

Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License (“Public License”). To the extent this Public License
may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and
the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these
terms and conditions.

Section 1 – Definitions.
a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material

and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permis-
sion under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material
is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in
timed relation with a moving image.

b. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation,
performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized.
For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

c. Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under
laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international
agreements.

d. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights
that applies to Your use of the Licensed Material.

e. Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License.

f. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all
Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.

g. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

h. NonCommercial means not primarily intended for or directed towards commercial advantage or monetary compensation. For pur-
poses of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by
digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with
the exchange.

i. Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as
reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material
available to the public including in ways that members of the public may access the material from a place and at a time individually
chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and
of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.

Section 2 – Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-
sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and
B. produce and reproduce, but not Share, Adapted Material for NonCommercial purposes only.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public
License does not apply, and You do not need to comply with its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media
and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor
waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to
exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures.
For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted
Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material automatically receives an offer
from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply
any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by
any recipient of the Licensed Material.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s2b
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s6a
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s2a4

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are,
or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor
or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other
similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held
by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights,
whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme.
In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is
used other than for NonCommercial purposes.

Section 3 – License Conditions.
Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material, You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:
i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any

reasonable manner requested by the Licensor (including by pseudonym if designated);
ii. a copyright notice;

iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and
C. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to,

this Public License.

For the avoidance of doubt, You do not have permission under this Public License to Share Adapted Material.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in
which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or
hyperlink to a resource that includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably
practicable.

Section 4 – Sui Generis Database Rights.
Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of
the contents of the database for NonCommercial purposes only and provided You do not Share Adapted Material;

b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then
the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.
a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is

and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express,
implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular
purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not
known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to
You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, neg-
ligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs,
expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised
of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this
limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible,
most closely approximates an absolute disclaimer and waiver of all liability.

iii

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s3a1Ai
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s3a1A
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s3a1A
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s2a1
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s3a
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s4

Section 6 – Term and Termination.
a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this

Public License, then Your rights under this Public License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of
this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing
the Licensed Material at any time; however, doing so will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.
a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent
of the terms and conditions of this Public License.

Section 8 – Interpretation.
a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions

on any use of the Licensed Material that could lawfully be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the
minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License
without affecting the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the
Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that
apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of its public licenses
to material it publishes and in those instances will be considered the “Licensor.” The text of the Creative Commons public licenses is dedicated
to the public domain under the CC0 Public Domain Dedication . Except for the limited purpose of indicating that material is shared under
a Creative Commons public license or as otherwise permitted by the Creative Commons policies published at creativecommons.org/policies,
Creative Commons does not authorize the use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized modifications to any of its public licenses
or any other arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does
not form part of the public licenses.

Creative Commons may be contacted at creativecommons.org.

Sideletter for Contributions to the MoonMath Manual To
zk-SNARKs (the “Sideletter”)

between Least Authority TFA GmbH, Thaerstraße 28a, 10249 Berlin (hereinafter referred to as “Least Authority”) and any natural
person or legal entity submitting Contributions to the MoonMath Manual (hereinafter referred to as “You” or “Your”).

Preamble

(A) Least Authority is the initial creator of the so-called MoonMath Manual To zk-SNARKs (the “Manual”) which serves as a resource
for anyone interested in understanding and unlocking the potential of the so-called “zk-SNARK” technology (“zk-SNARK”). The
acronym zk-SNARK stands for “Zero-Knowledge Succinct Non-Interactive Argument of Knowledge” and refers to a cryptographic
technique where one can prove possession of certain information without revealing the information itself. Most explanations struggle
to clarify how and why they work. Resources are scattered across blog posts and Github libraries. This results in a high barrier to
entry, thereby slowing the widespread adoption of zk-SNARKs and associated privacy-enhancing technologies.

(B) Least Authority wants to change that with the Manual by continuing the Manual as a community-based project to collect useful and
practical information on the zk-SNARK. Third-party authors like You shall be able to contribute parts, ideas and practical information
to the Manual.

(C) The Manual itself is licensed under the Creative Commons Public License, version Attribution-NonCommercial-NoDerivatives 4.0
International (“CC BY-NC-ND-4.0”), which allows usage and distribution as well as modification of the Manual. However, if You
modify the Manual or create “Adapted Material” of the Manual in the sense of Section 1.a. of the CC BY-NC-ND-4.0, those are not
allowed to be distributed by You because Section 3.a.1. subsection 2 of the CC BY-NC-ND-4.0 prohibits the distribution of Adapted
Material.

iv

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s6a
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s6b
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s1
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s5
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s6
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s7
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode#s8
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://creativecommons.org/policies
creativecommons.org

(D) If You wish to participate in the Manual, You can submit Adapted Material on the Manual as well as material created independently
from the Manual (“Independent Creations”) to Least Authority. If You are interested in adding a major Contribution to the Manual,
please contact Least Authority directly under mmm@leastauthority.com and we can discuss if Your contribution can be handled
individually with different terms.

(E) Subject of this Sideletter shall be the licensing of Your Contribution to Least Authority.

Now it is agreed as follows:

§1
License on Your Submitted Contribution

(1) You can contribute any written work, graphic, calculation method, compilation of information, database, or any other work of au-
thorship, including any modifications or additions to the Manual that is created by You by submitting it to Least Authority for the
purpose of the inclusion in the Manual, regardless of whether it is an Independent Creation or Adapted Material (each of them
a “Contribution”). “Submission” in this sense includes any form of electronic, verbal, or written communication sent to Least
Authority under mmm@leastauthority.com or uploaded to https://github.com/LeastAuthority/moonmath-manual. For clarity: Least
Authority is not obligated to include Your Contribution in the Manual.

(2) You hereby grant Least Authority a perpetual, worldwide, non-exclusive, sublicensable, irrevocable and royalty-free right to use,
modify, edit, make publicly available and distribute Your Contribution in tangible and intangible form or any other way now known
or in the future developed in their original or modified way (within the limits of the prohibition of defacement), as well as to combine
it in the original or modified way with or into the Manual (“License”). The License does at least include all rights required to license
the Contribution under the CC BY-NC-ND-4.0 and in particular allows Least Authority to use, modify, edit, make publicly available
and distribute in tangible and intangible form or any other way now known or in the future developed the Contribution as part of the
Manual. Least Authority hereby accepts the grant of the License.

(3) If Least Authority decides that Your Contribution or parts thereof shall be included in the Manual, Least Authority will ensure the
following:

a) the Contribution as part of the Manual is licensed under the CC BY-NC-ND-4.0,
b) You will be identified as a Contributor (including by pseudonym if designated) in the Manual.

The rule § 1 (3) b) only applies if Your name or pseudonym is supplied with the Contribution.

(4) In case Least Authority decides that only parts or revisions of Your Contribution will be included in the Manual, Least Authority
will inform You within a reasonable period of time and obtain Your consent to license the parts / revisions of Your Contribution
corresponding to §1 (2). No consent is needed if only editorial changes are made by Least Authority. In case You decide to submit
Your Contribution with no information to contact You, this clause § 1 (4) shall not apply since Least Authority has no possibility to
obtain Your consent.

(5) In case Least Authority decides that Your Contribution will not be part of the Manual, Least Authority shall use reasonable means
to inform you on its decision within a reasonable period of time after Your Submission. The License You granted to Least Authority
ends with the decision by Least Authority not to include the Contributions into the Manual.

§2
Disclaimer

(1) Unless otherwise separately undertaken by You, to the extent possible, You offer the Contribution as-is and as-available, and make
no representations or warranties of any kind concerning the Contribution, whether express, implied, statutory, or other. This includes,
without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other
defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are
not allowed in full or in part, this disclaimer may not apply to You.

(2) To the extent possible, in no event will You be liable to us on any legal theory (including, without limitation, negligence) or otherwise
for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising
out of this Side Letter or use of the Contribution, even if You have been advised of the possibility of such losses, costs, expenses, or
damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.

(3) The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible,
most closely approximates an absolute disclaimer and waiver of all liability.

§3
Miscellaneous

(1) This Sideletter is valid without signature. It is concluded between You and Least Authority at the time of the submission of the
Contribution by You to Least Authority.

(2) This Sideletter and its interpretation and any non-contractual obligations in connection with it are subject to German substantive law.
The UN Convention on Contracts for the International Sale of Goods (CISG) shall not apply.

(3) English language terms used in this Sideletter describe German legal concepts only and shall not be interpreted by reference to any
meaning attributed to them in any jurisdiction other than Germany. Where a German term has been inserted in brackets and/or italics
it alone (and not the English term to which it relates) shall be authoritative for the purpose of the interpretation of the relevant term
whenever it is used in this Agreement.

(4) Should one or more provisions of this Sideletter be or become invalid or unenforceable in whole or in part, this shall not affect the
validity and enforceability of the remaining provisions of this Sideletter. In place of any Standard Terms of Business (Allgemeine
Geschäftsbedingungen) which are invalid or not incorporated in the Sideletter the statutory provisions shall apply (§ 306 (2) of
the German Civil Code (BGB)). In all other cases, the parties shall agree a valid provision to replace the invalid or unenforceable
provision which reflects as closely as possible the original economic purpose, provided a supplementary interpretation of the Sideletter
(ergänzende Vertragsauslegung) does not have precedence or is not possible.

(5) Amendments and additions to this Sideletter shall be valid only if made in writing. This also applies to any amendment to this written
form clause.

(6) Any disputes arising out of or in connection with this Sideletter, including disputes on its conclusion, binding effects, amendment and
termination, shall be dealt with exclusively by the competent court in Berlin, Germany, if legally possible.

v

mailto:mmm@leastauthority.com
mailto:mmm@leastauthority.com

Contents

1 Introduction 1
1.1 Target audience . 1
1.2 Preface and Acknowledgements . 2
1.3 Purpose of the book . 2

2 Preliminaries 4
2.1 Software Used in This Book . 4

2.1.1 Sagemath . 4

3 Arithmetic 5
3.1 Introduction . 5
3.2 Integer arithmetic . 5

Euclidean Division . 9
The Extended Euclidean Algorithm 11
Coprime Integers . 12

3.3 Modular arithmetic . 13
Congruence . 13
Computational Rules . 14
The Chinese Remainder Theorem 16
Remainder Class Representation 17
Modular Inverses . 19

3.4 Polynomial arithmetic . 23
Polynomial arithmetic . 26
Euklidean Division . 28
Prime Factors . 30
Lagrange interpolation . 31

4 Algebra 34
4.1 Commutative Groups . 34

Finite groups . 36
Generators . 36
The exponential map . 37
Factor Groups . 39
Pairings . 40

4.1.1 Cryptographic Groups . 41
The discrete logarithm assumption 41
The decisional Diffie–Hellman assumption 42
The computational Diffie–Hellman assumption 43

4.1.2 Hashing to Groups . 43

vi

CONTENTS CONTENTS

Hash functions . 43
Hashing to cyclic groups . 45
Pedersen Hashes . 46
Pseudorandom Function Families in DDH-secure groups 48

4.2 Commutative Rings . 48
Hashing into Modular Arithmetic 51

4.3 Fields . 55
4.3.1 Prime fields . 57

Square Roots . 58
Hashing into prime fields . 60

4.3.2 Prime Field Extensions . 60
4.4 Projective Planes . 64

5 Elliptic Curves 67
5.1 Short Weierstrass Curves . 67

5.1.1 Affine Short Weierstrass form . 68
Isomorphic affine short Weierstrass curves 72
Affine compressed representation 73

5.1.2 Affine Group Law . 74
Scalar multiplication . 78
Logarithmic Ordering . 78

5.1.3 Projective short Weierstrass form . 81
Projective Group law . 83
Coordinate Transformations 83

5.2 Montgomery Curves . 85
Affine Montgomery coordinate transformation 87

5.2.1 Montgomery group law . 89
5.3 Twisted Edwards Curves . 90

5.3.1 Twisted Edwards group law . 92
5.4 Elliptic Curve Pairings . 93

Embedding Degrees . 93
Elliptic Curves over extension fields 95
Full torsion groups . 96
Pairing groups . 99
The Weil pairing . 101

5.5 Hashing to Curves . 103
Try-and-increment hash functions 103

5.6 Constructing elliptic curves . 106
The Trace of Frobenius . 106
The j-invariant . 107
The Complex Multiplication Method 108

5.6.1 The BLS6_6 pen-and-paper curve . 117
Hashing to pairing groups . 124

6 Statements 126
6.1 Formal Languages . 126

Decision Functions . 127
Instance and Witness . 130

vii

CONTENTS CONTENTS

Modularity . 133
6.2 Statement Representations . 134

6.2.1 Rank-1 Quadratic Constraint Systems 134
R1CS representation . 134
R1CS Satisfiability . 137
Modularity . 138

6.2.2 Algebraic Circuits . 138
Algebraic circuit representation 139
Circuit Execution . 144
Circuit Satisfiability . 145
Associated Constraint Systems 146

6.2.3 Quadratic Arithmetic Programs . 151
QAP representation . 152
QAP Satisfiability . 154

7 Circuit Compilers 158
7.1 A Pen-and-Paper Language . 158

7.1.1 The Grammar . 158
7.1.2 The Execution Phases . 160

The Setup Phase . 160
The Prover Phase . 162

7.2 Common Programing concepts . 162
7.2.1 Primitive Types . 162

The base-field type . 163
The Subtraction Constraint System 166
The Inversion Constraint System 167
The Division Constraint System 168

The boolean Type . 169
The boolean Constraint System 169
The AND operator constraint system 170
The OR operator constraint system 171
The NOT operator constraint system 171
Modularity . 172

Arrays . 175
The Unsigned Integer Type . 176

The uN Constraint System . 176
The Unigned Integer Operators 177

7.2.2 Control Flow . 178
The Conditional Assignment . 178
Loops . 181

7.2.3 Binary Field Representations . 182
7.2.4 Cryptographic Primitives . 183

Twisted Edwards curves . 183
Twisted Edwards curve constraints 183
Twisted Edwards curve addition 184

viii

CONTENTS CONTENTS

8 Zero Knowledge Protocols 186
8.1 Proof Systems . 186
8.2 The “Groth16” Protocol . 188

The Setup Phase . 189
The Prover Phase . 194
The Verification Phase . 197
Proof Simulation . 199

ix

Chapter 1

Introduction

1.1 Target audience
This book is accessible for both beginners and experienced developers alike. Concepts are
gradually introduced in a logical and steady pace. Nonetheless, the chapters lend themselves
rather well to being read in a different order. More experienced developers might get the most
benefit by jumping to the chapters that interest them most. If you like to learn by example, then
you should go straight to the chapter on Using Clarinet.

It is assumed that you have a basic understanding of programming and the underlying logical
concepts. The first chapter covers the general syntax of Clarity but it does not delve into what
programming itself is all about. If this is what you are looking for, then you might have a more
difficult time working through this book unless you have an (undiscovered) natural affinity for
such topics. Do not let that dissuade you though, find an introductory programming book and
press on! The straightforward design of Clarity makes it a great first language to pick up.

How much mathematics do you need to understand ? The answer, of course, depends on
the level of understanding you aim for. It is possible to describe zero-knowledge proofs without
using mathematics at all; however, to read a foundational paper like Groth [2016] and to under-
stand the internals of snark implementations, some knowledge of mathematics is needed to be
able to follow the discussion.

Without a solid grounding in mathematics, someone who is interested in learning the con-
cepts of zero-knowledge proofs, but who has never seen or dealt with, say, a prime field 4.3.1,
or an elliptic curve 5, may quickly become overwhelmed. This is not so much due to the com-
plexity of the mathematics needed, but rather because of the vast amount of technical jargon,
unknown terms, and obscure symbols that quickly makes a text unreadable, even though the
concepts themselves are not actually that complicted. As a result, the reader might either lose
interest, or pick up some incoherent bits and pieces of knowledge that, in the worst case sce-
nario, result in immature and unsecure code.

This is why we dedicated large parts of the book to explaining the mathematical foundations
needed to understand the basic concepts underlying snark development. We encourage the
reader who is not familiar with basic number theory and elliptic curves to take the time and
read this and the following chapters, until they are able to solve at least a few exercises in each
chapter.

We start our explanations at a very basic level, and only assume pre-existing knowledge of
fundamental concepts like high school integer arithmetic. At the same time, we’ll attempt to
teach you to “think mathematically”, and to show you that there are numbers and mathematical
structures out there that appear to be very different from the things you learned about in high

1

CHAPTER 1. INTRODUCTION 1.2. PREFACE AND ACKNOWLEDGEMENTS

school, but on a deeper level, they are actually quite similar, as we will see in various examples
below in this chapter.

To make it easier to memorize new concepts and symbols, we might frequently link to
definitions in the beginning, but as to many links render a text unreadable, we will assume the
reader will become familiar with definitions as the text proceeds at which point we will not link
them anymore.

We want to stress, however that this introduction is informal, incomplete and optimized to
enable the reader to understand zero-knowledge concepts as efficiently as possible. Our focus
and design choices are to include as little theory as necessary, focusing on a wealth of numerical
examples. We believe that such an informal, example-driven approach to learning mathematics
may make it easier for beginners to digest the material in the initial stages.

For instance, as a beginner, you would probably find it more beneficial to first compute a
simple toy snark with pen and paper all the way through, before actually developing real-world
production-ready systems. In addition, it’s useful to have a few simple examples in your head
before getting started with reading actual academic papers.

However, in order to be able to derive these toy examples, some mathematical groundwork
is needed. This chapter therefore will help the inexperienced reader to focus on what we believe
is important, accompanied by exercises that you are encouraged to recompute yourself. Every
section usually ends with a list of additional exercises in increasing order of difficulty, to help
the reader memorize and apply the concepts.

1.2 Preface and Acknowledgements
[To APPEAR]

1.3 Purpose of the book
This book began as a set of lecture and notes one of the authors gave at the Zero Knowledge
Summit - ZK0x02 in Berlin. It arose from the desire to collect the scattered information around
the topic of zk-SNARKS and present them to an audience that does not have a strong back-
ground in cryptography.

The first version of this book is written by security auditors at Least Authority where we
audited quite a few snark based systems. It includes "what we have learned" distillate of the
time we spend on various audits and serves as a polished version of what one might call an
auditors adoptation of classical lab notebooks.

We intend to let illustrative examples drive the discussion and present the key ideas of all
basic concepts relevant to the understanding of zk-SNARKS with as little mathematics as pos-
sible. For those who are new to this topic, it is our hope that this book might be particularly
useful as a first read and prelude to more complete or advanced expositions.

On the other hand, we also hope our beginner-friendly intentions do not leave the more
advanced readers dissatisfied by our chosen lack of formality, so in cases where our discussion
does sacrifice rigor, we will point the reader to the proper literature.

After more than a decade of intense and fast-paced research by mathematicians and cryp-
tographers around the globe on zk-SNARKS, the field is now racing towards full maturity and
in our believe first saturation effects appear at the horizon. A purpose of the book is therefore,
that an understanding of this text will equip the reader with most of what they need to know in
order to tackle any of the vast literature in this remarkable field, at least for a while yet.

2

https://www.zksummit.com/
https://www.zksummit.com/
https://en.wikipedia.org/wiki/Lab_notebook

CHAPTER 1. INTRODUCTION 1.3. PURPOSE OF THE BOOK

Early in the book we will develop examples that we then later extend with most of the things
we learn in each chapter. This way we incrementally build a few real world snarks but over full
fledged cryptographic systems that are nevertheless simple enough to be computed by pen and
paper to illustrate all steps in great detail.

3

Chapter 2

Preliminaries

2.1 Software Used in This Book

2.1.1 Sagemath
It order to provide an interactive learning experience, and to allow getting hands-on with the
concepts described in this book, we give examples for how to program them in the Sage pro-
gramming language. Sage is a dialect of the learning-friendly programming language Python,
which was extended and optimized for computing with, in and over algebraic objects. There-
fore, we recommend installing Sage before diving into the following chapters.

The installation steps for various system configurations are described on the sage websit 1.
Note however that we use Sage version 9, so if you are using Linux and your package manager
only contains version 8, you may need to choose a different installation path, such as using
prebuilt binaries.

We recommend the interested reader, who is not familiar with sagemath to read on the many
tutorial before starting this book. For example SageTutorial

1https://doc.sagemath.org/html/en/installation/index.html

4

https://doc.sagemath.org/pdf/en/tutorial/SageTutorial.pdf
https://doc.sagemath.org/html/en/installation/index.html

Chapter 3

Arithmetic

3.1 Introduction
We start with a brief recapitulation of basic integer arithmetic like long division, the greatest
common divisor and Euclid’s algorithm. After that, we introduce modular arithmetic as the
most important skill to compute our pen-and-paper examples. We then introduce polynomials,
compute their analogs to integer arithmetic and introduce the important concept of Lagrange
interpolation.

After this practical warm up, we introduce some basic algebraic terms like groups and fields,
because those terms are used very frequently in academic papers relating to zero-knowledge
proofs. The beginner is advised to memorize those terms and think about them: Why are they
defined the way they are? Can you come up with a better definition? How and why is every rule
important and what happens if that rule is dropped?

We define these terms in the general abstract way of mathematics, hoping that the non
mathematical trained reader will gradually learn to become comfortable with this style. We
then give basic examples and do basic computations with these examples to get familiar with
the concepts.

3.2 Integer arithmetic
In a sense, integer arithmetic is at the heart of large parts of modern cryptography. Fortunately,
most readers will probably remember integer arithmetic from school. It is, however, important
that you can confidently apply those concepts to understand and execute computations in the
many pen-and-paper examples that form an integral part of the Moonmath manual. We will
therefore recapitulate basic arithmetic concepts to refresh your memory and fill any knowledge
gaps.

Many of the ideas presented in this chapter are taught in basic mathematical education in
most schools around the globe. Much of the ideas presented in this section can be found in Wu
[2011]. An approach more oriented towards computer science can be found in Mignotte [1992].

In what follows, we use many mathematical notations, which we summerized in the follow-
ing table 3.2:

5

CHAPTER 3. ARITHMETIC 3.2. INTEGER ARITHMETIC

Notation used in this chapter

Symbol Meaning of Symbol Example Explanation

= equals a = r a and r have the same
value

:= defining the symbol on the right M := {a,b,c} M is a set containg a,b,c
∈ element from a set a ∈M a is an element from M
⇔ logical equivalence P⇔ Q P if and only if Q

∑
k
j=n a j summation ∑

1
j=0 a j = a0 +a1 sum of a0 and a1

In this book, we use the symbol Z as a short description for the set of all integers, that is we
write:

Z := {. . . ,−3,−2,−1,0,1,2,3, . . .} (3.1)

Integers are also known as whole numbers, that is, numbers that can be written without
fractional parts. Examples of numbers that are not integers are 2

3 , 1.2 and −1280.006. Whole
Numbers together with their basic laws of operations are introduced for example in the chapter
1 - 6 in Wu [2011].

If a ∈ Z is an integer, then we write |a| for the absolute value of a, that is, the the non-
negative value of a without regard to its sign:

|4|= 4 (3.2)

|−4|= 4 (3.3)

We use the symbol N for the set of all positive integers, usually called the set of natural
numbers and N0 for the set of all non negative integers. So whenever you see the symbol N,
think of the set of all positive integers excluding the number 0:

N := {1,2,3, . . .} N0 := {0,1,2,3, . . .}

Let n ∈ N0 be a non negative integer and (b0,b1, . . .bk) a string of bits b j ∈ {0,1} ⊂ N0 for
some non negative integer k ∈ N, such that the following equation holds:

n =
k

∑
j=0

b j ·2 j (3.4)

In this case, we call Bits(n) :=< b0,b1, . . .bk > the binary representation of n, say that
n is a k-bit number and call k := |n|2 the bit length of n. It can be shown, that the binary
representation of any non negative integer is unique. We call b0 the least significant bit and
bk the most significant bit and define the Hamming weight of an integer as the number of 1s
in its binary representation. For more on binary and general base integer representation see for
example chapter 1 in Mignotte [1992].

In addition, we use the symbol Q for the set of all rational numbers, which can be repre-
sented as the set of all fractions n

m , where n ∈ Z is an integer and m ∈ N is a natural number,
such that there is no other fraction n′

m′ and natural number k ∈ N with k ̸= 1 and

n
m

=
k ·n′

k ·m′
(3.5)

6

CHAPTER 3. ARITHMETIC 3.2. INTEGER ARITHMETIC

A more in-deep introduction to rational numbers, their representation as well as their arithmetic
operations can be found in part 2. of Wu [2011] and in chapter 1 section 2 of Mignotte [1992].

The sets N, Z and Q have a notion of addition and multiplication defined on them. Most
of us are probably able to do many integer computations in our head, but this gets more and
more difficult as these increase in complexity. We will frequently invoke the SageMath system
(2.1.1) for more complicated computations (We define rings and fields later in this book):

1sage: ZZ # A sage notation for the integers
2Integer Ring
3sage: NN # A sage notation for the natural numbers
4Non negative integer semiring
5sage: QQ # A sage notation for the rational numbers
6Rational Field
7sage: ZZ(5) # Get an element from the integers
85
9sage: ZZ(5) + ZZ(3)
108
11sage: ZZ(5) * NN(3)
1215
13sage: ZZ.random_element(10**50)
14965279559492863865881549515500594549691983437419
15sage: ZZ(27713).str(2) # Binary string representation
16110110001000001
17sage: NN(27713).str(2) # Binary string representation
18110110001000001
19sage: ZZ(27713).str(16) # Hexadecimal string representation
206c41

One set of numbers that is of particular interest to us is the set of prime numbers, which are
natural numbers p ∈ N with p ≥ 2, which are only divisible by themself and by 1. All prime
numbers apart from the number 2 are called odd prime numbers. We write P for the set of all
prime numbers and P≥3 for the set of all odd prime numbers. The set of prime numbers P is an
infinite set and can be ordered according to size, which means that for any prime number p ∈ P
one can always find another prime number p′ ∈ P with p < p′. It follows thar there is no largest
prime number. Since prime numbers can be ordered by size, we can write them as follows:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67, . . . (3.6)

As the fundamental theorem of arithmetic tells us, prime numbers are, in a certain sense, the
basic building blocks from which all other natural numbers are composed. To see that, let n∈N
be any natural number with n > 1. Then there are always prime numbers p1, p2, . . . , pk ∈ P,
such that

n = p1 · p2 · . . . · pk . (3.7)

This representation is unique for each natural number (except for the order of the factors) and
is called the prime factorization of n.

