ckwi + Ruwt(x)) — (Zkel ckyy + Ryt(x))
has the same divisibility properties w.r.t. t.

e "Spread” the randomness across the //O and middle parts of vg, wg and

YR, to get the required randomness in the proof and the zero knowledge
on the //0.

THAT’s ALL FOR TODAY. [...]

	Introduction
	Roadmap
	Crypto Scheme
	Example
	Circuits
	QAPs
	CRS
	Worker
	Verifier
	zero knowledge