Example 1 (Prime Factorization). To see what we mean by prime factorization of a number,
let’s look at the number 504 ∈ N. To get its prime factors, we can successively divide it by all
prime numbers in ascending order starting with 2:

504 = 2 ·2 ·2 ·3 ·3 ·7

7

CHAPTER 3. ARITHMETIC 3.2. INTEGER ARITHMETIC

We can double check our findings invoking Sage, which provides an algorithm to factor natural
numbers:

21sage: n = NN(504)
22sage: factor(n)
232^3 * 3^2 * 7

The computation from the previous example reveals an important observation: Computing
the factorization of an integer is computationally expensive, because we have to divide repeadly
by all prime numbers smaller then the number itself until all factors are prime numbers themself.
From this, an important question arises: How fast can we compute the prime factorization of a
natural number? This question is the famous integer factorization problem and, as far as we
know, there is currently no method known that can factor integers much faster then the naive
approach that just divides the given number by all prime numbers in ascending order.

On the other hand computing the product of a given set of prime numbers, is fast (just
multiply all factors) and this simple observation implies that the two processes "prime number
multiplication" on the one side and its inverse process "natural number factorization" have very
different computational costs. The factorization problem is therefore an example of a so-called
one-way function: An invertible function that is easy to compute in one direction, but hard to
compute in the other direction.

It should be pointed out, however, that the American mathematician Peter W. Shor devel-
oped an algorithm in 1994 which can calculate the prime factorization of a natural number
in polynomial time on a quantum computer. The consequence of this is that cryptosystems,
which are based on the prime factor problem, are unsafe as soon as practically usable quantum
computers become available .

As prime numbers are of central importance the interested reader might find a lot about those
numbers in many books on number theory. An introduction is given for example in the chapters
1 and 2 of Hardy et al. [2008]. An elementary school introduction can be found in chapter
chapter 33 of Wu [2011]. Chapter 34 of Wu [2011] gives an introduction to the fundamental
theorem of arithmetic 3.7. Of particular interest to more advanced reader might be the book
Fine and Rosenberger [2016].

Exercise 1. What is the absolute value of the integers −123, 27 and 0?

Exercise 2. Compute the factorization of 30030 and double check your results using Sage.

Exercise 3. Consider the following equation 4 · x+21 = 5. Compute the set of all solutions for
x under the following alternative assumptions:

1. The equation is defined over the natural numbers.

2. The equation is defined over the integers.

Exercise 4. Consider the following equation 2x3− x2− 2x = −1. Compute the set of all solu-
tions x under the following assumptions:

1. The equation is defined over the natural numbers.

2. The equation is defined over the integers.

3. The equation is defined over the rational numbers.

8

CHAPTER 3. ARITHMETIC 3.2. INTEGER ARITHMETIC

Euclidean Division As we know from high school mathematics, integers can be added, sub-
tracted and multiplied and the result is guranteed to always be an integer again. On the contrary
division in the commonly understood sense is not defined for integers, as, for example, 7 divided
by 3 will not be an integer again. However it is always possible to divide any two integers if we
consider division with remainder. So for example 7 divided by 3 is equal to 2 with a remainder
of 1, since 7 = 2 ·3+1.

It is the content of this section to introduced division with remainder for integers which is
usually called Euclidean division. It is an essential technique underlying many concepts in this
book. Euclidean division is introduced in chapter 1, section 5 of Mignotte [1992] and in chapter
1, section 1.3 of Cohen [2010]. The precise definition is as follows:

Let a ∈ Z and b ∈ Z be two integers with b ̸= 0. Then there is always another integer m ∈ Z
and a natural number r ∈ N, with 0≤ r < |b| such that

a = m ·b+ r (3.8)

This decomposition of a given b is called Euclidean division, where a is called the dividend,
b is called the divisor, m is called the quotient and r is called the remainder. It can be shown
that both the quotient and the remainder always exist and are unique, as long as the divisor is
different from 0.

Notation and Symbols 1. Suppose that the numbers a,b,m and r satisfy equation (3.8). Then
we often write

a div b := m, a mod b := r (3.9)

s to describe the quotient and the remainder of the Euclidean division. We also say that an
integer a is divisible by another integer b if a mod b = 0 holds. In this case we also write b|a
and call the integer a div b the cofactor of b in a.

So, in a nutshell Euclidean division is a process of dividing one integer by another in a way
that produces a quotient and a non-negative remainder, the latter of which is smaller than the
absolute value of the divisor.

A special situation occurs whenever the remainder is zero, because in this case the dividend
is divisible by the divisor. Our notation b|a reflects that.

Example 2. Applying Euclidean division and our previously defined notation 3.9 to the dividend
−17 and the divisor 4, we get

−17 div 4 =−5, −17 mod 4 = 3

because−17=−5 ·4+3 is the Euclidean division of−17 and 4 (the remainder is, by definition,
a non-negative number). In this case 4 does not divide −17, as the reminder is not zero. The
truth value of the expression 4|−17 therefore is FALSE. On the other hand, the truth value of
4|12 is TRUE, since 4 divides 12, as 12 mod 4 = 0. We can invoke sage to do the computation
for us. We get the following:

24sage: ZZ(-17) // ZZ(4) # Integer quotient
25-5
26sage: ZZ(-17) % ZZ(4) # remainder
273
28sage: ZZ(4).divides(ZZ(-17)) # self divides other
29False
30sage: ZZ(4).divides(ZZ(12))

9

CHAPTER 3. ARITHMETIC 3.2. INTEGER ARITHMETIC

31True

Remark 1. In 3.9 we defined the notation of a div b and a mod b, in terms of Euclidean division.
It should be noted however that many programing languages like Phyton and Sage, implement
both the operator (/) as well as the operator (%) differently. Programers should be aware of
this, as the discrepancy between the mathematical notation and the implementation in program-
ing languages might become the source of subtle bugs in implementations of cryptographic
primitives.

To give an example consider the the dividend −17 and the divisor −4. Note that in contrast
to the previous example 2, we have a negative divisor. According to our definition we have

−17 div −4 = 5, −17 mod −4 = 3

because −17 = 5 · (−4) + 3 is the Euclidean division of −17 and −4 (the remainder is, by
definition, a non-negative number). However using the operators (/) and (%) in Sage we get

32sage: ZZ(-17) // ZZ(-4) # Integer quotient
334
34sage: ZZ(-17) % ZZ(-4) # remainder
35-1
36sage: ZZ(-17).quo_rem(ZZ(-4)) # not Euclidean division
37(4, -1)

Methods to compute Euclidean division for integers are called integer division algorithms.
Probably the best known algorithm is the so-called long division, which most of us might have
learned in school. An extensive elementary school introduction o long division can be found in
chapter 7 of Wu [2011].

As long division is the standard method used for pen-and-paper division of multi-digit num-
bers expressed in decimal notation, the reader should become familiar with it as we use it
throughout this book when we do simple pen-and-paper computations. However, instead of
defining the algorithm formally, we rather give some examples that will hopefully make the
process clear.

In a nutshell, the algorithm loops through the digits of the dividend from the left to right,
subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the
multiples then become the digits of the quotient, and the remainder is the first digit of the
dividend.

Example 3 (Integer Long Division). To give an example of integer long division algorithm, lets
divide the integer a = 143785 by the number b = 17. Our goal is therefore to find solutions
to equation 3.8, that is, we need to find the quotient m ∈ Z and the remainder r ∈ N such that
143785 = m · 17+ r. Using a notation that is mostly used in Commonwealth countries, we

10

CHAPTER 3. ARITHMETIC 3.2. INTEGER ARITHMETIC

compute as follows:

17 143785
8457

136
77
68
98
85
135
119
16

(3.10)

We therefore get m = 8457 as well as r = 16 and indeed we have 143785 = 8457 · 17+ 16,
which we can double check invoking Sage:

38sage: ZZ(143785).quo_rem(ZZ(17))
39(8457, 16)
40sage: ZZ(143785) == ZZ(8457)*ZZ(17) + ZZ(16) # check
41True

Exercise 5 (Integer Long Division). Find an m∈Z as well as an r ∈N with 0≤ r < |b| such that
a = m ·b+ r holds for the following pairs (a,b) = (27,5), (a,b) = (27,−5), (a,b) = (127,0),
(a,b) = (−1687,11) and (a,b) = (0,7). In which cases are your solutions unique?

Exercise 6 (Long Division Algorithm). Write an algorithm that computes integer long division
and handling all edge cases properly.

Exercise 7 (Binary Representation). Write an algorithm that computes the binary representation
3.4 of any non-negative integer.

The Extended Euclidean Algorithm One of the most critical parts in this book is the so
called modular arithmetic which we will define in 3.3 and its application in the computations
of prime fields as defined in 4.3.1. To be able to do computations in modular arithmetic, we
have to get familiar with the so-called extended Euclidean algorithm. We therefore introduce
this algorithm here. A more in-depth introduction to the content of this section can be found in
chapter 1, section 1.3 of Cohen [2010] and in chapter 1, section 8 of Mignotte [1992].

The greatest common divisor (GCD) of two non-zero integers a and b, is defined as the
greatest non-zero natural number d such that d divides both a and b, that is, d|a as well as d|b.
We write gcd(a,b) := d for this number. Since the natural number 1 divides any other integer, 1
is always a common divisor of any two non-zero integers. However it must not be the greatest.

A common method to compute the greatest common divisor is the so called Eucliden algo-
rithm. However since we don’t need that algorithm in this book, we will introduce the Extended
Euclidean algorithm which is a method to calculate the greatest common divisor of two natural
numbers a and b∈N, as well as two additional integers s, t ∈Z, such that the following equation
holds:

gcd(a,b) = s ·a+ t ·b (3.11)

The pseudocode in algorithm 1 shows in detail how to calculate the greatest common divisor
and the numbers s and t with the extended Euclidean algorithm:

The algorithm is simple enough to be done effectively in pen-and-paper examples, where
it is common to write it as a table where the rows represent the while-loop and the columns

11

CHAPTER 3. ARITHMETIC 3.2. INTEGER ARITHMETIC

Algorithm 1 Extended Euclidean Algorithm
Require: a,b ∈ N with a≥ b

procedure EXT-EUCLID(a,b)
r0← a and r1← b
s0← 1 and s1← 0
t0← 0 and t1← 1
k← 2
while rk−1 ̸= 0 do

qk← rk−2 div rk−1
rk← rk−2 mod rk−1
sk← sk−2−qk · sk−1
tk← tk−2−qk · tk−1
k← k+1

end while
return gcd(a,b)← rk−2, s← sk−2 and t← tk−2

end procedure
Ensure: gcd(a,b) = s ·a+ t ·b

represent the values of the the array r, s and t with index k. The following example provides a
simple execution:

Example 4. To illustrate algorithm 1, we apply it to the numbers a = 12 and b = 5. Since
12,5 ∈ N as well as 12≥ 5 all requirements are met and we compute as follows:

k rk sk tk
0 12 1 0
1 5 0 1
2 2 1 -2
3 1 -2 5
4 0

From this we can see that the greatest common divisor of 12 and 5 is gcd(12,5) = 1 and that
the equation 1 = (−2) ·12+5 ·5 holds. We can also invoke sage to double check our findings:

42sage: ZZ(12).xgcd(ZZ(5)) # (gcd(a,b),s,t)
43(1, -2, 5)

Exercise 8 (Extended Euclidean Algorithm). Find integers s, t ∈ Z such that gcd(a,b) = s ·a+
t · b holds for the following pairs (a,b) = (45,10), (a,b) = (13,11), (a,b) = (13,12). What
pairs (a,b) are coprime?

Exercise 9 (Towards Prime fields). Let n ∈ N be a natural number and p a prime number, such
that n < p. What is the greatest common divisor gcd(p,n)?

Exercise 10. Find all numbers k ∈ N with 0≤ k ≤ 100 such that gcd(100,k) = 5.

Exercise 11. Show that gcd(n,m) = gcd(n+m,m) for all n,m ∈ N.

Coprime Integers Coprime integers are integers that do not have a common prime number
as a factor. As we will see in 3.3 those numbers are important for our purposes because in
modular arithmetic, computation that involve coprime numbers are substantially different from

12

CHAPTER 3. ARITHMETIC 3.3. MODULAR ARITHMETIC

computations on non-coprime numbers 3.3. An introduction to coprime numbers can be found
in chapter 5, section 1 of Hardy et al. [2008].

The naive way to decide if two integers are coprime would be to divide both number suc-
cessively by all prime numbers smaller then those numbers to see if they share a common prime
factor. However two integers are coprime if and only if their greatest common divisor is 1 and
hence computing the gcd is the preferred method.

Example 5. Consider example 4 again. As we have seen, the greatest common divisor of 12
and 5 is 1. This implies that the integers 12 and 5 are coprime, since they share no divisor other
then 1, which is not a prime number.

Exercise 12. Consider exercise 8 again. Which pairs (a,b) from that exercise are coprime?

3.3 Modular arithmetic
Modular arithmetic is a system of integer arithmetic, where numbers “wrap around” when
reaching a certain value, much like calculations on a clock wrap around whenever the value
exceeds the number 12. For example, if the clock shows that it is 11 o’clock, then 20 hours
later it will be 7 o’clock, not 31 o’clock. The number 31 has no meaning on a normal clock that
shows hours.

The number at which the wrap occurs is called the modulus. Modular arithmetic general-
izes the clock example to arbitrary moduli and studies equations and phenomena that arise in
this new kind of arithmetic. It is of central importance for understanding most modern crypto
systems, in large parts because modular arithmetic provides the computational infrastructute for
algebraic types that have cryptographically useful examples of one-way functions.

Although modular arithmetic appears very different from ordinary integer arithmetic that
we are all familiar with, we encourage the interested reader to work through the example and
to discover that, once they get used to the idea that this is a new kind of calculations, it will
seem much less daunting. A detailed introduction to modular arithmetic and its applications
in number theory can be found in chapter 5 - 8 of Hardy et al. [2008]. An elementary school
introduction to parts of the topic in section can be found in part 4 of Wu [2011].

Congruence In what follows, let n ∈ N with n ≥ 2 be a fixed natural number that we will
call the modulus of our modular arithmetic system. With such an n given, we can then group
integers into classes, by saying that two integers are in the same class, whenever their Euclidean
division 3.2 by n will give the same remainder. We then say that two numbers are congruent
whenever they are in the same class.

Example 6. If we choose n = 12 as in our clock example, then the integers −7, 5, 17 and 29 are
all congruent with respect to 12, since all of them have the remainder 5 if we perform Euclidean
division on them by 12. In the picture of an analog 12-hour clock, starting at 5 o’clock, when
we add 12 hours we are again at 5 o’clock, representing the number 17. On the other hand,
when we subtract 12 hours, we are at 5 o’clock again, representing the number −7.

We can formalize this intuition of what congruence should be into a proper definition utiliz-
ing Euclidean division (as explained previously in 3.2): Let a, b ∈ Z be two integers and n ∈ N
a natural number, such that n ≥ 2. Then a and b are said to be congruent with respect to the
modulus n, if and only if the following equation holds

a mod n = b mod n (3.12)

13

CHAPTER 3. ARITHMETIC 3.3. MODULAR ARITHMETIC

If, on the other hand, two numbers are not congruent with respect to a given modulus n, we
call them incongruent w.r.t. n.

A congruence is then nothing but an equation "up to congruence", which means that the
equation only needs to hold if we take the modulus on both sides. In which case we write

a≡ b (mod n) (3.13)

A more in-depth introduction to the notion of congruency and their basic properties and
application in number theory can be found in chapter 5 of Hardy et al. [2008].

Exercise 13. Which of the following pairs of numbers are congruent with respect to the modulus
13: (5,19), (13,0), (−4,9), (0,0).

Exercise 14. Find all integers x, such that the congruence x≡ 4 (mod 6) is satisfied.

Computational Rules Having defined the notion of a congruence as an equation "up to a
modulus", a follow up question is if we can manipulate a congruence similar to an equation.
Indeed we can almost apply the same substitution rules to a congruency then to an equation, with
the main difference being that for some non-zero integer k∈Z, the congruence a≡ b (mod n)
is equivalent to the congruence k ·a≡ k ·b (mod n) only, if k and the modulus n are coprime
3.2. The following list gives a set of useful rules:

Suppose that integers a1,a2,b1,b2,k ∈ Z are given. as shown for example in chapter 5 of
Hardy et al. [2008], the following arithmetic rules hold for congruencies:

• a1 ≡ b1 (mod n)⇔ a1 + k ≡ b1 + k (mod n) (compatibility with translation)

• a1 ≡ b1 (mod n)⇒ k ·a1 ≡ k ·b1 (mod n) (compatibility with scaling)

• gcd(k,n) = 1 and k ·a1 ≡ k ·b1 (mod n)⇒ a1 ≡ b1 (mod n)

• k ·a1 ≡ k ·b1 (mod k ·n)⇒ a1 ≡ b1 (mod n)

• a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n)⇒ a1+a2 ≡ b1+b2 (mod n) (compatibil-
ity with addition)

• a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n)⇒ a1 ·a2 ≡ b1 ·b2 (mod n) (compatibility
with multiplication)

Other rules, such as compatibility with subtraction, follow from the rules above. For example,
compatibility with subtraction follows from compatibility with scaling by k =−1 and compat-
ibility with addition.

Another property of congruencies, not known in the traditional arithmetic of integers is
Fermat’s Little Theorem. In simple words, it states that, in modular arithmetic, every number
raised to the power of a prime number modulus is congruent to the number itself. Or, to be more
precise, if p ∈ P is a prime number and k ∈ Z is an integer, then:

kp ≡ k (mod p) , (3.14)

If k is coprime to p, then we can divide both sides of this congruence by k and rewrite the
expression into the equivalent form

kp−1 ≡ 1 (mod p) (3.15)

14

CHAPTER 3. ARITHMETIC 3.3. MODULAR ARITHMETIC

Fermat’s little theorem is of high importantce in number theory. For a detailed proof and an
extensive introduction to it’s consequences see for example chapter 6 in Hardy et al. [2008].

The following sage code computes example effects of Fermat’s little theorem and highlights
the effects of the exponent k being coprime and not coprime to p:

44sage: ZZ(137).gcd(ZZ(64))
451
46sage: ZZ(64)^ ZZ(137) % ZZ(137) == ZZ(64) % ZZ(137)
47True
48sage: ZZ(64)^ ZZ(137-1) % ZZ(137) == ZZ(1) % ZZ(137)
49True
50sage: ZZ(1918).gcd(ZZ(137))
51137
52sage: ZZ(1918)^ ZZ(137) % ZZ(137) == ZZ(1918) % ZZ(137)
53True
54sage: ZZ(1918)^ ZZ(137-1) % ZZ(137) == ZZ(1) % ZZ(137)
55False

Let’s compute an example that contains most of the concepts described in this section:

Example 7. Assume that we consider the modulus 6 and that our task is to solve the following
congruence for x ∈ Z

7 · (2x+21)+11≡ x−102 (mod 6)

As many rules for congruencies are more or less same as for integers, we can proceed in a similar
way as we would if we had an equation to solve. Since both sides of a congruence contain
ordinary integers, we can rewrite the left side as follows: 7 · (2x+21)+11 = 14x+147+11 =
14x+158. We can therefore rewrite the congruence into the equivalent form

14x+158≡ x−102 (mod 6)

In the next step we want to shift all instances of x to left and every other term to the right. So
we apply the“compatibility with translation” rules two times. In a first step we choose k = −x
and in a second step we choose k =−158. Since “compatibility with translation” transforms a
congruence into an equivalent form, the solution set will not change and we get

14x+158≡ x−102 (mod 6)⇔
14x− x+158−158≡ x− x−102−158 (mod 6)⇔

13x≡−260 (mod 6)

If our congruence would just be a normal integer equation, we would divide both sides by
13 to get x = −20 as our solution. However, in case of a congruence, we need to make sure
that the modulus and the number we want to divide by are coprime first – only then will we
get an equivalent expression (See rule XXX). So we need to find the greatest common divisor
gcd(13,6). Since 13 is prime and 6 is not a multiple of 13, we know thatgcd(13,6) = 1, so
these numbers are indeed coprime. We therefore compute

13x≡−260 (mod 6)⇔ x≡−20 (mod 6)

Our task is now to find all integers x, such that x is congruent to−20 with respect to the modulus
6. So we have to find all x such

x mod 6 =−20 mod 6

15

CHAPTER 3. ARITHMETIC 3.3. MODULAR ARITHMETIC

Since −4 ·6+4 =−20 we know −20 mod 6 = 4 and hence we know that x = 4 is a solution to
this congruence. However, 22 is another solution since 22 mod 6 = 4 as well, and so is −20. In
fact, there are infinitely many solutions given by the set

{. . . ,−8,−2,4,10,16, . . .}= {4+ k ·6 | k ∈ Z}

Putting all this together, we have shown that the every x from the set {x = 4+ k ·6 | k ∈ Z} is a
solution to the congruence 7 · (2x+ 21)+11 ≡ x−102 (mod 6). We double ckeck for, say,
x = 4 as well as x = 4+12 ·6 = 76 using sage:

56sage: (ZZ(7)* (ZZ(2)*ZZ(4) + ZZ(21)) + ZZ(11)) % ZZ(6) == (ZZ
(4) - ZZ(102)) % ZZ(6)

57True
58sage: (ZZ(7)* (ZZ(2)*ZZ(76) + ZZ(21)) + ZZ(11)) % ZZ(6) == (

ZZ(76) - ZZ(102)) % ZZ(6)
59True

Readers who had not been familiar with modular arithmetic until now and who might be
discouraged by how complicated modular arithmetic seems at this point, should keep two things
in mind. First, computing congruencies in modular arithmetic is not really more complicated
than computations in more familiar number systems (e.g. rational numbers), it is just a matter
of getting used to it. Second, once we introduce the idea of remainder class representations 3.3,
computations become conceptually cleaner and more easy to handle.
Exercise 15. Consider the modulus 13 and find all solutions x ∈ Z to the following congruence
5x+4≡ 28+2x (mod 13)
Exercise 16. Consider the modulus 23 and find all solutions x ∈ Z to the following congruence
69x≡ 5 (mod 23)
Exercise 17. Consider the modulus 23 and find all solutions x ∈ Z to the following congruence
69x≡ 46 (mod 23)
Exercise 18. Let a,b,k be integers, such that a≡ b (mod n) holds. Show ak ≡ bk (mod n).
Exercise 19. Let a,n be integers, such that a and n are not coprime. For which b ∈ Z does the
congruence a · x ≡ b (mod n) have a solution x and how does the solution set look in that
case?

The Chinese Remainder Theorem We have seen how to solve congruencies in modular
arithmetic. However, one question that remains is how to solve systems of congruencies with
different moduli? The answer is given by the Chinese reimainder theorem, which states that
for any k ∈ N and coprime natural numbers n1, . . .nk ∈ N as well as integers a1, . . .ak ∈ Z, the
so-called simultaneous congruences

x≡ a1 (mod n1)
x≡ a2 (mod n2)

· · ·
x≡ ak (mod nk)

(3.16)

has a solution, and all possible solutions of this congruence system are congruent modulo the
product N = n1 · . . . · nk.1 Interested readers should consult chapter 1, section 1.3.3 in Cohen

1This is the classical Chinese remainder theorem as it was already known in ancient China. Under certain
circumstances, the theorem can be extended to non-coprime moduli n1, . . . ,nk but this is beyond the scope of this
book.

16

CHAPTER 3. ARITHMETIC 3.3. MODULAR ARITHMETIC

[2010] for an introduction to the theorem and its application in computational number theory.
A poof of the theorem is given for example in chapter 1, section 10 of Mignotte [1992] The
following algorithm computes the solution set:

Algorithm 2 Chinese Remainder Theorem
Require: , k ∈ Z, j ∈ N0 and n0, . . . ,nk−1 ∈ N coprime

procedure CONGRUENCE-SYSTEMS-SOLVER(a0, . . . ,ak−1)
N← n0 · . . . ·nk−1
while j < k do

N j← N/n j
(_,s j, t j)← EXT −EUCLID(N j,n j) ▷ 1 = s j ·N j + t j ·n j

end while
x′← ∑

k−1
j=0 a j · s j ·N j

x← x′ mod N
return {x+m ·N | m ∈ Z}

end procedure
Ensure: {x+m ·N | m ∈ Z} is the complete solution set to 3.16.

Example 8. To illustrate how to solve simultaneous congruences using the Chinese remainder
theorem, let’s look at the following system of congruencies:

x≡ 4 (mod 7)
x≡ 1 (mod 3)
x≡ 3 (mod 5)

x≡ 0 (mod 11)

Clearly all moduli are coprime and we have N = 7 ·3 ·5 ·11 = 1155, as well as N1 = 165, N2 =
385, N3 = 231 and N4 = 105. From this we calculate with the extended Euclidean algorithm

1 = 2 ·165 + −47 ·7
1 = 1 ·385 + −128 ·3
1 = 1 ·231 + −46 ·5
1 = 2 ·105 + −19 ·11

so we have x = 4 · 2 · 165+ 1 · 1 · 385+ 3 · 1 · 231+ 0 · 2 · 105 = 2398 as one solution. Because
2398 mod 1155 = 88 the set of all solutions is {. . . ,−2222,−1067,88,1243,2398, . . .}. We
can invoke Sage’s computation of the Chinese Remainder Theorem (CRT) to double check our
findings:

60sage: CRT_list([4,1,3,0], [7,3,5,11])
6188

Remainder Class Representation As we have seen in various examples before, computing
congruencies can be cumbersome and solution sets are large in general. It is therefore advan-
taegous to find some kind of simplification for modular arithmetic.

Fortunately, this is possible and relatively straightforward once we identify each set of num-
bers with equal remainder with that remainder itself and call it the remainder class or residue
class representation in modulo n arithmetic.

17

CHAPTER 3. ARITHMETIC 3.3. MODULAR ARITHMETIC

It then follows from the properties of Euclidean division that there are exactly n different
remainder classes for every modulus n and that integer addition and multiplication can be pro-
jected to a new kind of addition and multiplication on those classes.

Roughly speaking, the new rules for addition and multiplication are then computed by taking
any element of the first remainder class and some element of the second, then add or multiply
them in the usual way and see which remainder class the result is contained in. The following
example makes this abstract description more concrete:

Example 9 (Arithmetic modulo 6). Choosing the modulus n = 6, we have six remainder classes
of integers which are congruent modulo 6 (they have the same remainder when divided by 6)
and when we identify each of those remainder classes with the remainder, we get the following
identification:

0 := {. . . ,−6,0,6,12, . . .}
1 := {. . . ,−5,1,7,13, . . .}
2 := {. . . ,−4,2,8,14, . . .}
3 := {. . . ,−3,3,9,15, . . .}
4 := {. . . ,−2,4,10,16, . . .}
5 := {. . . ,−1,5,11,17, . . .}

Now to compute the new addition law of those remainder class representatives, say 2+ 5, one
chooses arbitrary elements from both classes, say 14 and −1, adds those numbers in the usual
way and then looks at the remainder class of the result.

So we get 14+ (−1) = 13, and 13 is in the remainder class (of) 1. Hence we find that
2+5= 1 in modular 6 arithmetic, which is a more readable way to write the congruence 2+5≡
1 (mod 6).

Applying the same reasoning to all remainder classes, addition and multiplication can be
transferred to the representatives of the remainder classes. The results for modulus 6 arithmetic
are summarized in the following addition and multiplication tables:

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

This way, we have defined a new arithmetic system that contains just 6 numbers and comes with
its own definition of addition and multiplication. We call it modular 6 arithmetic and write
the associated type as Z6.

To see why such an identification of a remainder class with its remainder is useful and
actually simplifies congruence computations a lot, lets go back to the congruence from example
7 again:

7 · (2x+21)+11≡ x−102 (mod 6) (3.17)

As shown in example 7, the arithmetic of congruencies can deviate from ordinary arithmetic:
For example, division needs to check whether the modulus and the dividend are coprimes, and
solutions are not unique in general.

We can rewrite this congruence as an equation over our new arithmetic type Z6 by project-
ing onto the remainder classes. In particular, since 7 mod 6 = 1, 21 mod 6 = 3, 11 mod 6 = 5

18

CHAPTER 3. ARITHMETIC 3.3. MODULAR ARITHMETIC

and 102 mod 6 = 0 we have

7 · (2x+21)+11≡ x−102 (mod 6) over Z
⇔ 1 · (2x+3)+5 = x over Z6

We can use the multiplication and addition table above to solves the equation on the right like
we would solve normal integer equations:

1 · (2x+3)+5 = x
2x+3+5 = x # addition-table: 3+5 = 2

2x+2 = x # add 4 and −x on both sides
2x+2+4− x = x+4− x # addition-table: 2+4 = 0

x = 4

As we can see, despite the somewhat unfamiliar rules of addition and multiplication, solving
congruencies this way is very similar to solving normal equations. And, indeed, the solution
set is identical to the solution set of the original congruence, since 4 is identified with the set
{4+6 · k | k ∈ Z}.

We can invoke Sage to do computations in our modular 6 arithmetic type. This is particularly
useful to double-check our computations:

62sage: Z6 = Integers(6)
63sage: Z6(2) + Z6(5)
641
65sage: Z6(7)*(Z6(2)*Z6(4)+Z6(21))+Z6(11) == Z6(4) - Z6(102)
66True

Remark 2 (k-bit modulus). In cryptographic papers, we sometimes read phrases like“[. . .] using
a 4096-bit modulus”. This means that the underlying modulus n of the modular arithmetic used
in the system has a binary representation with a length of 4096 bits. In contrast, the number 6
has the binary representation 110 and hence our example 9 describes a 3-bit modulus arithmetic
system.

Exercise 20. Define Z13 as the the arithmetic modulo 13 analog to example 9. Then consider
the congruence from exercise 15 and rewrite it into an equation in Z13

Modular Inverses As we know, integers can be added, subtracted and multiplied so that the
result is also an integer, but this is not true for the division of integers in general: for example,
3/2 is not an integer anymore. To see why this is, from a more theoretical perspective, let us
consider the definition of a multiplicative inverse first. When we have a set that has some kind
of multiplication defined on it and we have a distinguished element of that set that behaves
neutrally with respect to that multiplication (doesn’t change anything when multiplied with any
other element), then we can define multiplicative inverses in the following way:

Let S be our set that has some notion a · b of multiplication and a neutral element 1 ∈ S,
such that 1 ·a = a for all elements a ∈ S. Then a multiplicative inverse a−1 of an element a ∈ S
is defined as follows:

a ·a−1 = 1 (3.18)

Informally speaking, the definition of a multiplicative inverse is means that it “cancels” the
original element to give 1 when they are multiplied.

19

CHAPTER 3. ARITHMETIC 3.3. MODULAR ARITHMETIC

Numbers that have multiplicative inverses are of particular interest, because they immedi-
ately lead to the definition of division by those numbers. In fact, if a is number such that the
multiplicative inverse a−1 exists, then we define division by a simply as multiplication by the
inverse:

b
a

:= b ·a−1 (3.19)

Example 10. Consider the set of rational numbers, also known as fractions, Q. For this set, the
neutral element of multiplication is 1, since 1 · a = a for all rational numbers. For example,
1 ·4 = 4, 1 · 1

4 = 1
4 , or 1 ·0 = 0 and so on.

Every rational number a ̸= 0 has a multiplicative inverse, given by 1
a . For example, the

multiplicative inverse of 3 is 1
3 , since 3 · 13 = 1, the multiplicative inverse of 5

7 is 7
5 , since 5

7 ·
7
5 = 1,

and so on.

Example 11. Looking at the set Z of integers, we see that with respect to multiplication the neu-
tral element is the number 1 and we notice that no integer other then 1 or−1 has a multiplicative
inverse, since the equation a · x = 1 has no integer solutions for a ̸= 1 or a ̸=−1.

The definition of multiplicative inverse works verbatim for addition as well where it is called
the additive inverse. In the case of integers, the neutral element with respect to addition is 0,
since a+ 0 = 0 for all integers a ∈ Z. The additive inverse always exist and is given by the
negative number −a, since a+(−a) = 0.

Example 12. Looking at the set Z6 of residual classes modulo 6 from example 9, we can use the
multiplication table to find multiplicative inverses. To do so, we look at the row of the element
and then find the entry equal to 1. If such an entry exists, the element of that column is the
multiplicative inverse. If, on the other hand, the row has no entry equal to 1, we know that the
element has no multiplicative inverse.

For example in Z6 the multiplicative inverse of 5 is 5 itself, since 5 ·5 = 1. We can also see
that 5 and 1 are the only elements that have multiplicative inverses in Z6.

Now, since 5 has a multiplicative inverse in modulo 6 arithmetic, we can divide by 5 in Z6,
since we have a notation of multiplicative inverse and division is nothing but multiplication by
the multiplicative inverse. For example

4
5
= 4 ·5−1 = 4 ·5 = 2

From the last example, we can make the interesting observation that while 5 has no multi-
plicative inverse as an integer, it has a multiplicative inverse in modular 6 arithmetic.

Tis raises the question which numbers have multiplicative inverses in modular arithmetic.
The answer is that, in modular n arithmetic, a number r has a multiplicative inverse, if and only
if n and r are coprime. Since gcd(n,r) = 1 in that case, we know from the extended Euclidean
algorithm that there are numbers s and t, such that

1 = s ·n+ t · r (3.20)

If we take the modulus n on both sides, the term s ·n vanishes, which tells us that t mod n is the
multiplicative inverse of r in modular n arithmetic.

Example 13 (Multiplicative inverses in Z6). In the previous example, we looked up multiplica-
tive inverses in Z6 from the lookup-table in Example 9. In real world examples, it is usually
impossible to write down those lookup tables, as the modulus is way too large, and the sets
occasionally contain more elements than there are atoms in the observable universe.

20

CHAPTER 3. ARITHMETIC 3.3. MODULAR ARITHMETIC

Now, trying to determine that 2 ∈ Z6 has no multiplicative inverse in Z6 without using the
lookup table, we immediately observe that 2 and 6 are not coprime, since their greatest common
divisor is 2. It follows that equation 3.20 has no solutions s and t, which means that 2 has no
multiplicative inverse in Z6.

The same reasoning works for 3 and 4, as neither of these are coprime with 6. The case
of 5 is different, since gcd(6,5) = 1. To compute the multiplicative inverse of 5, we use the
extended Euclidean algorithm and compute the following:

k rk sk tk = (rk− sk ·a) div b
0 6 1 0
1 5 0 1
2 1 1 -1
3 0 . .

We get s= 1 as well as t =−1 and have 1= 1 ·6−1 ·5. From this, it follows that−1 mod 6=
5 is the multiplicative inverse of 5 in modular 6 arithmetic. We can double check using Sage:

67sage: ZZ(6).xgcd(ZZ(5))
68(1, 1, -1)

At this point, the attentive reader might notice that the situation where the modulus is a
prime number is of particular interest, because we know from exercise 9 that in these cases all
remainder classes must have modular inverses, since gcd(r,n) = 1 for prime n and any r < n. In
fact, Fermat’s little theorem provides a way to compute multiplicative inverses in this situation,
since in case of a prime modulus p and r < p, we get the following:

rp ≡ r (mod p)⇔
rp−1 ≡ 1 (mod p)⇔

r · rp−2 ≡ 1 (mod p)

This tells us that the multiplicative inverse of a residue class r in modular p arithmetic is pre-
cisely rp−2.
Example 14 (Modular 5 arithmetic). To see the unique properties of modular arithmetic when
the modulus is a prime number, we will replicate our findings from example 9, but this time
for the prime modulus 5. For n = 5 we have five equivalence classes of integers which are
congruent modulo 5. We write this as follows:

0 := {. . . ,−5,0,5,10, . . .}
1 := {. . . ,−4,1,6,11, . . .}
2 := {. . . ,−3,2,7,12, . . .}
3 := {. . . ,−2,3,8,13, . . .}
4 := {. . . ,−1,4,9,14, . . .}

Addition and multiplication can be transferred to the equivalence classes, in a way exactly
parallel to Example 9. This results in the following addition and multiplication tables:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

21

CHAPTER 3. ARITHMETIC 3.3. MODULAR ARITHMETIC

Calling the set of remainder classes in modular 5 arithmetic with this addition and multiplication
Z5, we see some subtle but important differences to the situation in Z6. In particular, we see
that in the multiplication table, every remainder r ̸= 0 has the entry 1 in its row and therefore
has a multiplicative inverse. In addition, there are no non-zero elements such that their product
is zero.

To use Fermat’s little theorem in Z5 for computing multiplicative inverses (instead of using
the multiplication table), let’s consider 3 ∈ Z5. We know that the multiplicative inverse is given
by the remainder class that contains 35−2 = 33 = 3 ·3 ·3 = 4 ·3 = 2. And indeed 3−1 = 2, since
3 ·2 = 1 in Z5.

We can invoke Sage to do computations in our modular 5 arithmetic type to double-check
our computations:

69sage: Z5 = Integers(5)
70sage: Z5(3)**(5-2)
712
72sage: Z5(3)**(-1)
732
74sage: Z5(3)**(5-2) == Z5(3)**(-1)
75True

Example 15. To understand one of the principal differences between prime number modular
arithmetic and non-prime number modular arithmetic, consider the linear equation a · x+b = 0
defined over both types Z5 and Z6. Since in Z5 every non-zero element has a multiplicative
inverse, we can always solve these equations in Z5, which is not true in Z6. To see that, consider
the equation 3x+3 = 0. In Z5 we have the following:

3x+3 = 0 # add 2 and on both sides
3x+3+2 = 2 # addition-table: 2+3 = 0

3x = 2 # divide by 3 (which equals multiplication by 2)
2 · (3x) = 2 ·2 # multiplication-table: 2 ·2 = 4

x = 4

So in the case of our prime number modular arithmetic, we get the unique solution x = 4. Now
consider Z6:

3x+3 = 0 # add 3 and on both sides
3x+3+3 = 3 # addition-table: 3+3 = 0

3x = 3 # division not possible (no multiplicative inverse of 3 exists)

So, in this case, we cannot solve the equation for x by dividing by 3. And, indeed, when we look
at the multiplication table of Z6 (Example 9), we find that there are three solutions x ∈ {1,3,5},
such that 3x+3 = 0 holds true for all of them.

Exercise 21. Consider the modulus n = 24. Which of the integers 7, 1, 0, 805, −4255 have
multiplicative inverses in modular 24 arithmetic? Compute the inverses, in case they exist.

Exercise 22. Find the set of all solutions to the congruence 17(2x+5)−4≡ 2x+4 (mod 5).
Then project the congruence into Z5 and solve the resulting equation in Z5. Compare the results.

Exercise 23. Find the set of all solutions to the congruence 17(2x+5)−4≡ 2x+4 (mod 6).
Then project the congruence into Z6 and try to solve the resulting equation in Z6.

22

CHAPTER 3. ARITHMETIC 3.4. POLYNOMIAL ARITHMETIC

3.4 Polynomial arithmetic
A polynomial is an expression consisting of variables (also called indeterminates) and coeffi-
cients that involves only the operations of addition, subtraction and multiplication. All coeffi-
cients of a polynomial must have the same type, e.g. being integers or rational numbers etc. An
introduction to the theory of polynomials can be found for example in chapter 3 of Mignotte
[1992] and a detailed description of many algorithms used in computations on polynomials
are given in chapter 3 of Cohen [2010]. To be more precise an univariate polynomial is an
expression

P(x) :=
m

∑
j=0

a jx j = amxm +am−1xm−1 + · · ·+a1x+a0 , (3.21)

where x is called the indeterminate, each a j is called a coefficient. If R is the type of the
coefficients, then the set of all univariate2 polynomials with coefficients in R is written as
R[x]. We often simply use polynomial instead of univariate polynomial, write P(x) ∈ R[x] for a
polynomial and denote the constant term a0 as P(0).

A polynomial is called the zero polynomial if all coefficients are zero and a polynomial is
called the one polynomial if the constant term is 1 and all other coefficients are zero.

Given an univariate polynomial P(x) =∑
m
j=0 a jx j that is not the zero polynomial, we call the

non-negative integer deg(P) := m the degree of P and define the degree of the zero polynomial
to be −∞, where −∞ (negative infinity) is a symbol with the properties that −∞+m =−∞ and
−∞ < m for all non-negative integers m ∈ N0. In addition, we write

Lc(P) := am (3.22)

and call it the leading coefficient of the polynomial P. We can restrict the set R[x] of all
polynomials with coefficients in R, to the set of all such polynomials that have a degree that
does not exceed a certain value. If m is the maximum degree allowed, we write R≤m[x] for the
set of all polynomials with a degree less than or equal to m.

Example 16 (Integer Polynomials). The coefficients of a polynomial must all have the same
type. The set of polynomials with integer coefficients is written as Z[x]. Examples of such
polynomials are:

P1(x) = 2x2−4x+17 # with deg(P1) = 2 and Lc(P1) = 2

P2(x) = x23 # with deg(P2) = 23 and Lc(P2) = 1
P3(x) = x # with deg(P3) = 1 and Lc(P3) = 1
P4(x) = 174 # with deg(P4) = 0 and Lc(P4) = 174
P5(x) = 1 # with deg(P5) = 0 and Lc(P5) = 1
P6(x) = 0 # with deg(P6) =−∞ and Lc(P6) = 0
P7(x) = (x−2)(x+3)(x−5)

In particular, every integer can be seen as an integer polynomial of degree zero. P7 is a poly-
nomial, because we can expand its definition into P7(x) = x3 − 4x2 − 11x + 30, which is a
polynomial of degree 3 and leading coefficient 1. The following expressions are not integer

2in our context the term univariate means that the polynomial contains a single variable only

23

CHAPTER 3. ARITHMETIC 3.4. POLYNOMIAL ARITHMETIC

polynomials:

Q1(x) = 2x2 +4+3x−2

Q2(x) = 0.5x4−2x
Q3(x) = 2x

In particular Q1 is not an integer polynomial, because the expression x−2 has a negative expo-
nent, Q2 is not an integer polynomial because the coefficient 0.5 is not an integer and Q3 is not
an integer polynomial because the indeterminant apears in the exponent of of a coefficient.

We can invoke Sage to do computations with polynomials. To do so, we have to specify the
symbol for the inderteminate and the type for the coefficients (For the definition of rings see
4.2). Note, however that Sage defines the degree of the zero polynomial to be −1.

76sage: Zx = ZZ[’x’] # integer polynomials with indeterminate x
77sage: Zt.<t> = ZZ[] # integer polynomials with indeterminate t
78sage: Zx
79Univariate Polynomial Ring in x over Integer Ring
80sage: Zt
81Univariate Polynomial Ring in t over Integer Ring
82sage: p1 = Zx([17,-4,2])
83sage: p1
842*x^2 - 4*x + 17
85sage: p1.degree()
862
87sage: p1.leading_coefficient()
882
89sage: p2 = Zt(t^23)
90sage: p2
91t^23
92sage: p6 = Zx([0])
93sage: p6.degree()
94-1

Example 17 (Polynomials over Z6). Recall the definition of modular 6 arithmetics Z6 as de-
fined in example 9. The set of all polynomials with indeterminate x and coefficients in Z6 is
symbolized as Z6[x]. Example of polynomials from Z6[x] are:

P1(x) = 2x2−4x+5 # with deg(P1) = 2 and Lc(P1) = 2

P2(x) = x23 # with deg(P2) = 23 and Lc(P2) = 1
P3(x) = x # with deg(P3) = 1 and Lc(P3) = 1
P4(x) = 3 # with deg(P4) = 0 and Lc(P4) = 3
P5(x) = 1 # with deg(P5) = 0 and Lc(P5) = 1
P6(x) = 0 # with deg(P5) =−∞ and Lc(P6) = 0
P7(x) = (x−2)(x+3)(x−5)

Just like in the previous example, P7 is a polynomial. However, since we are working with
coefficients from Z6 now the expansion of P7 is computed differently, as we have to invoke

24

CHAPTER 3. ARITHMETIC 3.4. POLYNOMIAL ARITHMETIC

addition and multiplication in Z6 as defined in XXX. We get the following:

(x−2)(x+3)(x−5) = (x+4)(x+3)(x+1) # additive inverses in Z6

= (x2 +4x+3x+3 ·4)(x+1) # bracket expansion

= (x2 +1x+0)(x+1) # compuation in Z6

= x3 + x2 + x2 + x # bracket expansion

= x3 +2x2 + x

Again, we can use Sage to do computations with polynomials that have their coefficients in Z6
(For the definition of rings see 4.2). To do so, we have to specify the symbol for the indertemi-
nate and the type for the coefficients:

95sage: Z6 = Integers(6)
96sage: Z6x = Z6[’x’]
97sage: Z6x
98Univariate Polynomial Ring in x over Ring of integers modulo 6
99sage: p1 = Z6x([5,-4,2])
100sage: p1
1012*x^2 + 2*x + 5
102sage: p1 = Z6x([17,-4,2])
103sage: p1
1042*x^2 + 2*x + 5
105sage: Z6x(x-2)*Z6x(x+3)*Z6x(x-5) == Z6x(x^3 + 2*x^2 + x)
106True

Given some element from the same type as the coefficients of a polynomial, the polyno-
mial can be evaluated at that element, which means that we insert the given element for every
ocurrence of the indeterminate x in the polynomial expression.

To be more precise, let P ∈ R[x], with P(x) = ∑
m
j=0 a jx j be a polynomial with a coefficient

of type R and let b ∈ R be an element of that type. Then the evaluation of P at b is given as
follows:

P(b) =
m

∑
j=0

a jb j (3.23)

Example 18. Consider the integer polynomials from example 16 again. To evaluate them at
given points, we have to insert the point for all occurences of x in the polynomial expression.
Inserting arbitrary values from Z, we get:

P1(2) = 2 ·22−4 ·2+17 = 17

P2(3) = 323 = 94143178827
P3(−4) =−4 =−4
P4(15) = 174
P5(0) = 1
P6(1274) = 0
P7(−6) = (−6−2)(−6+3)(−6−5) =−264

25

CHAPTER 3. ARITHMETIC 3.4. POLYNOMIAL ARITHMETIC

Note, however, that it is not possible to evaluate any of those polynomial on values of different
type. For example, it is not strictly correct to write P1(0.5), since 0.5 is not an integer. We can
verify our computations using Sage:

107sage: Zx = ZZ[’x’]
108sage: p1 = Zx([17,-4,2])
109sage: p7 = Zx(x-2)*Zx(x+3)*Zx(x-5)
110sage: p1(ZZ(2))
11117
112sage: p7(ZZ(-6)) == ZZ(-264)
113True

Example 19. Consider the polynomials with coefficients in Z6 from example again. To eval-
uate them at given values from Z6, we have to insert the point for all occurences of x in the
polynomial expression. We get the following:

P1(2) = 2 ·22−4 ·2+5 = 2−2+5 = 5

P2(3) = 323 = 3
P3(−4) = P3(2) = 2
P5(0) = 1
P6(4) = 0

114sage: Z6 = Integers(6)
115sage: Z6x = Z6[’x’]
116sage: p1 = Z6x([5,-4,2])
117sage: p1(Z6(2)) == Z6(5)
118True

Exercise 24. Compare both expansions of P7 from Z[x] and from Z6[x] in example 16 and
example 19 ,and consider the definition of Z6 as given in example 9. Can you see how the
definition of P7 over Z projects to the definition over Z6 if you consider the residue classes of
Z6?

Polynomial arithmetic Polynomials behave like integers in many ways. In particular, they
can be added, subtracted and multiplied. In addition, they have their own notion of Euclidean
division. Informally speaking, we can add two polynomials by simply adding the coefficients
of the same index, and we can multiply them by applying the distributive property, that is, by
multiplying every term of the left factor with every term of the right factor and adding the results
together.

To be more precise let ∑
m1
n=0 anxn and ∑

m2
n=0 bnxn be two polynomials from R[x]. Then the

sum and the product of these polynomials is defined as follows:

m1

∑
n=0

anxn +
m2

∑
n=0

bnxn =
max({m1,m2})

∑
n=0

(an +bn)xn (3.24)

(m1

∑
n=0

anxn
)
·
(m2

∑
n=0

bnxn
)
=

m1+m2

∑
n=0

n

∑
i=0

aibn−ixn (3.25)

26

CHAPTER 3. ARITHMETIC 3.4. POLYNOMIAL ARITHMETIC

A rule for polynomial subtraction can be deduced from these two rules by first multiplying the
with (the polynomial) −1 and then add the result to the .

Regarding the definition of the degree of a polynomial, we see that the degree of the sum is
always the maximum of the degrees of both summands, and the degree of the product is always
the degree of the sum of the factors, since we defined −∞+m =−∞ for every integer m ∈ Z.

Example 20. To given an example of how polynomial arithmetic works, consider the following
two integer polynomials P,Q ∈ Z[x] with P(x) = 5x2− 4x+ 2 and Q(x) = x3− 2x2 + 5. The
sum of these two polynomials is computed by adding the coefficients of each term with equal
exponent in x. This gives the following:

(P+Q)(x) = (0+1)x3 +(5−2)x2 +(−4+0)x+(2+5)

= x3 +3x2−4x+7

The product of these two polynomials is computed by multiplication of each term in the first
factor with each term in the second factor. We get the following:

(P ·Q)(x) = (5x2−4x+2) · (x3−2x2 +5)

= (5x5−10x4 +25x2)+(−4x4 +8x3−20x)+(2x3−4x2 +10)

= 5x5−14x4 +10x3 +21x2−20x+10

119sage: Zx = ZZ[’x’]
120sage: P = Zx([2,-4,5])
121sage: Q = Zx([5,0,-2,1])
122sage: P+Q == Zx(x^3 +3*x^2 -4*x +7)
123True
124sage: P*Q == Zx(5*x^5 -14*x^4 +10*x^3+21*x^2-20*x +10)
125True

Example 21. Let us consider the polynomials of the previous example but interpreted in modular
6 arithmetic. So we consider P,Q∈Z6[x] again with P(x) = 5x2−4x+2 and Q(x) = x3−2x2+
5. This time we get the following:

(P+Q)(x) = (0+1)x3 +(5−2)x2 +(−4+0)x+(2+5)

= (0+1)x3 +(5+4)x2 +(2+0)x+(2+5)

= x3 +3x2 +2x+1

(P ·Q)(x) = (5x2−4x+2) · (x3−2x2 +5)

= (5x2 +2x+2) · (x3 +4x2 +5)

= (5x5 +2x4 +1x2)+(2x4 +2x3 +4x)+(2x3 +2x2 +4)

= 5x5 +4x4 +4x3 +3x2 +4x+4

126sage: Z6x = Integers(6)[’x’]
127sage: P = Z6x([2,-4,5])

27

https://www.splashlearn.com/math-vocabulary/subtraction/subtrahend
https://www.splashlearn.com/math-vocabulary/subtraction/minuend

CHAPTER 3. ARITHMETIC 3.4. POLYNOMIAL ARITHMETIC

128sage: Q = Z6x([5,0,-2,1])
129sage: P+Q == Z6x(x^3 +3*x^2 +2*x +1)
130True
131sage: P*Q == Z6x(5*x^5 +4*x^4 +4*x^3+3*x^2+4*x +4)
132True

Exercise 25. Compare the sum P+Q and the product P ·Q from the previous two examples
20 and 21 and consider the definition of Z6 as given in example 9. How can we derive the
computations in Z6[x] from the computations in Z[x]?

Euklidean Division The arithmetic of polynomials share a lot of properties with the arith-
metic of integers and as a consequence the concept of Euclidean division and the algorithm of
long division is also defined for polynomials. Recalling the Euclidean division of integers 3.2,
we know that, given two integers a and b ̸= 0, there is always another integer m and a natural
number r with r < |b| such that a = m ·b+ r holds.

We can generalize this to polynomials whenever the leading coefficient of the dividend
polynomial has a notion of multiplicative inverse. In fact, given two polynomials A and B ̸= 0
from R[x] such that Lc(B)−1 exists in R, there exist two polynomials Q (the quotient) and P (the
remainder), such that the following equation holds:

A = Q ·B+P (3.26)

and deg(P) < deg(B). Similarly to integer Euclidean division, both Q and P are uniquely
defined by these relations.

Notation and Symbols 2. Polynomial Euclidean division is explained in more detail in Mignotte
[1992]. A detailed description of the associated algorithm can be found in chapter 3, section 1 of
Cohen [2010]. Suppose that the polynomials A,B,Q and P satisfy equation 3.26. We often use
the following notation to describe the quotient and the remainder polynomials of the Euclidean
division:

A div B := Q, A mod B := P (3.27)

We also say that a polynomial A is divisible by another polynomial B if A mod B = 0 holds. In
this case, we also write B|A and call B a factor of A.

Analogously to integers, methods to compute Euclidean division for polynomials are called
polynomial division algorithms. Probably the best known algorithm is the so called polyno-
mial long division .

This algorithm works only when there is a notion of division by the leading coefficient of B.
It can be generalized, but we will only need this somewhat simpler method in what follows.

Example 22 (Polynomial Long Division). To give an example of how the previous algorithm
works, let us divide the integer polynomial A(x) = x5+2x3−9∈Z[x] by the integer polynomial
B(x) = x2 +4x−1 ∈ Z[x]. Since B is not the zero polynomial and the leading coefficient of B
is 1, which is invertible as an integer, we can apply algorithm 1. Our goal is to find solutions
to equation XXX, that is, we need to find the quotient polynomial Q ∈ Z[x] and the reminder
polynomial P ∈ Z[x] such that x5 +2x3−9 = Q(x) · (x2 +4x−1)+P(x). Using a notation that

28

CHAPTER 3. ARITHMETIC 3.4. POLYNOMIAL ARITHMETIC

Algorithm 3 Polynomial Euclidean Algorithm
Require: A,B ∈ R[x] with B ̸= 0, such that Lc(B)−1 exists in R

procedure POLY-LONG-DIVISION(A,B)
Q← 0
P← A
d← deg(B)
c← Lc(B)
while deg(P)≥ d do

S := Lc(P) · c−1 · xdeg(P)−d

Q← Q+S
P← P−S ·B

end while
return (Q,P)

end procedure
Ensure: A = Q ·B+P

is mostly used in anglophone countries, we compute as follows:

X3 −4X2 +19X−80
X2 +4X−1

)
X5 +2X3 −9
−X5−4X4 +X3

−4X4 +3X3

4X4 +16X3 −4X2

19X3 −4X2

−19X3−76X2 +19X
−80X2 +19X −9

80X2 +320X−80
339X−89

(3.28)

We therefore get Q(x) = x3−4x2 +19x−80 as well as P(x) = 339x−89 and indeed we have
x5 +2x3−9 = (x3−4x2 +19x−80) · (x2 +4x−1)+(339x−89), which we can double check
invoking Sage:

133sage: Zx = ZZ[’x’]
134sage: A = Zx([-9,0,0,2,0,1])
135sage: B = Zx([-1,4,1])
136sage: Q = Zx([-80,19,-4,1])
137sage: P = Zx([-89,339])
138sage: A == Q*B + P
139True

Example 23. In the previous example, polynomial division gave a non-trivial (non-vanishing,
i.e non-zero) remainder. Of special interest are divisions that don’t give a remainder. Such
divisors are called factors of the dividend.

For example, consider the integer polynomial P7 from example 16 again. As we have shown,
it can be written both as x3− 4x2− 11x+ 30 and as (x− 2)(x+ 3)(x− 5). From this, we can
see that the polynomials F1(x) = (x−2), F2(x) = (x+3) and F3(x) = (x−5) are all factors of
x3−4x2−11x+30, since division of P7 by any of these factors will result in a zero remainder.

29

CHAPTER 3. ARITHMETIC 3.4. POLYNOMIAL ARITHMETIC

Exercise 26. Consider the polynomial expressions A(x) := −3x4 + 4x3 + 2x2 + 4 and B(x) =
x2−4x+2. Compute the Euclidean division of A by B in the following types:

1. A,B ∈ Z[x]

2. A,B ∈ Z6[x]

3. A,B ∈ Z5[x]

Now consider the result in Z[x] and in Z6[x]. How can we compute the result in Z6[x] from the
result in Z[x]?
Exercise 27. Show that the polynomial B(x) = 2x4−3x+4∈Z5[x] is a factor of the polynomial
A(x) = x7 +4x6 +4x5 + x3 +2x2 +2x+3 ∈ Z5[x] that is show B|A. What is B div A?

Prime Factors Recall that the fundamental theorem of arithmetic 3.7 tells us that every natu-
ral number is the product of prime numbers. In this chapter we will see that something similar
holds for univariate polynomials R[x], too3. A more detailed description can be found in chapter
3, section 4 of Mignotte [1992].

The polynomial analog to a prime number is a so called an irreducible polynomial, which
is defined as a polynomial that cannot be factored into the product of two non-constant poly-
nomials using Euclidean division. Irreducible polynomials are for polynomials what prime
numbers are for integer: They are the basic building blocks from which all other polynomials
can be constructed. To be more precise, let P ∈ R[x] be any polynomial. Then there are always
irreducible polynomials F1,F2, . . . ,Fk ∈ R[x], such that the following holds:

P = F1 ·F2 · . . . ·Fk . (3.29)

This representation is unique, except for permutations in the factors and is called the prime
factorization of P. Moreover each factor Fi is called a prime factor of P.

Example 24. Consider the polynomial expression P = x2−3. When we interpret P as an integer
polynomial P ∈ Z[x], we find that this polynomial is irreducible, since any factorization other
then 1 · (x2−3), must look like (x−a)(x+a) for some integer a, but there is no integers a with
a2 = 3.

140sage: Zx = ZZ[’x’]
141sage: p = Zx(x^2-3)
142sage: p.factor()
143x^2 - 3

On the other hand interpreting P as a polynomial P∈Z6[x] in modulo 6 arithmetic, we see that P
has two factors F1 = (x−3) and F2 = (x+3), since (x−3)(x+3) = x2−3x+3x−3 ·3 = x2−3.

Points where a polynomial evaluates to zero are called roots of the polynomial. To be more
precise, let P ∈ R[x] be a polynomial. Then a root is a point x0 ∈ R with P(x0) = 0 and the set
of all roots of P is defined as follows:

R0(P) := {x0 ∈ R | P(x0) = 0} (3.30)

3Strictly speaking this is not true for polynomials over arbitrary types R. However in this book we assume R to
be a so called unique factorization domain for which the content of this section holds.

30

CHAPTER 3. ARITHMETIC 3.4. POLYNOMIAL ARITHMETIC

The roots of a polynomial are of special interest with respect to it’s prime factorization, since it
can be shown that for any given root x0 of P the polynomial F(x) = (x−x0) is a prime factor of
P.

Finding the roots of a polynomial is sometimes called solving the polynomial. It is a hard
problem and has been the subject of much research throughout history.

It can be shown that if m is the degree of a polynomial P, then P can not have more than m
roots. However, in general, polynomials can have less than m roots.

Example 25. Consider the integer polynomial P7(x) = x3− 4x2− 11x+ 30 from example 16
again. We know that its set of roots is given by R0(P7) = {−3,2,5}.

On the other hand, we know from example 24 that the integer polynomial x2− 3 is irre-
ducible. It follows that it has no roots, since every root defines a prime factor.

Example 26. To give another example, consider the integer polynomial P = x7 + 3x6 + 3x5 +
x4− x3−3x2−3x−1. We can invoke Sage to compute the roots and prime factors of P:

144sage: Zx = ZZ[’x’]
145sage: p = Zx(x^7 + 3*x^6 + 3*x^5 + x^4 - x^3 - 3*x^2 - 3*x - 1

)
146sage: p.roots()
147[(1, 1), (-1, 4)]
148sage: p.factor()
149(x - 1) * (x + 1)^4 * (x^2 + 1)

We see that P has the root 1 and that the associated prime factor (x− 1) occurs once in P and
that it has the root−1, where the associated prime factor (x+1) occurs 4 times in P. This gives
the following prime factorization:

P = (x−1)(x+1)4(x2 +1)

Exercise 28. Show that if a polynomial P ∈ R[x] of degree deg(P) = m has less then m roots, it
must have a prime factor F of degree deg(F)> 1.

Exercise 29. Consider the polynomial P = x7 + 3x6 + 3x5 + x4− x3− 3x2− 3x− 1 ∈ Z6[x].
Compute the set of all roots of R0(P) and then compute the prime factorization of P.

Lagrange interpolation One particularly useful property of polynomials is that a polynomial
of degree m is completely determined on m+ 1 evaluation points, which implies that we can
uniquely derive a polynomial of degree m from a set S:

S = {(x0,y0),(x1,y1), . . . ,(xm,ym) | xi ̸= x j for all indices i and j} (3.31)

Polynomials therefore have the property that m+1 pairs of points (xi,yi) for xi ̸= x j are enough
to determine the set of pairs (x,P(x)) for all x∈R. This “few too many” property of polynomials
is used in many places, like for example in erasure codes. It is also of importance in snarks and
we therefore need to understand a method to actually compute a polynomial from a set of points.

If the coefficients of the polynomial we want to find have a notion of multiplicative inverse,
it is always possible to find such a polynomial using a method called Lagrange interpolation,
which works as follows: Given a set like 3.31, a polynomial P of degree m with P(xi) = yi for
all pairs (xi,yi) from S is given by the following algorithm:

Example 27. Let us consider the set S = {(0,4),(−2,1),(2,3)}. Our task is to compute a
polynomial of degree 2 in Q[x] with coefficients from the rational numbers Q. Since Q has

31

CHAPTER 3. ARITHMETIC 3.4. POLYNOMIAL ARITHMETIC

Algorithm 4 Lagrange Interpolation
Require: R must have multiplicative inverses
Require: S = {(x0,y0),(x1,y1), . . . ,(xm,ym) | xi,yi ∈ R,xi ̸= x j for all indices i and j}

procedure LAGRANGE-INTERPOLATION(S)
for j ∈ (0 . . .m) do

l j(x)←Πm
i=0;i̸= j

x−xi
x j−xi

= (x−x0)
(x j−x0)

· · · (x−x j−1)
(x j−x j−1)

(x−x j+1)
(x j−x j+1)

· · · (x−xm)
(x j−xm)

end for
P← ∑

m
j=0 y j · l j

return P
end procedure

Ensure: P ∈ R[x] with deg(P) = m
Ensure: P(x j) = y j for all pairs (x j,y j) ∈ S

multiplicative inverses, we can use the Lagrange interpolation algorithm from 4, to compute the
polynomial.

l0(x) =
x− x1

x0− x1
· x− x2

x0− x2
=

x+2
0+2

· x−2
0−2

=−(x+2)(x−2)
4

=−1
4
(x2−4)

l1(x) =
x− x0

x1− x0
· x− x2

x1− x2
=

x−0
−2−0

· x−2
−2−2

=
x(x−2)

8

=
1
8
(x2−2x)

l2(x) =
x− x0

x2− x0
· x− x1

x2− x1
=

x−0
2−0

· x+2
2+2

=
x(x+2)

8

=
1
8
(x2 +2x)

P(x) = 4 · (−1
4
(x2−4))+1 · 1

8
(x2−2x)+3 · 1

8
(x2 +2x)

=−x2 +4+
1
8

x2− 1
4

x+
3
8

x2 +
3
4

x

=−1
2

x2 +
1
2

x+4

And, indeed, evaluation of P on the x-values of S gives the correct points, since P(0) = 4,
P(−2) = 1 and P(2) = 3. Sage provides the following function:

150sage: Qx = QQ[’x’]
151sage: S=[(0,4),(-2,1),(2,3)]
152sage: Qx.lagrange_polynomial(S)
153-1/2*x^2 + 1/2*x + 4

Example 28. To give another example more relevant to the topics of this book, let us consider
the same set S = {(0,4),(−2,1),(2,3)} as in the previous example. This time, the task is to
compute a polynomial P ∈ Z5[x] from this data. Since we know from example 14 that multi-
plicative inverses exist in Z5, algorithm 4 applies and we can compute a unique polynomial of
degree 2 in Z5[x] from S. We can use the lookup tables from example 14 for computation in Z5

32

CHAPTER 3. ARITHMETIC 3.4. POLYNOMIAL ARITHMETIC

and get the following:

l0(x) =
x− x1

x0− x1
· x− x2

x0− x2
=

x+2
0+2

· x−2
0−2

=
(x+2)(x−2)

−4
=

(x+2)(x+3)
1

= x2 +1

l1(x) =
x− x0

x1− x0
· x− x2

x1− x2
=

x−0
−2−0

· x−2
−2−2

=
x
3
· x+3

1
= 2(x2 +3x)

= 2x2 + x

l2(x) =
x− x0

x2− x0
· x− x1

x2− x1
=

x−0
2−0

· x+2
2+2

=
x(x+2)

3
= 2(x2 +2x)

= 2x2 +4x

P(x) = 4 · (x2 +1)+1 · (2x2 + x)+3 · (2x2 +4x)

= 4x2 +4+2x2 + x+ x2 +2x

= 2x2 +3x+4

And, indeed, evaluation of P on the x-values of S gives the correct points, since P(0) = 4,
P(−2) = 1 and P(2) = 3. We can doublecheck our findings using Sage:

154sage: F5 = GF(5)
155sage: F5x = F5[’x’]
156sage: S=[(0,4),(-2,1),(2,3)]
157sage: F5x.lagrange_polynomial(S)
1582*x^2 + 3*x + 4

Exercise 30. Consider modular 5 arithmetic from example 14 and the set S= {(0,0),(1,1),(2,2),(3,2)}.
Find a polynomial P ∈ Z5[x] such that P(xi) = yi for all (xi,yi) ∈ S.

Exercise 31. Consider the set S from the previous example. Why is it not possible to apply
algorithm 4 to construct a polynomial P ∈ Z6[x], such that P(xi) = yi for all (xi,yi) ∈ S?

33

Chapter 4

Algebra

In the previous chapter, we gave an introduction to the basic computational tools needed for a
pen-and-paper approach to SNARKs and in this chapter we provide a more abstract clarification
of relevant mathematical terminology such as groups, rings and fields.

Scientific literature on cryptography frequently contain such terms, and it is necessary to get
at least some understanding of these terms to be able to follow the literature.

4.1 Commutative Groups
Commutative groups are abstractions that capture the essence of mathematical phenomena, like
addition and subtraction, or multiplication and division.

To understand commutative groups, let us think back to when we learned about the addition
and subtraction of integers in school. We have learned that, whenever we add two integers, the
result is guaranteed to be an integer as well. We have also learned that adding zero to any integer
means that “nothing happens”, that is, the result of the addition is the same integer we started
with. Furthermore, we have learned that the order in which we add two (or more) integers does
not matter, that brackets have no influence on the result of addition, and that, for every integer,
there is always another integer (the negative) such that we get zero when we add them together.

These conditions are the defining properties of a commutative group, and mathematicians
have realized that the exact same set of rules can be found in very different mathematical struc-
tures. It therefore makes sense to abstract from integers and to give a formal definition of what
a group should be, detached from any concrete examples. This lets us handle entities of very
different mathematical origins in a flexible way, while retaining essential structural aspects of
many objects in abstract algebra and beyond.

Distilling these rules to the smallest independent list of properties and making them abstract,
we arrive at the following definition of a commutative group:

Definition 4.1.0.1. A commutative group (G, ·) is a set G, together with a map · : G×G→G
called the group law, that combines two elements of the set G into a third one such that the
following properties hold:

• Commutativity: For all g1,g2 ∈G, the equation g1 ·g2 = g2 ·g1 holds.

• Associativity: For every g1,g2,g3 ∈G the equation g1 · (g2 ·g3) = (g1 ·g2) ·g3 holds.

• Existence of a neutral element: There is a e ∈G for all g ∈G, such that e ·g = g.

• Existence of an inverse: For every g ∈G there is a g−1 ∈G, such that g ·g−1 = e.

34

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

If (G, ·) is a group and G′ ⊂ G is a subset of G, such that the restriction of the group law
· : G′×G′→G′ is a group law on G′, then (G′, ·) is called a subgroup of (G, ·).

Rephrasing the abstract definition in layman’s terms, a group is something where we can do
computations in a way that resembles the behavior of the addition of integers. Specifically, this
means we can combine some element with another element into a new element in a way that is
reversible and where the order of combining elements doesn’t matter.
Notation and Symbols 3. Since we are exclusively concerned with commutative groups in this
book, we often just call them groups, keeping the notation of commutativity implicit. Commu-
tative groups are also called Abelian groups. A set G with a map · that satisfies all previously
mentioned rules, except for the commutativity law is called a non-commutative group.

If there is no risk of ambiguity (about what the group law of that group is), we frequently
drop the symbol · and simply write G as notation for the group, keeping the group law implicit.
In this case we also say that G is of group type, indicating that G is not simply a set but a set
together with a group law.

For commutative groups (G, ·), we sometimes use the so-called additive notation (G,+),
that is, we write + instead of · for the group law, 0 for the neutral element and −g := g−1 for
the inverse of an element g ∈G.

As we will see in the following chapters, groups are heavily used in cryptography and in
SNARKs. A more in-depth introduction to commutative groups can be found for example
in chapter 1, section 1 of Lidl and Niederreiter [1986] or in chapter 1 of Fuchs [2015]. An
introduction more tailored to the needs in cryptography can be found for example in chapter 3,
section 8.1.3 of Katz and Lindell [2007]. But let us look at some more familiar examples fist:
Example 29 (Integer Addition and Subtraction). The set (Z,+) of integers with integer addition
is the archetypical example of a commutative group, where the group law is traditionally written
in additive notation 3.

To compare integer addition against the abstract axioms of a commuative group, we first see
that integer addition is commutative and associative, since a+b = b+a as well as (a+b)+c =
a+(b+ c) for all integers a,b,c ∈ Z. The neutral element e is the number 0, since a+ 0 = a
for all integers a ∈ Z. Furthermore, the inverse of a number is its negative counterpart, since
a+(−a) = 0, for all a ∈ Z. This implies that integers with addition are indeed a commutative
group in the abstract sense.

To given an example of a subgroup for the group of integers, consider the set Zeven :=
{. . . ,−4,−2,0,2,4, . . .} of even numbers, including 0. We can see that this set is a subgroup of
(Z,+), since the sum of two even numbers is always an even number again, since the neutral
element 0 is a member of Zeven and sice the negative of an even number is itself an even number.
Example 30 (The trivial group). The most basic example of a commutative group is the group
with just one element {•} and the group law • · •= •. We call it the trivial group.

The trivial group is a subgroup of any group. To see that let (G, ·) be a group with neutral
element e ∈G. Then e · e = e as well as e−1 = e and it follows that the set {e} is a subgroup of
G. In particular {0} is a subgroup of (Z,+), since 0+0 = 0.
Example 31. Consider the addition in modulo 6 arithmetics (Z6,+) as defined in in example
9. As we see, the remainder 0 is the neutral element in modulo 6 addition and the inverse
of a remainder r is given by 6− r, because r + (6− r) = 6, which is congruent to 0, since
6 mod 6 = 0. Moreover, r1 + r2 = r2 + r1 as well as (r1 + r2)+ r3 = r1 +(r2 + r3) are inherited
from integer addition. We therefore see that (Z6,+) is a group.

The previous example of a commutative group is a very important one for this book. Ab-
stracting from this example and considering residue classes (Zn,+) for arbitrary moduli n, it

35

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

can be shown that (Zn,+) is a commutative group with the neutral element 0 and the additive
inverse n− r for any element r ∈ Zn. We call such a group the remainder class group of
modulus n.

Exercise 32. Consider example 14 again and let Z∗5 be the set of all remainder classes from Z5
without the class 0. Then Z∗5 = {1,2,3,4}. Show that (Z∗5, ·) is a commutative group.

Exercise 33. Generalizing the previous exercise, consider the general modulus n, and let Z∗n
be the set of all remainder classes from Zn without the class 0. Then Z∗n = {1,2, . . . ,n− 1}.
Provide a counter-example to show that (Z∗n, ·) is not a group in general.

Find a condition such that (Z∗n, ·) is a commutative group, compute the neutral element, give
a closed form for the inverse of any element and prove the commutative group axioms.

Finite groups As we have seen in the previous examples, groups can either contain infinitely
many elements (such as integers) or finitely many elements (as for example the remainder class
groups (Zn,+)). To capture this distinction, a group is called a finite group if the underlying
set of elements is finite. In that case, the number of elements of that group is called its order.
An introduction to finite groups is given in chapter 1 of Fuchs [2015] and an introduction from
the perspective of cryptography can be found in chapter 3, section 8.3.1 of Katz and Lindell
[2007].

Notation and Symbols 4. Let G be a finite group. We write ord(G) or |G| for the order of G.

Example 32. Consider the remainder class groups (Z6,+) from example 9, the group (Z5,+)
from example 14, and the group (Z∗5, ·) from exercise 32. We can easily see that the order of
(Z6,+) is 6, the order of (Z5,+) is 5 and the order of (Z∗5, ·) is 4.

Exercise 34. Let n ∈ N with n ≥ 2 be some modulus. What is the order of the remainder class
group (Zn,+).

Generators The set of elements of a group can be complicated and it is not always obvious
how to actually compute elements of a given group. From a practical point of view it is there-
fore desireable, if a group has a small subset of elements, such that all other elements can be
generated by applying the group law repeatedly to the elements of that subset or their inverses
only. Sets with these properties are called generator sets.

Of course, every group G has a trivial set of generators, when we just consider every ele-
ment of the group to be in the generator set. The more interesting question is to find smallest
possible sets of generators for a given group. Of particular interest in this regard are groups that
have a generator set that contains a single element only. In this case, there exists a (not nec-
essarily unique) element g ∈ G such that every other element from G can be computed by the
repeated combination of g and its inverse g−1 only. Groups with single, not necessarily unique,
generators are called cyclic groups and any element g ∈ G that is able to generate G is called
a generator. An introduction to cyclic groups and generators is given in chapter 1 of Fuchs
[2015] and an introduction from the point of view of cryptography can be found for example in
chapter 3, section 8.3.1 of Katz and Lindell [2007].

Example 33. The most basic example of a cyclic group is the group of integers (Z,+) with
integer addition. In this case, the number 1 is a generator of Z, since every integer can be
obtained by repeatedly adding either 1 or its inverse −1 to itself. For example −4 is generated
by 1, since −4 =−1+(−1)+(−1)+(−1). Another generator of Z is the number −1.

Example 34. Consider the group (Z∗5, ·) from exercise 32. Since 21 = 2, 22 = 4, 23 = 3 and
24 = 1, the element 2 is a generator of (Z∗5, ·). Moreover since 31 = 3, 32 = 4, 33 = 2 and

36

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

34 = 1, the element 3 is another generator of (Z∗5, ·). Cyclic groups can therefore have more
then one generator. However since 41 = 4, 42 = 1, 43 = 4 and in general 4k = 4 for k odd and
4k = 1 for k even the element 4 is not a generator of (Z∗5, ·). It follows that in general not every
element of a finite cyclic group is a generator.

Example 35. Consider a modulus n and the remainder class groups (Zn,+) from exercise 34.
These groups are cyclic, with generator 1, since every other element of that group can be con-
structed by repeatedly adding the remainder class 1 to itself. Since Zn is also finite, we know
that (Zn,+) is a finite cyclic group of order n.

Exercise 35. Consider the group (Z6,+) of modular 6 addition from example 9. Show that
5 ∈ Z6 is a generator and then show that 2 ∈ Z6 is not a generator.

Exercise 36. Let p ∈ P be prime number and (Z∗p, ·) the finite group from exercise 33. Show
that (Z∗p, ·) is cyclic.

The exponential map Observe that, when G is a cyclic group of order n and g ∈ G is a
generator of G, then there is the following map with respect to the generator g:

g(·) : Zn→G x 7→ gx (4.1)

In the map above, gx means “multiply g x-times by itself” and g0 = eG. This map, called
the exponential map, has the remarkable property that it maps the additive group law of the
remainder class group (Zn,+) in a one-to-one correspondence to the group law of G.

To see this, first observe that, since g0 := eG by definition, the neutral element of Zn is
mapped to the neutral element of G, and, since gx+y = gx ·gy, the map respects the group law.

Remark 3 (Scalar multiplication). If a group (G,+) is written in additive notation 3, then the
exponential map is often called scalar multiplication and written as

(·) ·g : Zn→G ; x 7→ x ·g (4.2)

In this notation the symbol x · g is defined as “add the generator g x-times to itself” and the
symbol 0 ·g is defined to be the neutral element in G.

Cryptographic applications often utilize finite cyclic groups of very large order n and com-
puting the exponential map by repeated multiplication of the generator with itself is infeasible,
for very large remainder classes. However methods for fast exponentiations are known for a
long time. A detailed introduction can be found for example in chapter 1, section 7 of Mignotte
[1992]. The following so called square and multiply algorithm solves this problem as it com-
putes the exponential map in approximately k steps, where k is the bit length of the exponent
3.4:

Because the exponential map respects the group law, it doesn’t matter if we do our compu-
tation in Zn before we write the result into the exponent of g or afterwards: the result will be the
same in both cases. This is usually referred to as doing computations “in the exponent”. In cryp-
tography in general, and in SNARK development in particular, we often perform computations
“in the exponent” of a generator.

Example 36. Consider the multiplicative group (Z∗5, ·) from exercise 32. We know from 36 that
Z∗5 is a cyclic group of order 4, and that the element 3 ∈ Z∗5 is a generator. We then know that
the following map respects the group law of addition in Z4 and the group law of multiplication
in Z∗5:

3(·) : Z4→ Z∗5 ; x 7→ 3x

37

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

Algorithm 5 Cyclic Group Exponentiation
Require: g group generator of order n
Require: x ∈ Zn

procedure EXPONENTIATION(g,x)
Let (b0, . . . ,bk) be a binary representation of x ▷ see example XXX
h← g
y← eG
for 0≤ j < k do

if b j = 1 then
y← y ·h ▷ multiply

end if
h← h ·h ▷ square

end for
return y

end procedure
Ensure: y = gx

To do an example computation "in the exponent" of 3 , let’s perform the calculation 1+3+2
in the exponent of the generator 3:

31+3+2 = 32

= 4

What we did is, we first performed the computation 1+3+2 = 1 in the remainder class group
(Z4,+) and then applied the exponential map 3(·) to the result.

However since the exponential map 4.1 "respects the group law" we also could map each
summand into (F∗5, ·) first and then apply the group law of (F∗5, ·). The result is guaranteed to be
the same:

31 ·33 ·32 = 3 ·2 ·4
= 1 ·4
= 4

Since the exponential map is a one-to-one correspondence that respects the group law, it
can be shown that this map has an inverse with respect to the base g, called the base g discrete
logarithm map:

logg(·) : G→ Zn x 7→ logg(x) (4.3)

Discrete logarithms are highly important in cryptography, because there are finite cyclic groups
where the exponential map and its inverse, the discrete logarithm map, are believed to be one-
way functions, which informally means that computing the exponential map is fast, while com-
puting the logarithm map is slow (We will look into a more precise definition in 4.1.1).

Example 37. Consider the exponential map 3(·) from example 36. Its inverse is the discrete
logarithm to the base 3 and it is given by the map

log3(·) : Z∗5→ Z4 x 7→ log3(x)

In contrast to the exponential map 3(·), we have no way to actually compute this map, other
then by trying all elements of the group until we find the correct one. For example in order to

38

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

compute log3(4), we have to find some x ∈ Z4, such that 3x = 4 and all we can do is repeadly
insert elements x into the exponent of 3 until the result is 4. To do this let’s write down all the
images of 3(·):

30 = 1, 31 = 3, 32 = 4, 33 = 2

Since the discrete logarithm log3(·) is defined as the inverse to this function, we can use those
images to compute the discrete logarithm:

log3(1) = 0, log3(2) = 3, log3(3) = 1, log3(4) = 2

Note that this computation was only possible, because we were able to write down all images
of the exponential map. However, in real world applications the groups in consideration are too
large to write down the images of the exponential map.

Exercise 37 (Efficient Scalar Multiplication). Let (G,+) be a finite cyclic group of order n.
Consider algorithm 5 and define it’s analog for groups in additive notation.

Factor Groups As we know from the fundamental theorem of arithmetics 3.7, every natural
number n is a product of factors, the most basic of which are prime numbers. This reflects into
subgroups of a finite cyclic group in an interesting way: If G, is a finite cyclic group of order n,
then every subgroup G′ of G, is finite and cyclic and the order of G′, is a factor of n. Moreover
for each factor k of n, G has exactly one subgroup of order k. This is known as the fundamental
theorem of finite cyclic groups.

Notation and Symbols 5. If G is a finite cyclic group of order n and k is a factor of n, then we
write G[k] for the unique finite cyclic group, which is the order k subgroup of G and call it a
factor group of G.

One particular interesting situation occurs if the order of a given finite cyclic group is a
prime number. As we know from the fundamental theorem of arithmetic 3.7, prime numbers
have only two factors, given by the number 1 and the prime number itself. It then follows from
the fundamental theorem of finite cyclic groups 4.1, that those groups have no subgroups other
then the trivial group 30 and the group itself.

Cryptographic protocols often assume the existence of finite cyclic groups of prime order
but sometimes real world implementations of those protocols are not defined on prime order
groups, but on groups where the order consist of a (usually large) prime number that has small
cofactors 1. In this case a method called cofactor clearing has to be applied to ensure that the
computations are not done in the group itself but in its (large) prime order subgroup.

To understand cofactor clearing in detail, let G be a finite cyclic group of order n and let k
be a factor of n with associated factor group G[k]. We can project any element g ∈ G[k] onto
the neutral element e of G by multiplying g k-times with itself:

gk = e (4.4)

From this follows that if c := n div k is the cofactor 1 of k in n then any element from the full
group g ∈ G can be projected into the factor group G[k] by multiplying g c-times with itself.
This defines the following map, which is often called cofactor clearing in the cryptographic
literature:

(·)c : G→G[k] : g 7→ gc (4.5)

Example 38. Consider the finite cyclic group (Z∗5, ·) from example 34. Since the order of Z∗5 is 4
and 4 has the factors 1, 2 and 4, it follows from the fundamental theorem of finite cyclic groups,

39

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

that Z∗5 has 3 unique subgroups. In fact the unique subgroup Z∗5[1] of order 1 is given by the
trivial group {1} that contains only the multiplicative neutral element 1 and the unique subgroup
Z∗5[4] of order 4 is Z∗5 itself, since by definition every group is trivially a subgroup of itself. The
unique subgroup Z∗5[2] of order 2 is more interesting and is given by the set Z∗5[2] = {1,4}.

Since Z∗5 is not a prime order group and since the only prime factor of 4 is 2, the "large"
prime order subgroup of Z∗5 is Z∗5[2]. Moreover since the cofactor of 2 in 4 is also 2, we have
the cofactor clearing map (·)2 : Z∗5→ Z∗5[2] and indeed apllying this map to all elements from
Z∗5 we see that it maps onto the elements of Z∗5[2] only:

12 = 1, 22 = 4, 32 = 4, 42 = 1

We can therefore use this map to "clear the cofactor" of any element from Z∗5 which means that
the elemnt is projected into the "large" prime order subgroup Z∗5[2].
Exercise 38. Consider the previous example 38 and show that Z∗5[2] is a commutative group.

Exercise 39. Consider the finite cyclic group (Z6,+) of modular 6 addition from example 35.
Describe all subgroups of (Z6,+). Identify the large prime order subgroup of Z6, define its
cofactor clearing map and apply that map to all elements of Z6.

Exercise 40. Let (Z∗p, ·) be the cyclic group from exercise 36. Show that for p ≥ 5, not every
element x ∈ F∗p is a generator of F∗p.

Pairings Of particular importance for the development of SNARKs are so-called pairing maps
on commutative groups. To see the definition, let G1, G2 and G3 be three commutative groups.
Then a pairing map is a function

e(·, ·) : G1×G2→G3 (4.6)

This function takes pairs (g1,g2) of elements from G1 and G2, and maps them to elements
from G3, such that the bilinearity property holds, which means that for all g1,g′1 ∈ G1 and
g2,g′2 ∈G2 the following two identities are satisfied:

e(g1 ·g′1,g2) = e(g1,g2) · e(g′1,g2) and e(g1,g2 ·g′2) = e(g1,g2) · e(g1,g′2) (4.7)

Informally speaking, bilinearity means that it doesn’t matter if we first execute the group law
on one side and then apply the bilinear map, or if we first apply the bilinear map and then apply
the group law in G3.

A pairing map is called non-degenerate if, whenever the result of the pairing is the neutral
element in G3, one of the input values is the neutral element of G1 or G2. To be more precise,
e(g1,g2) = eG3 implies g1 = eG1 or g2 = eG2 .

Example 39. One of the most basic examples of a non-degenerate pairing involves G1, G2 and
G3 all to be the group of integers with addition (Z,+). Then the following map defines a
non-degenerate pairing:

e(·, ·) : Z×Z→ Z (a,b) 7→ a ·b

Note that bilinearity follows from the distributive law of integers, since for a,b,c ∈ Z, we have
e(a+ b,c) = (a+ b) · c = a · c+ b · c = e(a,c)+ e(b,c) and the same reasoning is true for the
second argument.

To see that e(·, ·) is non-degenrate, assume that e(a,b) = 0. Then a ·b = 0 implies that a or
b must be zero.

40

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

Exercise 41 (Arithmetic laws for pairing maps). Let G1, G2 as well as G3 be finite cyclic groups
of the same order n and let e(·, ·) : G1×G2→G3 be a pairing map. Show that for given g1 ∈G1
and g2 ∈G2 and all a,b ∈ Zn the following identity holds:

e(ga
1,g

b
2) = e(g1,g2)

a·b (4.8)

Exercise 42. Consider the remainder class groups (Zn,+) from example 34 for some modulus
n. Show that the map

e(·, ·) : Zn×Zn→ Zn (a,b) 7→ a ·b

is a pairing map. Why is the pairing not non-degenrate in general and what condition must be
imposed on n, such that the pairing will be non-degenerate?

4.1.1 Cryptographic Groups
In this section, we will look at classes of groups that are believed to satisfy certain compu-
tational hardness assumptions, namely that it is not feasible to solve a particular problem.
A more detailed introduction to computational hardness assumptions and their applications in
cryptography can be found in chapter 3, section 8 in Katz and Lindell [2007].

Example 40. To give an example for a well-known computational hardness assumption, con-
sider the problem of factorization, i.e. computing the prime factors of a composite integer. If
the prime factors are very large, this is infeasible to do, and is expected to remain infeasible.
We assume the problem is computationally hard or infeasible.

Note that in the example, we say that the problem is infeasible to solve if the prime factors
are large enough. In the cryptographic standard model we have a security parameter and we
say that "there exists a security parameter, such that it is not feasible to compute a solution to
the problem". In the following examples, the security parameter roughly correlates with the
order of the group in consideration. In this book, we do not include the security parameter in
our definitions, since we only aim to provide an intuitive understanding of the cryptographic
assumptions, not teach the ability to perform rigorous analysis.

Furthermore, understand that these are assumptions. Academics have been looking for effi-
cient prime factorization algorithms for a long time, and they have been getting better and better
and computers have become faster and faster - but there always was a higher security parameter
for which the problem still was infeasible.

In what follows, we will describe a few problems that are assumed to be infeasible that arise
in the context of groups in cryptography. We will refer to them throughout the book.

The discrete logarithm assumption The so-called discrete logarithm problem (DLP) is
one of the most fundamental assumptions in cryptography. To define it, let G be a finite cyclic
group of order r and let g be a generator of G. We know from 4.1 that there is an exponential
map g(·) : Zr → G ; x 7→ gx that maps the residue classes from modulo r arithmetic onto the
group in a 1 : 1 correspondence. The discrete logarithm problem is the task of finding an
inverse to this map, that is, to find a solution x ∈ Zr to the following equation for some given
h,g ∈G:

h = gx (4.9)

There are groups in which the DLP is assumed to be infeasible to solve, and there are groups
in which it isn’t. We call the former group DL-secure groups.

41

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

Rephrasing the previous definition, it is believed that in DL-secure groups there is a number
n (as that corresponds to the security parameter), such that it is infeasible to compute some
number x that solves the equation h = gx for a given h and g, assuming that the order of the
group n is large enough.

Example 41 (Public key cryptography). One the most basic examples of an application for DL-
secure groups is in public key cryptography, where the parties publicly agree on some pair
(G,g) such that G is a finite cyclic group of appropriate order n, where G is believed to be a
DL-secure group, and g is a generator of G.

In this setting, a secret key is some number sk ∈ Zr and the associated public key pk is the
group element pk = gsk. Since discrete logarithms are assumed to be hard, it is infeasible for
an attacker to compute the secret key from the public key, since it is believed to be infeasible to
find solutions x to the following equation:

pk = gx (4.10)

As the previous example shows, identifying DL-secure groups is an important practical
problem. Unfortunately, it is easy to see that it does not make sense to assume the hardness of
the discrete logarithm problem in all finite cyclic groups: Counterexamples are common and
easy to construct.

The decisional Diffie–Hellman assumption Let G be a finite cyclic group of order n and
let g be a generator of G. The decisional Diffie–Hellman (DDH) problem is to distinguish
(ga,gb,gab) from the triple (ga,gb,gc) for uniformly random values a,b,c ∈ Zr. If we assume
the DDH problem is infeasible to solve in G, we call G a DDH-secure group.

DDH-security is a stronger assumption than DL-security 4.1.1, in the sense that if the DDH
problem is infeasible, so is the DLP, but not necessarily the other way around.

To see why this is the case, assume that the discrete logarithm assumption does not hold.
In that case, given a generator g and a group element h, it is easy to compute some element
x ∈ Zp with h = gx. Then the decisional Diffie–Hellman assumption cannot hold, since given
some triple (ga,gb,z), one could efficiently decide whether z = gab is true by first computing
the discrete logarithm b of gb, then computing gab = (ga)b and deciding whether or not z = gab.

On the other hand, the following example shows that there are groups where the discrete
logarithm assumption holds but the decisional Diffie–Hellman assumption does not.

Example 42 (Efficiently computable bilinear pairings). Let G be a DL-secure, finite, cyclic
group of order r with generator g and GT another group, such that there is an efficiently com-
putable pairing map e(·, ·) : G×G→GT that is bilinear and non degenerate 4.6.

In a setting like this, it is easy to show that solving DDH cannot be infeasible, since given
some triple (ga,gb,z), it is possible to efficiently check whether z = gab by making use of the
pairing:

e(ga,gb) ?
= e(g,z) (4.11)

Since the bilinearity properties of e(·, ·) imply e(ga,gb) = e(g,g)ab = e(g,gab), and e(g,y) =
e(g,y′) implies y = y′ due to the non-degenerate property, the equality means z = gab.

It follows that the DDH assumption is indeed stronger than the discrete log assumption, and
groups with efficient pairings cannot be DDH-secure groups.

42

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

The computational Diffie–Hellman assumption Let G be a finite cyclic group of order n
and let g be a generator of G. The computational Diffie–Hellman assumption stipulates that,
given randomly and independently chosen elements a,b∈Zr, it is not possible to compute gab if
only g, ga and gb (but not a and b) are known. If this is the case for G, we call G a CDH-secure
group.

In general, we don’t know if CDH-security is a stronger assumption than DL-security, or
if both assumptions are equivalent. We know that DL-security is necessary for CDH-security,
but the other direction is currently not well understood. In particular, there are no DL-security
groups known that are not also CDH-secure

To see why the discrete logarithm assumption is necessary, assume that it does not hold.
So, given a generator g and a group element h, it is easy to compute some element x ∈ Zp with
h = gx. In that case, the computational Diffie–Hellman assumption cannot hold, since, given
g, ga and gb, one can efficiently compute b and hence is able to compute gab = (ga)b from this
data.

The computational Diffie–Hellman assumption is a weaker assumption than the decisional
Diffie–Hellman assumption. This means that there are groups where CDH holds and DDH does
not hold, while there cannot be groups in which DDH holds but CDH does not hold. To see that,
assume that it is efficiently possible to compute gab from g, ga and gb. Then, given (ga,gb,z) it
is easy to decide whether z = gab holds or not.

Several variations and special cases of CDH exist. For example, the square computational
Diffie–Hellman assumption assumes that, given g and gx, it is computationally hard to com-
pute gx2

. The inverse computational Diffie–Hellman assumption assumes that, given g and
gx, it is computationally hard to compute gx−1

.

4.1.2 Hashing to Groups
Hash functions Generally speaking, a hash function is any function that can be used to map
data of arbitrary size to fixed-size values. Since binary strings of arbitrary length are a way
to represent data in general, we can understand a hash function as the following map where
{0,1}∗ represents the set of all binary strings of arbitrary but finite length and {0,1}k represents
the set of all binary strings that have a length of exactly k bits:

H : {0,1}∗→{0,1}k (4.12)

The images of H, that is, the values returned by the hash function H, are called hash values,
digests, or simply hashes.

Notation and Symbols 6. In what follows we call an element b ∈ {0,1} a bit. If s ∈ {0,1}∗ is
a binary string, we write |s|= k for its length, that is for the number of bits in s. We write <>
for the empty binary string and s =< b1,b2, . . . ,bk > for a binary string of length k.

If two binary strings s =< b1,b2, . . . ,bk > and s′ =< b′1,b
′
2, . . . ,b

′
l > are given then we write

s||s′ for the concatenation that is the string s||s′ =< b1,b2, . . . ,bk,b′1,b
′
2, . . . ,b

′
l >.

If H is a hash function that maps binary strings of arbitrary length onto binary strings of
length k and if s ∈ {0,1}∗ is a binary string, we write H(s) j for the bit at position j in the image
H(s).

Example 43 (k-truncation hash). One of the most basic hash functions Hk : {0,1}∗→{0,1}k is
given by simply truncating every binary string s of size |s|> k to a string of size k and by filling
any string s′ of size |s′|< k with zeros. To make this hash function deterministic, we define that
both truncation and filling should happen “on the left”.

43

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

For example, if the parameter k is given by k = 3 and s1 =< 0,0,0,0,1,0,1,0,1,1,1,0 > as
well as s2 = 1, then H3(x1) =< 1,1,0 > and H3(x2) =< 0,0,1 >.

A desireable property of a hash function is uniformity, which means that it should map
input values as evenly as possible over its output range. In mathematical terms, every string of
length k from {0,1}k should be generated with roughly the same probability.

Of particular interest are so-called cryptographic hash functions, which are hash functions
that are also one-way functions, which essentially means that, given a string y from {0,1}k it
is infeasible to find a string x ∈ {0,1}∗ such that H(x) = y holds. This property is usually called
preimage-resistance.

Moreover, if a string x1 ∈ {0,1}∗ is given, then it should be infeasible to find another string
x2 ∈ {0,1}∗ with x1 ̸= x2 and H(x1) = H(x2)

In addition, it should be infeasible to find two strings x1,x2 ∈ {0,1}∗, such that H(x1) =
H(x2), which is called collision resistance. It is important to note, though, that collisions
always exist, since a function H : {0,1}∗→{0,1}k inevitably maps infinitely many values onto
the same hash. In fact, for any hash function with digests of length k, finding a preimage to a
given digest can always be done using a brute force search in 2k evaluation steps. It should just
be practically impossible to compute those values, and statistically very unlikely to generate
two of them by chance.

A third property of a cryptographic hash function is that small changes in the input string,
like changing a single bit, should generate hash values that look completely different from each
other. This is called diffusion or the avalance effect.

Because cryptographic hash functions map tiny changes in input values onto large changes
in the output, implementation errors that change the outcome are usually easy to spot by com-
paring them to expected output values. The definitions of cryptographic hash functions are
therefore usually accompanied by some test vectors of common inputs and expected digests.
Since the empty string <> is the only string of length 0, a common test vector is the expected
digest of the empty string.

Example 44 (k-truncation hash). Consider the k-truncation hash from example 43. Since the
empty string has length 0, it follows that the digest of the empty string is the string of length k
that only contains 0’s:

Hk(<>) =< 0,0, . . . ,0,0 > (4.13)

It is pretty obvious from the definition of Hk that this simple hash function is not a cryptographic
hash function. In particular, every digest is its own preimage, since Hk(y) = y for every string
of size exactly k. Finding preimages is therefore easy, so the property of preimage resistance
does not hold.

In addition, it is easy to construct collisions as all strings s of size |s| > k that share the
same k-bits “on the right” are mapped to the same hash value, so this function is not collision
resistant, either.

Finally, this hash function does not have a lot of diffusion, as changing bits that are not part
of the k right-most bits don’t change the digest at all.

Computing cryptographically secure hash functions in pen-and-paper style is possible but
tedious. Fortunately, Sage can import the hashlib library, which is intended to provide a reliable
and stable base for writing Python programs that require cryptographic functions. The following
examples explain how to use hashlib in Sage.

Example 45. An example of a hash function that is generally believed to be a cryptographically
secure hash function is the so-called SHA256 hash, which, in our notation, is a function that

44

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

maps binary strings of arbitrary length onto binary strings of length 256:

SHA256 : {0,1}∗→{0,1}256 (4.14)

To evaluate a proper implementation of the SHA256 hash function, the digest of the empty
string is supposed to be

SHA256(<>) = e3b0c44298 f c1c149a f b f 4c8996 f b92427ae41e4649b934ca495991b7852b855 (4.15)

For better human readability, it is common practice to represent the digest of a string not in
its binary form, but in a hexadecimal representation. We can use Sage to compute SHA256 and
freely transit between binary, hexadecimal and decimal representations. To do so, we import
hashlib’s implementation of SHA256:

159sage: import hashlib
160sage: test = ’e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934

ca495991b7852b855’
161sage: empty_string = ""
162sage: binary_string = empty_string.encode()
163sage: hasher = hashlib.sha256(binary_string)
164sage: result = hasher.hexdigest()
165sage: type(result) # sage represents digests as strings
166<class ’str’>
167sage: d = ZZ(’0x’+ result) # conversion to an integer
168sage: d.str(16) == test # hash is equal to test vector
169True
170sage: d.str(16) # hexadecimal representation
171e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b8

55
172sage: d.str(2) # binary representation
17311100011101100001100010001000010100110001111110000011100000101

00100110101111101111110100110010001001100101101111101110010
01001000010011110101110010000011110010001100100100110111001
00110100110010100100100101011001100100011011011110000101001
01011100001010101

174sage: d.str(10) # decimal representation
17510298733624955409702953521232258132278979990064819803499337939

7001115665086549

Hashing to cyclic groups As we have seen in the previous paragraph, general hash functions
map binary strings of arbitrary length onto binary strings of some fixed length. However, it is
desirable in various cryptographic primitives to not simply hash to binary strings of fixed length
but to hash into algebraic structures like groups, while keeping (some of) the properties like
preimage resistance or collision resistance.

Hash functions like this can be defined for various algebraic structures, but, in a sense, the
most fundamental ones are hash functions that map into groups, because they can be easily
extended to map into other structures like rings or fields.

To give a more precise definition, let G be a group and {0,1}∗ the set of all finite, binary
strings, then a hash-to-group function is a deterministic map

H : {0,1}∗→G (4.16)

45

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

As the following example shows, hashing to finite cyclic groups can be trivially achieved
for the price of some undesirable properties of the hash function:

Example 46 (Naive cyclic group hash). Let G be a finite cyclic group of order n. If the task is to
implement a hash-to-group function, one immediate approach can be based on the observation
that binary strings of size k can be interpreted as integers z ∈ Z in the range 0 ≤ z < 2k using
equation 3.4.

To be more precise, let H : {0,1}∗→ {0,1}k be a hash function for some parameter k, g a
generator of G and s ∈ {0,1}∗ a binary string. Using equation 3.4 and notation 6 the following
expression is a non negative integer:

zH(s) = H(s)0 ·20 +H(s)1 ·21 + . . .+H(s)k ·2k (4.17)

A hash-to-group function for the group G can then be defined as a composition of the expo-
nential map g(·) of g with the interpretation of H(s) as an integer:

Hg : {0,1}∗→G : s 7→ gzH(s) (4.18)

Constructing a hash-to-group function like this is easy for cyclic groups, and it might be
good enough in certain applications. It is, however, almost never adequate in cryptographic
applications, as a discrete log relation might be constructible between some hash values Hg(s)
and Hg(t), regardless of whether or not G is DL-secure 4.1.1.

To be more precise a discrete log relation between the group elements Hg(s) and Hg(t) is
any element x ∈ Zn, such that Hg(s) = Hg(t)x. To see how such an x can be constructed, assume
that zH(s) has a multiplicative inverse in Zn. In this case, the element x = zH(t) · z−1

H(s) from Zn is
a discrete log relation between Hg(s) and Hg(t) since:

gzH(t) = gzH(t) ⇔

gzH(t) = gzH(t)·zH(s)·z−1
H(s) ⇔

gzH(t) = gzH(s)·x ⇔
Hg(t) = (Hg(s))x

Therefore applications where discrete log relations between hash values are undesirable
need different approaches. Many of these approaches start with a way to hash into the set Zr of
modular r arithmetics.

Pedersen Hashes The so-called Pedersen hash function [Pedersen, 1992] provides a way
to map fixed size tuples of elements from modular arithmetics onto elements of finite cyclic
groups in such a way that discrete log relations 46 between different images are avoidable.
Compositions of a Pedersen hash with a general hash function 4.12, then provide hash-to-group
functions that maps strings of arbitrary length onto group elements.

To be more precise, let j be an integer, G a finite cyclic group of order n and {g1, . . . ,g j}⊂G
a uniform and randomly generated set of generators of G. Then Pedersen’s hash function is
defined as follows:

H{g1,...,g j} : (Zr)
j→G : (x1, . . . ,x j) 7→Π

k
i=1gx j

j (4.19)

It can be shown that Pedersen’s hash function is collision-resistant under the assumption that G
is DL-secure 4.1.1. It is important to note though, that the following familie of functions does
not qualify as a .

46

CHAPTER 4. ALGEBRA 4.1. COMMUTATIVE GROUPS

{H{g1,...,g j} | g1, . . . ,g j ∈G} (4.20)

From an implementation perspective, it is important to derive the set of generators {g1, . . . ,gk}
in such a way that they are as uniform and random as possible. In particular, any known discrete
log relation between two generators, that is, any known x ∈ Zn with gh = (gi)

x must be avoided.

Example 47. To compute an actual Pedersen’s hash, consider the cyclic group Z∗5 from example
34. We know from example 38, that the elements 2 and 3 are generators of Z∗5 and it follows
that the following map is a Pedersen’s hash function:

H{2,3} : Z4×Z4→ Z∗5 ; (x,y) 7→ 2x ·3y

To see how this map can be calculated, we choose the imput value (1,3) from Z4×Z4. Then
H{2,3}(1,3) = 21 ·33 = 2 ·2 = 4.

To see how the composition of a hash function with H{2,3} defines a hash-to-group function,
consider the SHA256 hash function from example 45. Given some binary string s ∈ {0,1}∗, we
can insert the two least significant bits SHA256(s)0 and SHA256(s)1 from the image SHA256(s)
into H{2,3} to get an element in F∗5. This defines the following hash-to-group function

SHA256_H{2,3} : {0,1}∗→ Z∗5 ; s 7→ 2SHA256(s)0 ·3SHA256(s)1

To see how this hash function can be calculated, consider the empty string <>. Since we know
from the sage computation in example 45, that SHA256(<>)0 = 1 as well as SHA256(<>)1 =
0, we get SHA_256H{2,3}(<>) = 21 ·30 = 2.

Of course computing SHA256_H{2,3} in a pen and paper style is difficult. However we can
easily implement this function in sage in the following way:

176sage: import hashlib
177sage: def SHA256_H(x):
178....: Z5 = Integers(5) # define the group type
179....: hasher = hashlib.sha256(x) # Compute SHA256
180....: digest = hasher.hexdigest()
181....: z = ZZ(digest, 16) # cast into integer
182....: z_bin = z.digits(base=2, padto=256) # cast to 256

bits
183....: return Z5(2)^z_bin[0] * Z5(3)^z_bin[1]
184sage: SHA256_H(b"") # evaluate on empty string
1852
186sage: SHA256_H(b"SHA") # possible images are {1,2,3}
1873
188sage: SHA256_H(b"Math")
1891

Exercise 43. Consider the multiplicative group Z∗13 of modular 13 arithmetic from example 33.
Choose a set of 3 generators of Z∗13, define its associated Pedersen hash function and compute
the Pedersen hash of (3,7,11) ∈ Z12.

Exercise 44. Consider the Pedersen hash from exercise 43. Compose it with the SHA256 hash
function from example 45 to define a hash-to-group function. Implement that function in sage.

47

CHAPTER 4. ALGEBRA 4.2. COMMUTATIVE RINGS

Pseudorandom Function Families in DDH-secure groups As noted in 4.1.2, the family of
Pederson’s hash functions, parameterized by a set of generators {g1, . . . ,g j} does not qualify
as a family of pseudorandom functions and should therefore not be instantiated as such. To
see an example of a proper family of pseudorandom functions in groups where the decisional
Diffie–Hellman assumtion 4.1.1 is assumed to hold true, let G be a DDH-secure cyclic group of
order n with generator g and {a0,a1, . . . ,ak}⊂Z∗n a uniform randomly generated set of numbers
invertible in modular n arithmetics. Then a family of pseudorandom functions, parameterized
by the seed {a0,a1, . . . ,ak} is given as follows:

F{a0,a1,...,ak} : {0,1}k+1→G : (b0, . . . ,bk) 7→ gb0·Πk
i=1abi

i (4.21)

Exercise 45. Consider the multiplicative group Z∗13 of modular 13 arithmetic from example 33
and the parameter k = 3. Choose a generator of Z∗13, a seed and instantiate a member of the
familie 4.21 for that seed. Evaluate that member on the binary string < 1,0,1 >.

4.2 Commutative Rings
In the previous section we have seen that integers are a commutative group with respect to
integer addition, but as we know there are in fact two arithmetic operations defined on integers:
addition and multiplication. However, in contrast to addition, multiplication does not define a
group structure, given that integers generally don’t have multiplicative inverses. Configurations
like these constitute so-called commutative rings with unit and the following definition will
make the structure explicit:

Definition 4.2.0.1 (Commutative ring with unit). A commutative ring with unit (R,+, ·,1)
is a set R provided with two maps + : R× R → R and · : R× R → R, called addition and
multiplication and an element 1 ∈ R, called the unit, such that the following conditions hold:

• (R,+) is a commutative group, where the neutral element is denoted with 0.

• Commutativity of multiplication: r1 · r2 = r2 · r1 for all r1,r2 ∈ R.

• Multiplicative neutral unit : 1 ·g = g for all g ∈ R.

• Associativity: For every g1,g2,g3 ∈G the equation g1 · (g2 ·g3) = (g1 ·g2) ·g3 holds.

• Distributivity: For all g1,g2,g3 ∈ R the distributive law g1 · (g2 +g3) = g1 · g2 + g1 · g3
holds.

If (R,+, ·,1) is a commutative ring with unit and R′ ⊂ R is a subset of R, such that the restriction
of addition and multiplication to R′ define a commutative ring with addition + : R′×R′→ R′,
multiplication · : R′×R′→R′ and unit 1 on R′, then (R′,+, ·,1) is called a subring of (R,+, ·,1).
Notation and Symbols 7. Since we are exclusively concerned with commutative rings in this
book, we often just call them rings, keeping the notation of commutativity implicit. A set R with
two maps + and · that satisfies all previously mentioned rules, except for the commutativity law
of the multiplication is called a non-commutative ring.

If there is no risk of ambiguity (about what the addition and multiplication maps of a ring
are), we frequently drop the symbols + and · and simply write R as notation for the ring, keeping
those maps implicit. In this case we also say that R is of ring type, indicating that R is not simply
a set but a set together with an addition and a multiplication map.

48

CHAPTER 4. ALGEBRA 4.2. COMMUTATIVE RINGS

Commutative rings are a large field of research in mathematics and countless books on the
topic exists. For our purposes and introduction is given in chapter 1, section 2 of Lidl and
Niederreiter [1986].

Example 48 (The ring of integers). The set Z of integers with the usual addition and multipli-
cation is the archetypical example of a commutative ring with unit 1.

190sage: ZZ
191Integer Ring

Example 49 (Underlying commutative group of a ring). Every commutative ring with unit
(R,+, ·,1) gives rise to a group, if we disregard multiplication.

The following example is somewhat unusual, but we encourage you to think through it
because it helps to detach the mind from familiar styles of computation and concentrate on the
abstract algebraic explanation.

Example 50. Let S := {•,⋆,⊙,⊗} be a set that contains four elements, and let addition and
multiplication on S be defined as follows:

∪ • ⋆ ⊙ ⊗
• • ⋆ ⊙ ⊗
⋆ ⋆ ⊙ ⊗ •
⊙ ⊙ ⊗ • ⋆
⊗ ⊗ • ⋆ ⊙

◦ • ⋆ ⊙ ⊗
• • • • •
⋆ • ⋆ ⊙ ⊗
⊙ • ⊙ • ⊙
⊗ • ⊗ ⊙ ⋆

Then (S,∪,◦,⋆) is a ring with unit ⋆ and zero •. It therefore makes sense to ask for solutions to
equations like this one: Find x ∈ S such that

⊗◦ (x∪⊙) = ⋆

To see how such a “moonmath equation” can be solved, we have to keep in mind that rings
behaves mostly like normal numbers when it comes to bracketing and computation rules. The
only differences are the symbols, and the actual way to add and multiply them. With this in
mind, we solve the equation for x in the“usual way” 1:

⊗◦ (x∪⊙) = ⋆ # apply the distributive law
⊗◦ x∪⊗◦⊙= ⋆ #⊗◦⊙=⊙
⊗◦ x∪⊙= ⋆ # concatenate the ∪ inverse of ⊙ to both sides

⊗◦ x∪⊙∪−⊙= ⋆∪−⊙ #⊙∪−⊙= •
⊗◦ x∪•= ⋆∪−⊙ # • is the ∪ neutral element
⊗◦ x = ⋆∪−⊙ # for ∪ we have −⊙=⊙
⊗◦ x = ⋆∪⊙ #⋆∪⊙=⊗
⊗◦ x =⊗ # concatenate the ◦ inverse of ⊗ to both sides

(⊗)−1 ◦⊗◦ x = (⊗)−1 ◦⊗ # multiply with the multiplicative inverse
⋆◦ x = ⋆

x = ⋆

1Note that there are more efficient ways to solve this equation. The point of our computation is to show how
the axioms of a ring can be used to solve the equation

49

CHAPTER 4. ALGEBRA 4.2. COMMUTATIVE RINGS

So, even though this equation looked really alien at first glance, we could solve it basically
exactly the way we solve “normal” equations containing numbers.

Note, however, that whenever a multiplicative inverse would be needed to solve an equation
in the usual way in a ring, things can be very different than most of us are used to. For example,
the following equation cannot be solved for x in the usual way, since there is no multiplicative
inverse for ⊙ in our ring.

⊙◦ x =⊗ (4.22)

We can confirm this by looking at the multiplication table to see that no such x exits.
As another example, the following equation does not have a single solution but two: x ∈

{⋆,⊗}.

⊙◦ x =⊙ (4.23)

Having no solution or two solutions is certainly not something to expect from types like the
rational numbers Q.

Example 51 (Ring of Polynomials). Considering the definition of polynomials from 3.4 again,
we notice that what we have informally called the type R of the coefficients must in fact be a
commutative ring with a unit, since we need addition, multiplication, commutativity and the
existence of a unit for R[x] to have the properties we expect.

In fact if we consider R to be a ring and we define addition and multiplication of polyno-
mials as in 3.24, the set R[x] is a commutative ring with a unit, where the polynomial 1 is the
multiplicative unit. We call this ring the ring of polynomials with coefficients in R.

192sage: ZZ[’x’]
193Univariate Polynomial Ring in x over Integer Ring

Example 52 (Ring of modular n arithmetic). Let n be a modulus and (Zn,+, ·) the set of all re-
mainder classes of integers modulo n, with the projection of integer addition and multiplication
as defined in 3.3. Then (Zn,+, ·) is a commutative ring with unit 1.

194sage: Integers(6)
195Ring of integers modulo 6

Example 53 (Binary Representations in Modular Arithmetic). TODO (Non unique)

Example 54 (Polynomial evaluation in the exponent of group generators). As we show in 6.2.3,
a key insights in many zero knowlege protocols is the ability to encode computations as poly-
nomials and then to hide the information of that computation by evaluating the polynomial "in
the exponent" of certain cryptographic groups 8.2.

To understand the underlying principle of this idea, consider the exponential map 37 again.
If G is a finite cyclic group of order n with generator g ∈G, then the ring structure of (Zn,+, ·)
corresponds to the group structure of G in the following way:

gx+y = gx ·gy gx·y = (gx)y for all x,y ∈ Zn (4.24)

This correspondense allows polynomials with coefficients in Zn to be evaluated “in the ex-
ponent” of a group generator. To see what this means, let p ∈ Zn[x] be a polynomial with
p(x) = am · xm + am−1xm−1 + . . .+ a1x+ a0 and let s ∈ Zn be an evaluation point. Then the

50

CHAPTER 4. ALGEBRA 4.2. COMMUTATIVE RINGS

previously defined exponential laws 4.24 imply the following identity:

gp(s) = gam·sm+am−1sm−1+...+a1s+a0 (4.25)

=
(

gsm
)am
·
(

gsm−1
)am−1

· . . . · (gs)a1 ·ga0

Utilizing these identities, it is possible to evaluate any polynomial p of degree deg(p)≤ m at a
"secret" evaluation point s in the exponent of g without any knowledge about s, assuming that
G is a DL-group. To see this assume that the set {g,gs,gs2

, . . . ,gsm} is given, but s is unknown.
Then gp(s) can be computed using 4.25, however it is not feasible to compute s.

Example 55. To give an example of the evaluation of a polynomial in the exponent of a finite
cyclic group, consider the exponential map from example 36:

3(·) : Z4→ Z∗5 ; x 7→ 3x

Choosing the polynomial p(x) = 2x2 + 3x+ 1 from Z4[x], we first evaluate the polynomial at
the point s = 2 and then write the result into the exponent 3 as follows:

3p(2) = 32·22+3·2+1

= 32·0+2+1

= 33

= 2

This was possible, because we had access to the evaluation point 2. On the other hand, if we
only had access to the set {3,4,1} and we knew that this set represents the set {3,3s,3s2} for
some secret value s, we could evaluate p at the point s in the exponent of 3 as

3p(s) = 12 ·43 ·31

= 1 ·4 ·3
= 2

Both computations agree, since the secret point s was equal to 2 in this example. However the
second evaluation was possible without any knowledge about s.

Hashing into Modular Arithmetic As we have seen in 4.1.2, various constructions for hashing-
to-groups are known and used in applications. As commutative rings are commutative groups,
when we disregard the multiplicative structure, hash-to-group constructions can be applied for
hashing into commutative rings.

One of the most widely used applications of hash-into-ring constructions are hash functions
that map into the ring Zn of modular n arithmetics for some modulus n. Different approaches to
construct such a function are known, but probably the most widely used ones are based on the
insight that the images of general hash functions can be interpreted as binary representations of
integers, as explained in example 46.

It follows from this interpretation that one simple method of hashing into Zn is constructed
by observing that if n is a modulus with a bit-length 3.4 of k = |n|, then every binary string
< b0,b1, . . . ,bk−2 > of length k−1 defines an integer z in the rage 0≤ z≤ 2k−1−1 < n:

z = b0 ·20 +b1 ·21 + . . .+bk−2 ·2k−2 (4.26)

51

CHAPTER 4. ALGEBRA 4.2. COMMUTATIVE RINGS

Now, since z < n, we know that z is guaranteed to be in the set {0,1, . . . ,n− 1}, and hence it
can be interpreted as an element of Zn. From this it follows that if H : {0,1}∗→ {0,1}k−1 is a
hash function, then a hash-to-ring function can be constructed as follows:

H|n|2−1 : {0,1}∗→ Zr : s 7→ H(s)0 ·20 +H(s)1 ·21 + . . .+H(s)k−2 ·2k−2 (4.27)

A drawback of this hash function is that the distribution of the hash values in Zn is not
necessarily uniform. In fact, if n is larger then 2k−1, then by design H|n|2−1 will never hash onto
values z≥ 2k−1. Using this hashing method therefore generates approximately uniform hashes
only, if n is very close to 2k−1. In the worst case, when n = 2k−1, it misses almost half of all
elements from Zn.

An advantage of this approach is that properties like preimage resistance or collision resis-
tance of the original hash function H(·) are preserved.

Example 56. To analyze a particular implementation of a H|n|2−1 hash function, we use a 5-bit
truncation of the SHA256 hash from example 45 and define a hash into Z16 as follows:

H|16|2−5 : {0,1}∗→ Z16 : s 7→ SHA256(s)0 ·20 +SHAH256(s)1 ·21 + . . .+SHA256(s)4 ·24

Since k = |16|2 = 5 and 16−2k−1 = 0, this hash maps uniformly onto Z16. We can invoke Sage
to implement it:

196sage: import hashlib
197sage: def Hash5(x):
198....: Z16 = Integers(16)
199....: hasher = hashlib.sha256(x) # compute SHA56
200....: digest = hasher.hexdigest()
201....: d = ZZ(digest, base=16) # cast to integer
202....: d = d.str(2)[-4:] # keep 5 least significant bits
203....: d = ZZ(d, base=2) # cast to integer
204....: return Z16(d) # cast to Z16
205sage: Hash5(b’’)
2065

We can then use Sage to apply this function to a large set of input values in order to plot a
visualization of the distribution over the set {0, . . . ,15}. Executing over 500 input values gives
the following plot:

100 200 300 400 500

2

4

6

8

10

12

14

52

CHAPTER 4. ALGEBRA 4.2. COMMUTATIVE RINGS

To get an intuition of uniformity, we can count the number of times the hash function H|16|2−1
maps onto each number in the set {0,1, . . . ,15} in a loop of 100000 hashes, and compare that
to the ideal uniform distribution, which would map exactly 6250 samples to each element. This
gives the following result:

2 4 6 8 10 12 14

2000

4000

6000

8000

10000

The lack of uniformity becomes apparent if we want to construct a similar hash function for Zn
for any other 5 bit integer n in the range 17 ≤ n ≤ 31. In this case, the definition of the hash
function is exactly the same as for Z16, and hence, the images will not exceed the value 15.
So, for example, even in the case of hashing to Z31, the hash function never maps to any value
larger than 15, leaving almost half of all numbers out of the image range.

5 10 15 20 25 30

2000

4000

6000

8000

10000

A second widely used method of hashing into Zn is constructed by observing the following:
If n is a modulus with a bit-length of |n|2 = k1 and H : {0,1}∗→{0,1}k2 is a hash function that
produces digests of size k2, with k2 ≥ k1, then a hash-to-ring function can be constructed by
interpreting the image of H as a binary representation of an integer and then taking the modulus
by n to map into Zn:.

H ′modn
: {0,1}∗→ Zn : s 7→

(
H(s)0 ·20 +H(s)1 ·21 + . . .+H(s)k2 ·2

k2
)

mod n (4.28)

A drawback of this hash function is that computing the modulus requires some computa-
tional effort. In addition, the distribution of the hash values in Zn might not be uniform, depend-
ing on the number 2k2+1 mod n. An advantage of it is that potential properties of the original
hash function H(·) (like preimage resistance or collision resistance) are preserved, and the dis-
tribution can be made almost uniform, with only negligible bias depending on what modulus n
and images size k2 are chosen.

53

CHAPTER 4. ALGEBRA 4.2. COMMUTATIVE RINGS

Example 57. To give an implementation of the Hmodn hash function, we use k2-bit truncation of
the SHA256 hash from example 45, and define a hash into Z23 as follows:

Hmod23,k2 : {0,1}∗→ Z23 :

s 7→
(

SHA256(s)0 ·20 +SHAH256(s)1 ·21 + . . .+SHA256(s)k2 ·2
k2
)

mod 23

We want to use various instantiations of k2 to visualize the impact of truncation length on the
distribution of the hashes in Z23. We can invoke Sage to implement it as follows:

207sage: import hashlib
208sage: Z23 = Integers(23)
209sage: def Hash_mod23(x, k2):
210....: hasher = hashlib.sha256(x.encode(’utf-8’)) # Compute

SHA256
211....: digest = hasher.hexdigest()
212....: d = ZZ(digest, base=16) # cast to integer
213....: d = d.str(2)[-k2:] # keep k2+1 LSB
214....: d = ZZ(d, base=2) # cast to integer
215....: return Z23(d) # cast to Z23

We can then use Sage to apply this function to a large set of input values in order to plot
visualizations of the distribution over the set {0, . . . ,22} for various values of k2, by counting
the number of times it maps onto each number in a loop of 100000 hashes. We get the following
plot:

5 10 15 20

2000

4000

6000

8000

10000
k2=5
k2=7
k2=9
k2=16

A third method that can sometimes be found in implementations is the so-called “try-and-
increment” method. To understand this method, we define an integer z ∈ Z from any hash
value H(s) as we did in the previous methods, that is, we define

z = H(s)0 ·20 +H(s)1 ·21 + . . .+H(s)k−1 ·2k

Hashing into Zn is then achievable by first computing z, and then trying to see if z ∈ Zn. If it
is, then the hash is done; if not, the string s is modified in a deterministic way and the process is
repeated until a suitable element z∈Zn is found. A suitable, deterministic modification could be

54

CHAPTER 4. ALGEBRA 4.3. FIELDS

Algorithm 6 Hash-to-Zn

Require: n ∈ Z with |n|2 = k and s ∈ {0,1}∗
procedure TRY-AND-INCREMENT(n,k,s)

c← 0
repeat

s′← s||c_bits()
z← H(s′)0 ·20 +H(s′)1 ·21 + . . .+H(s′)k ·2k

c← c+1
until z < n
return x

end procedure
Ensure: z ∈ Zn

to concatenate the original string by some bit counter. A “try-and-increment” algorithm would
then work like in algorithm 6.

Depending on the parameters, this method can be very efficient. In fact, if k is sufficiently
large and n is close to 2k+1, the probability for z < n is very high and the repeat loop will almost
always be executed a single time only. A drawback is, however, that the probability of having
to execute the loop multiple times is not zero.

4.3 Fields
We started this chapter with the definition of a group 4.1, which we then expanded into the
definition of a commutative ring with a unit 4.2. Such rings generalize the behavior of integers.
In this section, we will look at those special cases of commutative rings where every element
other than the neutral element of addition has a multiplicative inverse. Those structures behave
very much like the rational numbers Q. Rational numbers are, in a sense, an extension of the
ring of integers, that is, they are constructed by including newly defined multiplicative inverses
(fractions) to the integers. The following definition makes the definition of a ield precise:

Definition 4.3.0.1 (Field). A field (F,+, ·) is a set F provided with two maps + : F×F→ F and
· : F×F→ F, called addition and multiplication, such that the following conditions hold:

• (F,+) is a commutative group, where the neutral element is denoted by 0.

• (F\{0} , ·) is a commutative group, where the neutral element is denoted by 1.

• (Distributivity) The equation g1 · (g2 +g3) = g1 ·g2 +g1 ·g3 holds for all g1,g2,g3 ∈ F.

If (F,+, ·) is a field and F′ ⊂ F is a subset of F, such that the restriction of addition and multi-
plication to F′ define a field with addition + : F′×F′→ F′ and multiplication · : F′×F′→ F′
on F′, then (F′,+, ·) is called a subfield of (F,+, ·) and (F,+, ·) is called an extension field of
(F′,+, ·).

Since fields are of importance in cryptography and number theory, many books exists on
that topic. For a general introduction see for example chapter 6, section 1 in Mignotte [1992],
or chapter 1, section 2 in Lidl and Niederreiter [1986].

Notation and Symbols 8. If there is no risk of ambiguity (about what the addition and multi-
plication maps of a field are), we frequently drop the symbols + and · and simply write F as

55

CHAPTER 4. ALGEBRA 4.3. FIELDS

notation for the field, keeping those maps implicit. In this case we also say that F is of field
type, indicating that F is not simply a set but a set together with an addition and a multiplication
map that satisfy the field axioms 4.3.0.1.

We call (F,+) the additive group of the field, write F∗ := F\{0} for the set of all elements
excluding the neutral element of addition and call the group (F∗, ·) the multiplicative group of
the field.

The characteristic of a field F, represented as char(F), is the smallest natural number n≥ 1
for which the n-fold sum of the multiplicative neutral element 1 equals zero, i.e. for which
∑

n
i=1 1 = 0. If such an n > 0 exists, the field is also said to have a finite characteristic. If, on

the other hand, every finite sum of 1 is such that it is not equal to zero, then the field is defined
to have characteristic 0.

Example 58 (Field of rational numbers). Probably the best known example of a field is the set
of rational numbers Q together with the usual definition of addition, subtraction, multiplication
and division. Since there is no natural number n ∈ N, such that ∑

n
j=0 1 = 0 in the set of rational

numbers, the characteristic of the field Q is given by char(Q) = 0.

216sage: QQ
217Rational Field

Example 59 (Field with two elements). It can be shown that, in any field, the neutral element
of addition 0 must be different from the neutral element of multiplication 1, that is, 0 ̸= 1
always holds in a field. From this, it follows that the smallest field must contain at least two
elements. As the following addition and multiplication tables show, there is indeed a field with
two elements, which is usually called F2:

Let F2 := {0,1} be a set that contains two elements and let addition and multiplication on
F2 be defined as follows:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Since 1+1 = 0 in the field F2, we know that the characteristic of F2 given by char(F2) = 2 and
the multiplicative subgroup F∗2 of F2 is given by the trivial group {1}.

218sage: F2 = GF(2)
219sage: F2(1) # Get an element from GF(2)
2201
221sage: F2(1) + F2(1) # Addition
2220
223sage: F2(1) / F2(1) # Division
2241

Exercise 46. Consider the ring of modular 5 arithmetics (Z5,+, ·) from example 14. Show that
(Z5,+, ·) is a field. What is the characteristic of Z5? Proof that the equation a ·x = b has only a
single solution x ∈ Z5 for any given a,b ∈ Z∗5.

Exercise 47. Consider the ring of modular 6 arithmetics (Z6,+, ·) from example 9. Show that
(Z6,+, ·) is not a field.

56

CHAPTER 4. ALGEBRA 4.3. FIELDS

4.3.1 Prime fields
As we have seen in the various examples of the previous sections, modular arithmetic behaves
similarly to the ordinary arithmetic of integers in many ways. This is due to the fact that re-
mainder class sets Zn are commutative rings with units 52.

However, we have also seen in 36 that, whenever the modulus is a prime number, every
remainder class other than the zero class has a modular multiplicative inverse. This is an impor-
tant observation, since it immediately implies that, in case the modulus is a prime number, the
remainder class set Zn is not just a ring but actually a field. Moreover, since ∑

n
j=0 1 = 0 in Zn,

we know that those fields have the finite characteristic n.

Notation and Symbols 9 (Prime Fields). Let p ∈ P be a prime number and (Zp,+, ·) the ring
of modular p arithmetics 52. To distinguish prime fields from arbitrary modular arithmetic
rings, we write (Fp,+, ·) for the ring of modular p arithmetics and call it the prime field of
characteristic p.

Prime fields are the foundation for many of the contemporary algebra-based cryptographic
systems, as they have some desirable properties. One of them is that any prime field of char-
acteristic p contain exactly p elements which can be represented on a computer with not more
then log2(p) many bits. On the other hand fields like the rational numbers, require a potentially
unbounded amount of bits for any full-precision representation. For a detailed introduction to
the theory of prime fields, see for example chapter 2 in Lidl and Niederreiter [1986], or chapter
6 in Mignotte [1992].

Since prime fields are special cases of modular arithmetic rings, addition and multiplication
can be computed by first doing normal integer addition and multiplication, and then considering
the remainder in Eucliden division by p as the result. For any prime field element x ∈ Fp, its
additive inverse (the negative) is given by −x = p− x mod p. For x ̸= 0 the multiplicative
inverse always exists and is given by x−1 = xp−2. Division is then defined by multiplication
with the multiplicative inverse as explained in 3.3. Alternative the multiplicative inverse can be
computed using the Extended Euclidean Algorithm as explained in 3.20.

Example 60. The smallest field is the field F2 of characteristic 2 as we have seen in example
59. It is the prime field of the prime number 2.

Example 61. The field F5 from example 14 as defined by its addition and multipliction table is
a prime field.

Example 62. To summarize the basic aspects of computation in prime fields, let us consider the
prime field F5 and simplify the following expression:(

2
3
−2
)
·2

A first thing to note is that since F5 is a field, all rules are identical to the rules we learned in
school when we where dealing with rational, real or complex numbers. This means we can use

57

CHAPTER 4. ALGEBRA 4.3. FIELDS

e.g. bracketing (distributivity) or addition as usual:(
2
3
−2
)
·2 =

2
3
·2−2 ·2 # distributive law

=
2 ·2

3
−2 ·2 4 mod 5 = 4

=
4
3
−4 # multiplicative inverse of 3 is 35−2 mod 5 = 2

= 4 ·2−4 # additive inverse of 4 is 5−4 = 1
= 4 ·2+1 8 mod 5 = 3
= 3+1 4 mod 5 = 4
= 4

In this computation, we computed the multiplicative inverse of 3 using the identity x−1 = xp−2

in a prime field. This is impractical for large prime numbers. Recall that another way of
computing the multiplicative inverse is the Extended Euclidean Algorithm (see 3.11). To refresh
our memory, the algorithm solves the equation x−1 · 3+ t · 5 = 1, for x−1, even though in this
case t is irrelevant. We get:

k rk x−1
k tk

0 3 1 ·
1 5 0 ·
2 3 1 ·
3 2 -1 ·
4 1 2 ·

So the multiplicative inverse of 3 in Z5 is 2, and, indeed, if we compute the product of 3 with
its multiplicative inverse 2 we get the neutral element 1 in F5.
Exercise 48 (Prime field F3). Construct the addition and multiplication table of the prime field
F3.
Exercise 49 (Prime field F13). Construct the addition and multiplication table of the prime field
F13.
Exercise 50. Consider the prime field F13 from exercise 49. Find the set of all pairs (x,y) ∈
F13×F13 that satisfy the equation

x2 + y2 = 1+7 · x2 · y2

Square Roots As we know from integer arithmetics some integers like 4 or 9 are squares of
other integers, as for example 4 = 22 and 9 = 32. However we also know that not all integers
are squares of other integers, as for example there is no integers x ∈ Z such that x2 = 2. If an
integer a is square of another integer b, then it make sense to define the square-root of a to be b.

In the context of prime fields an element that is a square of another element is also called a
quadratic residue and an element that is not a square of another element is called a quadratic
non-residue. Those notations are of particular importance in our studies on elliptic curves in
chapter 5, as only square numbers can actually be points on an elliptic curve.

To make the intuition of quadratic residues and their roots precise, let p ∈ P be a prime
number and Fp its associated prime field. Then a number x ∈ Fp is called a square root of
another number y ∈ Fp, if x is a solution to the following equation:

x2 = y (4.29)

58

CHAPTER 4. ALGEBRA 4.3. FIELDS

In this case, y is called a quadratic residue. On the other hand, if y is given and the quadratic
equation has no solution x , we call y a quadratic non-residue. For any y ∈ Fp, we denote the
set of all square roots of y in the prime field Fp as follows:

√
y := {x ∈ Fp | x2 = y} (4.30)

Informally speaking, quadratic residues are numbers such that we can take the square root of
them, while quadratic non-residues are numbers that don’t have square roots. The situation
therefore parallels the familiar case of integers, where some integers like 4 or 9 have square
roots and others like 2 or 3 don’t (as integers).

If y is a quadratic non-residue, then
√

y = /0 (an empty set), and if y = 0, then
√

y = {0}.
Moreover if y ̸= 0 is a quadratic residue then it has precisely two roots

√
y = {x, p− x} for

some x ∈ Fp. We adopt the convention to call the smaller one (when interpreted as an inte-
ger) as the positive square root and the larger one as the negative square root. If p ∈ P≥3
is an odd prime number with associated prime field Fp, then there are precisely (p + 1)/2
many quadratic residues and (p− 1)/2 quadratic non residues. A more detailed introduction
to quadratic residues and their square roots in addition with an introduction to algorithms that
compute square roots can be found, for example, in chapter1, section 1.5 in Cohen [2010].

Example 63 (Quadratic residues and roots in F5). Let us consider the prime field F5 14 again.
All square numbers can be found on the main diagonal of the multiplication table in example
14. As you can see, in F5 only the numbers 0, 1 and 4 have square roots and we get

√
0 = {0},√

1 = {1,4},
√

2 = /0,
√

3 = /0 and
√

4 = {2,3}. The numbers 0, 1 and 4 are therefore quadratic
residues, while the numbers 2 and 3 are quadratic non-residues.

In order to describe whether an element of a prime field is a square number or not, the so-
called Legendre symbol can sometimes be found in the literature, like in chapter 1, section 1.4
in Cohen [2010], which is why we will summarize it here:

Let p ∈ P be a prime number and y ∈ Fp an element from the associated prime field. Then
the Legendre symbol of y is defined as follows:

(
y
p

)
:=


1 if y has square roots
−1 if y has no square roots
0 if y = 0

(4.31)

Example 64. Looking at the quadratic residues and non residues in F5 from example 14 again,
we can deduce the following Legendre symbols, from example 63.(0

5

)
= 0,

(1
5

)
= 1,

(2
5

)
=−1,

(3
5

)
=−1,

(4
5

)
= 1 .

The Legendre symbol provides a criterion to decide whether or not an element from a prime
field has a quadratic root or not. This, however, is not just of theoretical use: The so-called
Euler criterion provides a compact way to actually compute the Legendre symbol. To see that,
let p ∈ P≥3 be an odd prime number and y ∈ Fp. Then the Legendre symbol can be computed
as follows: (

y
p

)
= y

p−1
2 . (4.32)

Example 65. Looking at the quadratic residues and non residues in F5 from example 63 again,

59

CHAPTER 4. ALGEBRA 4.3. FIELDS

we can compute the following Legendre symbols using the Euler criterion:(
0
5

)
= 0

5−1
2 = 02 = 0(

1
5

)
= 1

5−1
2 = 12 = 1(

2
5

)
= 2

5−1
2 = 22 = 4 =−1(

3
5

)
= 3

5−1
2 = 32 = 4 =−1(

4
5

)
= 4

5−1
2 = 42 = 1

Exercise 51. Consider the prime field F13 from exercise 49. Compute the Legendre symbol(x
13

)
and the set of roots

√
x for all elements x ∈ F13.

Hashing into prime fields

An important problem in cryptography is the ability to hash to (various subsets) of elliptic
curves. As we will see in chapter 5, those curves are often defined over prime fields, and hashing
to a curve might start with hashing to the prime field. It is therefore important to understand
how to hash into prime fields.

In 4.2, we looked at a few methods of hashing into the modular arithmetic rings Zn for
arbitrary n > 1. As prime fields are just special instances of those rings, all methods for hashing
into Zn functions can be used for hashing into prime fields, too.

4.3.2 Prime Field Extensions
Prime fields, as defined in the previous section, are basic building blocks in cryptography. How-
ever, as we will see in chapter 8 so-called pairing-based SNARK systems are crucially depen-
dent on certain group pairings 4.6 defined on elliptic curves over prime field extensions. In
this section we therefore introduce those extensions. A more detailed introduction can be found
for example in chapter 2 of Lidl and Niederreiter [1986]

Given some prime number p ∈ P, a natural number m ∈ N and an irreducible polynomial
P ∈ Fp[x] of degree m with coefficients from the prime field Fp, then a prime field extension
(Fpm ,+, ·) is defined as follows:

The set Fpm of the prime field extension is given by the set of all polynomials with a degree
less then m:

Fpm := {am−1xm−1 +ak−2xk−2 + . . .+a1x+a0 | ai ∈ Fp} (4.33)

The addition law of the prime field extension Fpm is given by the usual addition of polynomials
as defined in 3.24:

+ : Fpm×Fpm → Fpm ,(∑m
j=0 a jx j,∑m

j=0 b jx j) 7→ ∑
m
j=0(a j +b j)x j (4.34)

The multiplication law of the prime field extension Fpm is given by first multiplying the two
polynomials as defined in 3.25 and then divided the result by the irreducible polynomial p and
keep the remainder:

· : Fpm×Fpm → Fpm , (∑m
j=0 a jx j,∑m

j=0 b jx j) 7→
(
∑

2m
n=0 ∑

n
i=0 aibn−ixn) mod P (4.35)

60

CHAPTER 4. ALGEBRA 4.3. FIELDS

The neutral element of the additive group (Fpm,+) is given by the zero polynomial 0 and the
additive inverse is given by the polynomial with all negative coefficients. The neutral element of
the multiplicative group (F∗pm, ·) is given by the unit polynomial 1 and the multiplicative inverse
can be computed by the extended Euclidean algorithm.

We can see from the definition of Fpm that the field is of characteristic p, since the mul-
tiplicative neutral element 1 is equivalent to the multiplicative element 1 from the underlying
prime field, and hence ∑

p
j=0 1 = 0. Moreover, Fpm is finite and contains pm many elements,

since elements are polynomials of degree < m, and every coefficient a j can have p many differ-
ent values. In addition, we see that the prime field Fp is a subfield of Fpm that occurs when we
restrict the elements of Fpm to polynomials of degree zero.

One key point is that the construction of Fpm depends on the choice of an irreducible polyno-
mial, and, in fact, different choices will give different multiplication tables, since the remainders
from dividing a polynomial product by those polynomials will be different.

It can, however, be shown that the fields for different choices of P are isomorphic, which
means that there is a one-to-one correspondence between all of them. Consequently, from
an abstract point of view, they are the same thing. From an implementations point of view,
however, some choices are preferable to others because they allow for faster computations.

Remark 4. Similar to the way prime fields Fp are generated by starting with the ring of integers
and then dividing by a prime number p and keeping the remainder, prime field extensions Fpm

are generated by starting with the ring Fp[x] of polynomials and then dividing them by an
irreducible polynomial of degree m and keeping the remainder.

In fact it can be shown that Fpm is the set of all remainders when dividing any polynomial
Q ∈ Fp[x] by an rireducible polynomial P of degree m. This is analogous to how Fp is the set of
all remainders when dividing integers by p.

Any field Fpm constructed in the above manner is a field extension of Fp. To be more
general, a field Fpm2 is a field extension of a field Fpm1 , if and only if m1 divides m2. From this,
we can deduce that, for any given fixed prime number, there are nested sequences of subfields
whenever the power m j divides the power m j+1:

Fp ⊂ Fpm1 ⊂ ·· · ⊂ Fpmk (4.36)

To get a more intuitive picture of this, we construct an extension field of the prime field F3
in the following example, and we can see how F3 sits inside that extension field.

Example 66 (The Extension field F32). In exercise 48 we have constructed the prime field F3.
In this example, we apply the definition of a field extension 4.33 to construct the extension field
F32 . We start by choosing an irreducible polynomial of degree 2 with coefficients in F3. We try
P(t) = t2 + 1. Possibly the fastest way to show that P is indeed irreducible is to just insert all
elements from F3 to see if the result is ever zero. We compute as follows:

P(0) = 02 +1 = 1

P(1) = 12 +1 = 2

P(2) = 22 +1 = 1+1 = 2

This implies that P is irreducible, since all factors must be of the form (t−a) for a being a root
of P. The set F32 contains all polynomials of degrees lower than two, with coefficients in F3,
which are precisely as listed below:

F32 = {0,1,2, t, t +1, t +2,2t,2t +1,2t +2}

61

CHAPTER 4. ALGEBRA 4.3. FIELDS

As expected, our extension field contains 9 elements. Addition is defined as addition of poly-
nomials; for example (t +2)+(2t +2) = (1+2)t +(2+2) = 1. Doing this computation for all
elements gives the following addition table

+ 0 1 2 t t+1 t+2 2t 2t+1 2t+2
0 0 1 2 t t+1 t+2 2t 2t+1 2t+2
1 1 2 0 t+1 t+2 t 2t+1 2t+2 2t
2 2 0 1 r+2 t t+1 2t+2 2t 2t+1
t t t+1 t+2 2t 2t+1 2t+2 0 1 2

t+1 t+1 t+2 t 2t+1 2t+2 2t 1 2 0
t+2 t+2 t t+1 2t+2 2t 2t+1 2 0 1
2t 2t 2t+1 2t+2 0 1 2 t t+1 t+2

2t+1 2t+1 2t+2 2t 1 2 0 t+1 t+2 t
2t+2 2t+2 2t 2t+1 2 0 1 t+2 t t+1

As we can see, the group (F3,+) is a subgroup of the group (F32,+), obtained by only consid-
ering the first three rows and columns of this table.

We can use the addition table to deduce the additive inverse (the negative) of any element
from F32 . For example, in F32 we have −(2t +1) = t +2, since (2t +1)+(t +2) = 0

Multiplication needs a bit more computation, as we first have to multiply the polynomials,
and whenever the result has a degree ≥ 2, we have to apply a polynomial division algorithm
like 3 to divide the product by the polynomial P and keep the remainder. To see how this works,
let us compute the product of t +2 and 2t +2 in F32:

(t +2) · (2t +2) = (2t2 +2t + t +1) mod (t2 +1)

= (2t2 +1) mod (t2 +1) # 2t2 +1 : t2 +1 = 2+
2

t2 +1
= 2

This means that the product of t +2 and 2t +2 in F32 is 2. Performing this computation for all
elements gives the following multiplication table:

· 0 1 2 t t+1 t+2 2t 2t+1 2t+2
0 0 0 0 0 0 0 0 0 0
1 0 1 2 t t+1 t+2 2t 2t+1 2t+2
2 0 2 1 2t 2t+2 2t+1 t t+2 t+1
t 0 t 2t 2 t+2 2t+2 1 t+1 2t+1

t+1 0 t+1 2t+2 t+2 2t 1 2t+1 2 t
t+2 0 t+2 2t+1 2t+2 1 t t+1 2t 2
2t 0 2t t 1 2t+1 t+1 2 2t+2 t+2

2t+1 0 2t+1 t+2 t+1 2 2t 2t+2 t 1
2t+2 0 2t+2 t+1 2t+1 t 2 t+2 1 2t

As it was the case in previous examples, we can use the table to deduce the multiplicative
inverse of any non-zero element from F32 . For example, in F32 we have (2t + 1)−1 = 2t + 2,
since (2t +1) · (2t +2) = 1.

From the multiplication table, we can also see that the only quadratic residues in F32 are
from the set {0,1,2, t,2t}, with

√
0 = {0},

√
1 = {1,2},

√
2 = {t,2t},

√
t = {t +2,2t +1} and√

2t = {t +1,2t +2}.

62

CHAPTER 4. ALGEBRA 4.3. FIELDS

Since F32 is a field, we can solve equations as we would for other fields, (such as rational
numbers). To see that, let us find all x ∈ F32 that solve the quadratic equation (t +1)(x2 +(2t +
2)) = 2. We compute as follows:

(t +1)(x2 +(2t +2)) = 2 # 2 distributive law

(t +1)x2 +(t +1)(2t +2) = 2

(t +1)x2 +(t) = 2 # 2 add the additive inverse of t

(t +1)x2 +(t)+(2t) = (2)+(2t)

(t +1)x2 = 2t +2 # multiply with the multiplicative invers of t +1

(t +2)(t +1)x2 = (t +2)(2t +2) # multiply with the multiplicative invers of t +1

x2 = 2 # 2 is quadratic residue. Take the roots.
x ∈ {t,2t}

Computations in extension fields are arguably on the edge of what can reasonably be done with
pen and paper. Fortunately, Sage provides us with a simple way to do the computations.

225sage: Z3 = GF(3) # prime field
226sage: Z3t.<t> = Z3[] # polynomials over Z3
227sage: P = Z3t(t^2+1)
228sage: P.is_irreducible()
229True
230sage: F3_2.<t> = GF(3^2, name=’t’, modulus=P) # Extension

field F_3^2
231sage: F3_2
232Finite Field in t of size 3^2
233sage: F3_2(t+2)*F3_2(2*t+2) == F3_2(2)
234True
235sage: F3_2(2*t+2)^(-1) # multiplicative inverse
2362*t + 1
237sage: # verify our solution to (t+1)(x^2 + (2t+2)) = 2
238sage: F3_2(t+1)*(F3_2(t)**2 + F3_2(2*t+2)) == F3_2(2)
239True
240sage: F3_2(t+1)*(F3_2(2*t)**2 + F3_2(2*t+2)) == F3_2(2)
241True

Exercise 52. Consider the extension field F32 from the previous example and find all pairs of
elements (x,y) ∈ F32 , for which the following equation holds:

y2 = x3 +4 (4.37)

Exercise 53. Show that the polynomial Q = x2 + x+2 from F3[x] is irreducible. Construct the
multiplication table of F32 with respect to Q and compare it to the multiplication table of F32

from example 66.

Exercise 54. Show that the polynomial P= t3+t+1 from F5[t] is irreducible. Then consider the
extension field F53 defined relative to P. Compute the multiplicative inverse of (2t2 +4) ∈ F53

using the extended Euclidean algorithm. Then find all x∈ F53 that solve the following equation:

(2t2 +4)(x− (t2 +4t +2)) = (2t +3) (4.38)

63

CHAPTER 4. ALGEBRA 4.4. PROJECTIVE PLANES

Exercise 55. Consider the prime field F5. Show that the polynomial P = x2 + 2 from F5[x] is
irreducible. Implement the finite field F52 in sage.

4.4 Projective Planes
Projective planes are particular geometric constructs defined over a given field. In a sense,
projective planes extend the concept of the ordinary Euclidean plane by including “points at
infinity.” A detailed explanation of the ideas that lead to the definition of projective planes can
be found for example in chapter 2 of Ellis and Ellis [1992] or in appendix A of Silverman and
Tate [1994].

To understand the idea of constructing of projective planes, note that in an ordinary Eu-
clidean plane, two lines either intersect in a single point or are parallel. In the latter case, both
lines are either the same, that is, they intersect in all points, or do not intersect at all. A projec-
tive plane can then be thought of as an ordinary plane, but equipped with additional “point at
infinity” such that two different lines always intersect in a single point. Parallel lines intersect
“at infinity”.

Such an inclusion of infinity points makes projective planes particularly useful in the de-
scription of elliptic curves, as the description of such a curve in an ordinary plane needs an
additional symbol “the point at infinity” to give the set of points on the curve the structure of a
group 5.1. Translating the curve into projective geometry includes this “point at infinity” more
naturally into the set of all points on a projective plane.

To be more precise, let F be a field, F3 := F×F×F the set of all tuples of three elements
over F and x ∈ F3 with x = (X ,Y,Z). Then there is exactly one line Lx in F3 that intersects both
(0,0,0) and x, given by the set Lx = {(k ·X ,k ·Y,k ·Z) | k ∈ F}. A point in the projective plane
over F can then be defined as such a line if we exclude the intersection of that line with (0,0,0).
This leads to the following definition of a point in projective geometry:

[X : Y : Z] := {(k ·X ,k ·Y,k ·Z) | k ∈ F∗} (4.39)

Points in projective geometry are therefore lines in F3 where the intersection with (0,0,0) is
excluded. Given a field F the projective plane of that field is then defined as the set of all
points, excluding the point [0 : 0 : 0]:

FP2 := {[X : Y : Z] | (X ,Y,Z) ∈ F3 with (X ,Y,Z) ̸= (0,0,0)} (4.40)

It can be shown that a projective plane over a finite field Fpm contains p2m + pm +1 number of
elements.

To understand why the projective point [X : Y : Z] is also a line, consider the situation where
the underlying field F is the set of rational numbers Q. In this case, Q3 can be seen as the three-
dimensional space, and [X : Y : Z] is an ordinary line in this 3-dimensional space that intersects
zero and the point with coordinates X , Y and Z, such that the intersection with zero is excluded.

The key observation here is that points in the projective plane FP2 are lines in the 3-
dimensional space F3. However it should be kept in mind that, for finite fields, the terms
space and line share very little visual similarity with their counterparts over the set of rational
numbers.

It follows from this that points [X : Y : Z] ∈ FP2 are not simply described by fixed coor-
dinates (X ,Y,Z), but by sets of coordinates, where two different coordinates (X1,Y1,Z1) and
(X2,Y2,Z2) describe the same point if and only if there is some non-zero field element k ∈ F∗
such that (X1,Y1,Z1) = (k ·X2,k ·Y2,k ·Z2). Points [X : Y : Z] are called projective coordinates.

64

CHAPTER 4. ALGEBRA 4.4. PROJECTIVE PLANES

Notation and Symbols 10 (Projective coordinates). Projective coordinates of the form [X : Y : 1]
are descriptions of so-called affine points. Projective coordinates of the form [X : Y : 0] are
descriptions of so-called points at infinity. In particular, the projective coordinate [1 : 0 : 0]
describes the so-called line at infinity.

Example 67. Consider the field F3 from exercise 48 . As this field only contains three elements,
it does not take too much effort to construct its associated projective plane F3P2, as we know
that it only contains 13 elements.

To find F3P2, we have to compute the set of all lines in F3×F3×F3 that intersect (0,0,0),
excluding their intersection with (0,0,0). Since those lines are parameterized by tuples (x1,x2,x3),
we compute as follows:

[0 : 0 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,0,1),(0,0,2)}
[0 : 0 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,0,2),(0,0,1)}= [0 : 0 : 1]
[0 : 1 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,1,0),(0,2,0)}
[0 : 1 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,1,1),(0,2,2)}
[0 : 1 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,1,2),(0,2,1)}
[0 : 2 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,2,0),(0,1,0)}= [0 : 1 : 0]
[0 : 2 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,2,1),(0,1,2)}= [0 : 1 : 2]
[0 : 2 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(0,2,2),(0,1,1)}= [0 : 1 : 1]
[1 : 0 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,0,0),(2,0,0)}
[1 : 0 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,0,1),(2,0,2)}
[1 : 0 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,0,2),(2,0,1)}
[1 : 1 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,1,0),(2,2,0)}
[1 : 1 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,1,1),(2,2,2)}
[1 : 1 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,1,2),(2,2,1)}
[1 : 2 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,2,0),(2,1,0)}
[1 : 2 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,2,1),(2,1,2)}
[1 : 2 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(1,2,2),(2,1,1)}
[2 : 0 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,0,0),(1,0,0)}= [1 : 0 : 0]
[2 : 0 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,0,1),(1,0,2)}= [1 : 0 : 2]
[2 : 0 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,0,2),(1,0,1)}= [1 : 0 : 1]
[2 : 1 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,1,0),(1,2,0)}= [1 : 2 : 0]
[2 : 1 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,1,1),(1,2,2)}= [1 : 2 : 2]
[2 : 1 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,1,2),(1,2,1)}= [1 : 2 : 1]
[2 : 2 : 0] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,2,0),(1,1,0)}= [1 : 1 : 0]
[2 : 2 : 1] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,2,1),(1,1,2)}= [1 : 1 : 2]
[2 : 2 : 2] = {(k · x1,k · x2,k · x3) | k ∈ F∗3}= {(2,2,2),(1,1,1)}= [1 : 1 : 1]

These lines define the 13 points in the projective plane F3P:

F3P= {[0 : 0 : 1], [0 : 1 : 0], [0 : 1 : 1], [0 : 1 : 2], [1 : 0 : 0], [1 : 0 : 1],
[1 : 0 : 2], [1 : 1 : 0], [1 : 1 : 1], [1 : 1 : 2], [1 : 2 : 0], [1 : 2 : 1], [1 : 2 : 2]}

This projective plane contains 9 affine points, three points at infinity and one line at infinity.

65

CHAPTER 4. ALGEBRA 4.4. PROJECTIVE PLANES

To understand the ambiguity in projective coordinates a bit better, let us consider the point
[1 : 2 : 2]. As this point in the projective plane is a line in F3

3\{(0,0,0)}, it has the projective
coordinates (1,2,2) as well as (2,1,1), since the former coordinate gives the latter when multi-
plied in F3 by the factor 2. In addition, note that, for the same reasons, the points [1 : 2 : 2] and
[2 : 1 : 1] are the same, since their underlying sets are equal.

Exercise 56. Construct the so-called Fano plane, that is, the projective plane over the finite
field F2.

66

Chapter 5

Elliptic Curves

Generally speaking, elliptic curves are nothing but geometric objects in projective planes 4.4
over some given field, made up of points that satisfy certain equations. One of their key features
from the point of view of cryptography is that if the underlying field is of positive characteristic,
elliptic curves are finite, cyclic groups 4.1 and it is believed that the discrete logarithm problem
4.1.1 on many elliptic curve groups is hard, given that the underlying characteristic is large
enough. An in-depth introduction to elliptic curves is given for example in Silverman and Tate
[1994] and an introduction from a cryptographic point of view is given in Hoffstein et al. [2008].

A special class of elliptic curves are so-called pairing-friendly curves, which have a notation
of a group pairing 4.6 attached to them, that have cryptographically advantageous properties.

In this chapter, we introduce epileptic curves as they are used in pairing-based approaches to
the construction of SNARKs. The elliptic curves we consider are all defined over prime fields
or prime field extensions and the reader should be familiar with the contend of the previous
chapter on those notations.

5.1 Short Weierstrass Curves
In this section, we introduce short Weierstrass curves, which are the most general types of
curves over finite fields of characteristics 4.3 greater than 3 and start with their so called affine
representation. Introducing elliptic curves in their affine representation is probably not the most
common and conceptually cleanest way, but has the advantage that in the affine representation
an elliptic curve is just a set of pairs of numbers. We believe that such an introduction makes
elliptic curves more accessible to the beginner, since potential unfamilarity with projective co-
ordinates can be avoided. However, the affine representation has the disadvantage that a special
“point at infinity”, that is not a point on the curve, is necessary to describe the curve’s group
structure.

We then introduce the elliptic curve group law and describe elliptic curve scalar multipli-
cation, which is an instantiation of the exponential map of general cyclic groups 4.2. After
that, we look at the projective representation of elliptic curves, which has the advantage that no
special symbol is necessary to represent the point at infinity. As this representation is concep-
tually more straight forward, this is how elliptic curves are usually introduced in math classes.
We believe that the major drawback from a beginners point of view is that in the projective
representation, points are elemements from projective planes, which are classes of numbers.

We finish this section with an explicit equivalence that transforms affine representations into
projective representations and vice versa.

67

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

5.1.1 Affine Short Weierstrass form
Probably the least abstract and most straight-forward way to introduce elliptic curves for non-
mathematicians and beginners is the so-called affine representation of a short Weierstrass curve.
To see what this is, let F be a finite field of characteristic q with q > 3 and a,b ∈ F two field
elements such that the so called discriminant 4a3 + 27b2 is not equal to zero. Then a short
Weierstrass elliptic curve Ea,b(F) over F in its affine representation is the set of all pairs of
field elements (x,y) ∈ F×F that satisfy the short Weierstrass cubic equation y2 = x3 +a ·x+b,
together with a distinguished symbol O, called the point at infinity:

Ea,b(F) = {(x,y) ∈ F×F | y2 = x3 +a · x+b}
⋃
{O} (5.1)

The term “curve” is used here because, if an elliptic curve is defined over a characteristic zero
field, like the field Q of rational numbers, the set of all points (x,y)∈Q×Q that satisfy y2 = x3+
a · x+ b looks like a curve. We should note however that visualizing elliptic curves over finite
fields as “curves” has its limitations, and we will therefore not stress the geometric picture too
much, but focus on the computational properties instead. To understand the visual difference,
consider the following two elliptic curves:

1.5 1.0 0.5 0.5 1.0 1.5 2.0 2.5

3

2

1

1

2

3

2000 4000 6000 8000 10000

2000

4000

6000

8000

10000

Both elliptic curves are defined by the same short Weierstrass equation y2 = x3−2x+1, but
the first curve is defined over the rational numbers Q, that is, the pair (x,y) contains rational
numbers, while the second one is defined over the prime field F9973, which means that both
coordinates x and y are from the prime field F9973. Every blue dot represents a pair (x,y), that
is a solution to y2 = x3−2x+1. As we can see, the second curve hardly looks like a geometric
structure one would naturally call a curve. This shows that our geometric intuitions from Q are
obfuscated in curves over finite fields.

The equation 4a3+27b2 ̸= 0 ensures that the curve is non-singular, which loosely means that
the curve has no cusps or self-intersections in the geometric sense, if seen as an actual curve.
As we will see in 5.1.2, cusps and self-intersections would make the group law potentially
amibgious.

Throughout this book, the reader is advised to do as many computations in a pen-and-paper
fashion as possible, as this is helps getting a deeper understanding of the details. However,
when dealing with elliptic curves, computations can quickly become cumbersome and tedious,
and one might get lost in the details. Fortunately, Sage is very helpful in dealing with elliptic
curves. The following snippet shows a way to define elliptic curves and how to work with them
in Sage:

242sage: F5 = GF(5) # define the base field

68

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

243sage: a = F5(2) # parameter a
244sage: b = F5(4) # parameter b
245sage: # check discriminant
246sage: F5(6)*(F5(4)*a^3+F5(27)*b^2) != F5(0)
247True
248sage: # short Weierstrass curve over field F5
249sage: E = EllipticCurve(F5,[a,b]) # y^2 == x^3 + ax +b
250sage: # point on a curve
251sage: P = E(0,2) # 2^2 == 0^3 + 2*0 + 4
252sage: P.xy() # affine coordinates
253(0, 2)
254sage: INF = E(0) # point at infinity
255sage: try: # point at infinity has no affine coordinates
256....: INF.xy()
257....: except ZeroDivisionError:
258....: pass
259sage: P = E.plot() # create a plotted version

The following three examples give a more practical understanding of what an elliptic curve is
and how we can compute it. The reader is advised to read these examples carefully, and ideally,
to also carry out the computation themselves. We will repeatedly build on these examples in
this chapter, and use the second example throughout the entire book.

Example 68. Consider the prime field F5 from example 14. To define an elliptic curve over
F5, we have to choose two numbers a and b from that field. Assuming we choose a = 1 and
b = 1 then 4a3 +27b2 ≡ 1 (mod 5) from which follows that the corresponding elliptic curve
E1,1(F5) is given by the set of all pairs (x,y) from F5 that satisfy the equation y2 = x3 + x+1,
together with the special symbol O, which represents the “point at infinity”.

To get a better understanding of that curve, observe that if we choose arbitrarily the pair
(x,y) = (1,1), we see that 12 ̸= 13 +1+1 and hence (1,1) is not a point on the curve E1,1(F5).
On the other hand choosing for example (x,y) = (2,1) gives 12 = 23 +2+1 and hence the pair
(2,1) is a point on the curve E1,1(F5) (Remember that all computations are done in modulo 5
arithmetics).

Now since the set F5×F5 of all pairs (x,y) from F5 contains only 5 · 5 = 25 pairs, we can
compute the curve, by just inserting every possible pair (x,y) into the short Weierstrass equation
y2 = x3 + x+1. If the equation holds, the pair is a curve point, if not that means that the point
is not on the curve. Combining the result of this computation with the point at infinity gives the
curve as follows:

E1,1(F5) = {O,(0,1),(2,1),(3,1),(4,2),(4,3),(0,4),(2,4),(3,4)}

This means that the elliptic curve is a set of 9 elements, 8 of which are pairs of elements from
F5 and one special symbol O. Visualizing E1,1(F5) gives the following plot:

69

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In the development of SNARKs, it is sometimes necessary to do elliptic curve cryptogra-
phy “in a circuit", which basically means that the elliptic curve needs to be implemented in a
certain SNARK-friendly way. We will look at what this means in chapter 7. To be able to do
this efficiently, it is desirable to have curves with special properties. The following example
is a pen-and-paper version of such a curve, called Tiny-. We design this curve especially to
resemble a well known cryptographically secure curve, called Baby-jubjub, the latter of which
is extensively used in real-world SNARKs.

In the literature the Baby-jubjub curve is commonly introduced as a so called twisted Ed-
wards curve, which we will introduce in 5.3. However as we will see in 5.3, every twisted
Edwards curve is equivalent to a short Weierstrass curve and hence we start with an introduc-
tion of Tiny-Jubjub in its short Weierstrass incarnation. The interested reader is advised to study
this example carefully, as we will use it and build on it in various places throughout the book.

Example 69 (The Tiny-jubjub curve). Consider the prime field F13 from exercise 49. If we
choose a = 8 and b = 8, then 4a3 +27b2 ≡ 6 (mod 13) and the corresponding elliptic curve
is given by all pairs (x,y) from F13 such that y2 = x3 + 8x+ 8 holds. We call this curve the
Tiny-jubjub curve (in its affine short Weierstrass representation), or TJJ_13 for short.

Since the set F13×F13 of all pairs (x,y) from F13 contains only 13 ·13 = 169 pairs, we can
compute the curve by just inserting every possible pair (x,y) into the short Weierstrass equation
y2 = x3 +8x+8. We get the following result:

TJJ_13 = {O,(1,2),(1,11),(4,0),(5,2),(5,11),(6,5),(6,8),(7,2),(7,11),
(8,5),(8,8),(9,4),(9,9),(10,3),(10,10),(11,6),(11,7),(12,5),(12,8)} (5.2)

As we can see, the curve consists of 20 points; 19 pairs of elements from F13 and the point at
infinity. To get a visual impression of the TJJ_13 curve, we might plot all of its points (except
the point at infinity):

70

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

2 4 6 8 10 12
0

2

4

6

8

10

As we will see in what follows, this curve is rather special, as it is possible to represent it in two
alternative forms called the Montgomery and the twisted Edwards form (See sections 5.2 and
5.3, respectively).

Now that we have seen two pen-and-paper friendly elliptic curves, let us look at a curve, that
is used in actual cryptography. Cryptographically secure elliptic curves are not qualitatively
different from the curves we looked at so far, but the prime number modulus of their prime field
is much larger. Typical examples use prime numbers that have binary representations in the
magnitude of more than double the size of the desired security level. If, for example, a security
of 128 bits is desired, a prime modulus of binary size ≥ 256 is chosen. The following example
provides such a curve.

Example 70 (Bitcoin’s secp256k1 curve). To give an example of a real-world, cryptographically
secure curve, let us look at curve secp256k1, which is famous for being used in the public key
cryptography of Bitcoin. The prime field Fp of secp256k1 is defined by the following prime
number:

p =115792089237316195423570985008687907853269984665640564039457584007908834671663

The binary representation of this number needs 256 bits, which implies that the prime field
Fp contains approximately 2256 many elements, which is considered quite large. To get a better
impression of how large the base field is, consider that the number 2256 is approximately in the
same order of magnitude as the estimated number of atoms in the observable universe.

The curve secp256k1 is defined by the parameters a,b ∈ Fp with a = 0 and b = 7. Since
4 ·03+27 ·72 mod p = 1323, those parameters indeed define an elliptic curve given as follows:

secp256k1 = {(x,y) ∈ Fp×Fp | y2 = x3 +7 }

Clearly, the secp256k1 curve is too large to be useful in pen and paper computations, since
it can be shown that the number of its elements is a prime number r that also has a binary
representation of 256 bits:

r =115792089237316195423570985008687907852837564279074904382605163141518161494337

Cryptographically secure elliptic curves are therefore not useful in pen-and-paper computations,
but fortunately, Sage handles large curves efficiently:

260sage: p = 1157920892373161954235709850086879078532699846656405
64039457584007908834671663

71

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

261sage: # Hexadecimal representation
262sage: p.str(16)
263fffefffffc

2f
264sage: p.is_prime()
265True
266sage: p.nbits()
267256
268sage: Fp = GF(p)
269sage: secp256k1 = EllipticCurve(Fp,[0,7])
270sage: r = secp256k1.order() # number of elements
271sage: r.str(16)
272fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03641

41
273sage: r.is_prime()
274True
275sage: r.nbits()
276256

Exercise 57. Consider the curve E1(F) from example 68 and compute the set of all curve points
(x,y) ∈ E1(F).
Exercise 58. Consider the curve T JJ_13 from example 69 and compute the set of all curve
points (x,y) ∈ T JJ_13.

Exercise 59. Look up the definition of curve BLS12-381, implement it in Sage and compute the
number of all curve points.

Isomorphic affine short Weierstrass curves As explained in the previous part, elliptic curves
are defined by pairs of parameters (a,b) ∈ F×F for some field F. An important question in
classifying elliptic curves is then the task to decide which pairs of parameters (a,b) and (a′,b′)
instantiate equivalent curves in the sense that there is a 1:1 correspondence between the set of
curve points.

To be more precise let F be a field and (a,b) as well as (a′,b′) two pairs of parameters, such
that there is an invertible field element c ∈ F∗ with a′ = a · c4 and b′ = b · c6. Then the elliptic
curves Ea,b(F) and Ea′,b′(F) are called isomorphic and there is a map that maps curve points
onto curve points

I : Ea,b(F)→ Ea′,b′(F) :

{
(x,y)
O

7→

{
(c2 · x,c2 · y)
O

(5.3)

This map is a 1:1 correspondence and its inverse map is given by mapping the point at infinity
onto the point at infinity and each curve point (x,y) onto the curve point (c−2x,c−2y).

Example 71. Consider the short Weierstrass elliptic curve E1,1(F5) from example 68 and the
elliptic curve

E1,4(F5) := {(x,y) ∈ F5×F5 | y3 = x3 + x+4}
Inserting all pairs of elements (x,y)∈ F5×F5 into the short Weierstrass equation y3 = x3+x+4
of E1,4(F5) results in the following set of points:

E1,4(F5) = {O,(0,2),(0,3),(1,1),(1,4),(2,2),(2,3),(3,2),(3,3)}

72

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

As we can see, both curves are of the same order and indeed since 2 is an invertible element
from F5 with 1 = 24 · 1 and 4 = 26 · 1, E1,4(F) and E1,1(F) are isomorphic and the map I :
E1,1(F5)→ E1,4(F5) : (x,y) 7→ (4x,4y) from 5.3 defines a 1:1 correspondence. For example the
point (4,3) ∈ E1,1(F) is mapped onto the point I(4,3) = (4 ·4,4 ·3) = (1,2) ∈ E1,4(F).
Exercise 60. Let F be a finite field and (a,b) as well as (a′,b′) two pairs of parameters, and
c ∈ F∗ an invertible field element with a′ = a ·c4 and b′ = b ·c6. Show that in this case function
I 5.3 maps curve points onto curve points.

Exercise 61. Consider the tiny-jubjub curve from example 69 and the elliptic curve E5,12(F13)
defined as follows:

E5,12(F13) = {(x,y) ∈ F13×F13 | y2 = x3 +5x+12}

Show that T JJ_13 and E5,12(F13) are isomorphic. Then compute the set of all points from
E5,12(F13), construct I and map all points of T JJ_13 onto E5,12(F13).

Affine compressed representation As we have seen in example 70, cryptographically secure
elliptic curves are defined over large prime fields, where elements of those fields typically need
more than 255 bits of storage on a computer. Since elliptic curve points consist of pairs of those
field elements, they need double that amount of storage.

However, we can reduce the amount of space needed to represent a curve point by using a
technique called point compression. To understand this, note that for each given x ∈ F, there
are only 2 possible y ∈ F, such that the pair (x,y) is a point on an affine short Weierstrass curve,
since x and y have to satisfy the equation y2 = x3 + a · x+ b. From this follows that y can be
computed from x, since it is an element from the set

√
x3 +a · x+b of square roots 4.30, which

contains exactly two elements for x3+a ·x+b ̸= 0 and exactly one element for x3+a ·x+b = 0.
This implies that we can represent a curve point in compressed form by simply storing the

x coordinate together with a single bit called the sign bit, the latter of which deterministically
decides which of the two roots to choose. One convention could be to always choose the root
closer to 0 when the sign bit is 0, and the root closer to the order of F when the sign bit is 1. In
case the y coordinate is zero, both sign bits give the same result.

Example 72 (Tiny-jubjub). To understand the concept of compressed curve points a bit better,
consider the TJJ_13 curve from example 69 again. Since this curve is defined over the prime
field F13, and numbers between 0 and 13 need approximately 4 bits to be represented, each
TJJ_13 point on this curve needs 8 bits of storage in uncompressed form. The following set
represents the uncompressed form of the points on this curve:

TJJ_13 = {O,(1,2),(1,11),(4,0),(5,2),(5,11),(6,5),(6,8),(7,2),(7,11),
(8,5),(8,8),(9,4),(9,9),(10,3),(10,10),(11,6),(11,7),(12,5),(12,8)}

Using the technique of point compression, we can reduce the bits needed to represent the points
on this curve to 5 per point. To achieve this, we can replace the y coordinate in each (x,y) pair
by a sign bit indicating whether or not y is closer to 0 or to 13. As a result y values in the range
[0, . . . ,6] will have the sign bit 0, while y-values in the range [7, . . . ,12] will have the sign bit 1.
Applying this to the points in TJJ_13 gives the compressed representation as follows:

TJJ_13 = {O,(1,0),(1,1),(4,0),(5,0),(5,1),(6,0),(6,1),(7,0),(7,1),
(8,0),(8,1),(9,0),(9,1),(10,0),(10,1),(11,0),(11,1),(12,0),(12,1)}

73

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

Note that the numbers 7, . . . ,12 are the negatives (additive inverses) of the numbers 1, . . . ,6 in
modular 13 arithmetics and that −0 = 0.

To recover the uncompressed counterpart of, say, the compressed point (5,1), we insert the
x coordinate 5 into the short Weierstrass equation and get y2 = 53 +8 ·5+8 = 4. As expected,
4 is a quadratic residue in F13 with roots

√
4 = {2,11}. Since the sign bit of the point is 1,

we have to choose the root closer to the modulus 13, which is 11. The uncompressed point is
therefore (5,11).

5.1.2 Affine Group Law
One of the key properties of an elliptic curve is that it is possible to define a group law on the
set of its points such that the point at infinity serves as the neutral element and inverses are
reflections on the x-axis. The origin of this law can be understood in a geometric picture and is
known as the chord-and-tangent rule. In the affine representation of a short Weierstrass curve,
the rule can be described in the following way, using the symbol ⊕ for the group law:

• (Point at infinity) We define the point at infinityO as the neutral element of addition, that
is, we define P⊕O = P for all points P ∈ E(F).

• (Chord Rule) Let P,Q∈ E(F)\{O}with P ̸= Q be two distinct points on an elliptic curve,
neither of them the point at infinity. The sum of P and Q is defined as follows:
Consider the line l which intersects the curve in P and Q. If l intersects the elliptic curve
at a third point R′, define the sum R=P⊕Q of P and Q as the reflection of R′ at the x-axis.
If the line l does not intersect the curve at a third point, define the sum to be the point at
infinity O. Calling such a line a chord, it can be shown that no chord will intersect the
curve in more than three points. This implies that addition is not ambiguous.

• (Tangent Rule) Let P ∈ E(F)\{O} be a point on an elliptic curve, that is not the point at
infinity. The sum of P with itself (the doubling of P) is defined as follows:
Consider the line which is tangential to the elliptic curve at P, in the sense that it ”just
touches” the curve at that point. If this line intersects the elliptic curve at a second point
R′, the sum P⊕P is the reflection of R′ at the x-axis. If it does not intersect the curve at
a third point define the sum to be the point at infinity O. Calling such a line a tangent, it
can be shown that no such tangent will intersect the curve in more than two points. This
implies that doubling is not ambiguous.

It can be shown that the points of an elliptic curve form a commutative group with respect to the
previously stated chord-and-tangent rule such that O acts the neutral element, and the inverse
of any element P ∈ E(F) is the reflection of P on the x-axis.

The chord-and-tangent rule defines the group law of an elliptic curve geometrically and we
just stated it informally as an intuition. In order to apply those rules on a computer we have to
translate it into algebraic equations. To do so first observe that for any two given curve points
(x1,y1),(x2,y2) ∈ E(F) the identity x1 = x2 implies y2 =±y1 as explained in 5.1.1. This shows
that the following rules are a complete description of elliptic curve group (E(F),⊕):

• (The neutral element) The point at infinity O is the neutral element.

• (The inverse element) The inverse ofO isO. For any other curve point (x,y)∈E(F)\{O},
the inverse is given by (x,−y).

74

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

• (The group law) For any two curve points P,Q ∈ E(F), the group law is defined by one of
the following cases:

1. (Neutral element) If Q =O, then the group law is defined as P⊕Q = P.

2. (Inverse elements) If P = (x,y) and Q = (x,−y), the group law is defined as P⊕Q =
O.

3. (Tangent Rule) If P = (x,y) with y ̸= 0, the group law P⊕P = (x′,y′) is defined as
follows:

x′ =
(

3x2+a
2y

)2
−2x , y′ =

(
3x2+a

2y

)2
(x− x′)− y

4. (Chord Rule) If P = (x1,y1) and Q = (x2,y2) such that x1 ̸= x2, the group law R =
P⊕Q with R = (x3,y3) is defined as follows:

x3 =
(

y2−y1
x2−x1

)2
− x1− x2 , y3 =

(
y2−y1
x2−x1

)
(x1− x3)− y1

Notation and Symbols 11. Let F be a field and E(F) an elliptic curve over F. We write ⊕ for
the group law on E(F), (E(F),⊕) for the commutative group of elliptic curve points and use
the additive notation 3 on this group. If P is a point on a short Weierstrass curve with P = (x,0)
then P is called self-inverse.

As we can see, it is very efficient to compute inverses on elliptic curves. However, computing
the addition of elliptic curve points in the affine representation needs to consider many cases and
involves extensive finite field divisions. As we will see in 5.1.3, the addition law is simplified
in projective coordinates.

To get some practical impression of how the group law on an elliptic curve is computed,
let’s look at some actual cases:

Example 73. Consider the elliptic curve E1,1(F5) from example 68 again. As we have seen, the
curve conists of the following 9 elements:

E1,1(F5) = {O,(0,1),(2,1),(3,1),(4,2),(4,3),(0,4),(2,4),(3,4)}

We know that this set defines a group, so we can add any two elements from E1,1(F5) to get a
third element.

To give an example, consider the elements (0,1) and (4,2). Neither of these elements is
the neutral element O, and since, the x coordinate of (0,1) is different from the x coordinate
of (4,2), we know that we have to use the chord rule from definition 5.1.2 to compute the sum

75

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

(0,1)⊕ (4,2):

x3 =

(
y2− y1

x2− x1

)2

− x1− x2 # insert points

=

(
2−1
4−0

)2

−0−4 # simplify in F5

=

(
1
4

)2

+1 = 42 +1 = 1+1 = 2

y3 =

(
y2− y1

x2− x1

)
(x1− x3)− y1 # insert points

=

(
2−1
4−1

)
(0−2)−1 # simplify in F5

=

(
1
4

)
·3+4 = 4 ·3+4 = 2+4 = 1

So, in the elliptic curve E1,1(F5) we get (0,1)⊕ (4,2) = (2,1), and, indeed, the pair (2,1) is an
element of E1,1(F5) as expected. On the other hand, (0,1)⊕ (0,4) =O, since both points have
equal x coordinates and inverse y coordinates, rendering them inverses of each other. Adding
the point (4,2) to itself, we have to use the tangent rule from definition 5.1.2:

x′ =
(

3x2 +a
2y

)2

−2x # insert points

=

(
3 ·42 +1

2 ·2

)2

−2 ·4 # simplify in F5

=

(
3 ·1+1

4

)2

+3 ·4 =

(
4
4

)2

+2 = 1+2 = 3

y′ =
(

3x2 +a
2y

)2 (
x− x′

)
− y # insert points

=

(
3 ·42 +1

2 ·2

)2

(4−3)−2 # simplify in F5

= 1 ·1+3 = 4

So, in the elliptic curve E1,1(F5), we get the doubling of (4,2), that is, (4,2)⊕ (4,2) = (3,4),
and, indeed the pair (3,4) is an element of E1,1(F5) as expected. The group E1,1(F5) has no
self-inverse points other than the neutral elementO, since no point has 0 as its y coordinate. We
can invoke Sage to double-check the computations.

277sage: F5 = GF(5)
278sage: E1 = EllipticCurve(F5,[1,1])
279sage: INF = E1(0) # point at infinity
280sage: P1 = E1(0,1)
281sage: P2 = E1(4,2)
282sage: P3 = E1(0,4)

76

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

283sage: R1 = E1(2,1)
284sage: R2 = E1(3,4)
285sage: R1 == P1+P2
286True
287sage: INF == P1+P3
288True
289sage: R2 == P2+P2
290True
291sage: R2 == 2*P2
292True
293sage: P3 == P3 + INF
294True

Example 74 (Tiny-jubjub). Consider the TJJ_13-curve from example 69 again and recall that
its group of points is given as follows:

TJJ_13 = {O,(1,2),(1,11),(4,0),(5,2),(5,11),(6,5),(6,8),(7,2),(7,11),
(8,5),(8,8),(9,4),(9,9),(10,3),(10,10),(11,6),(11,7),(12,5),(12,8)}

In contrast to the group from the previous example, this group contains a self-inverse point,
which is different from the neutral element, defined by (4,0). To see what this means, observe
that we cannot add (4,0) to itself using the tangent rule 3 from definition 5.1.2, as the y co-
ordinate is zero. Instead, we have to use the rule for additive inverses, since 0 = −0. We get
(4,0)⊕ (4,0) = O in TJJ_13 and the point (4,0) is therefore the inverse of itself, as adding it
to itself results in the neutral element.

295sage: F13 = GF(13)
296sage: TJJ = EllipticCurve(F13,[8,8])
297sage: P = TJJ(4,0)
298sage: INF = TJJ(0) # Point at infinity
299sage: INF == P+P
300True
301sage: INF == 2*P
302True

Example 75. Consider the secp256k1 curve from example 70 again. The following code invokes
Sage to generate two random affine curve points and to add these points together:

303sage: P = secp256k1.random_point()
304sage: Q = secp256k1.random_point()
305sage: R = P + Q
306sage: P.xy()
307(9165144629816485750194684199386753038321866857560187089136786

6434921420707805, 25754311002480106771019520715610117101343
741241198319883563375437718503417166)

308sage: Q.xy()
309(7969559097712308488323486858081881377761476802975373176216559

5232190660177655, 68684293227869198689165877737179601331956
436838950129535296593200396782599333)

310sage: R.xy()

77

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

311(2109251298177794627094069449497669478256106805276674317854001
3275691352788487, 97693476685646125712652173232186068737613
274835707390457397794257070750127798)

Exercise 62. Consider the commutative group (TJJ_13,⊕) of the Tiny-jubjub-curve from ex-
ample 69.

1. Compute the inverse of (10,10), O, (4,0) and (1,2).

2. Solve the equation x⊕ (9,4) = (5,2) for some x ∈ TJJ_13

Scalar multiplication As we have seen in the previous section, elliptic curves E(F) have the
structure of a commutative group associated to them. It can be shown that this group is finite
and cyclic whenever the underlying field F is finite and as we know from 4.2 this implies, that
there is a notation of scalar multiplication associated to any elliptic curve over finite fields.

To understand this scalar multiplication, recall from 36 that every finite cyclic group of
order n has a generator g and an associated exponential map g(·) : Zn → G, where gx is the
x-fold product of g with itself.

Elliptic curve scalar multiplication is the exponential map written in additive notation. To
be more precise, let F be a finite field, E(F) an elliptic curve of order n, and P a generator of
E(F). Then the elliptic curve scalar multiplication with base P is defined as follows (where
[0]P =O and [m]P = P+P+ . . .+P is the m-fold sum of P with itself):

[·]P : Zn→ E(F) ; m 7→ [m]P

Therefore, elliptic curve scalar multiplication is an instantiation of the general exponential map
using additive instead of multiplicative notation.

Logarithmic Ordering As explained in 4.3 the inverse of the exponential map exists and
is usually called the elliptic curve discrete logarithm map. However we don’t know of any
efficient way to actually compute this map, which is one reason why some elliptic curves are
believed to be DL-secure 4.1.1.

One useful property of the exponential map in regard to the examples in this book is that
it can be used to greatly simplify pen-and-paper computations. As we have seen in example
73, computing the elliptic curve addition law takes quite a bit of effort when done without a
computer. However, when g is a generator of a small pen-and-paper elliptic curve group of
order n, we can use the exponential map to write the elements of the group in the following
way, which we call its logarithmic order with respect to the generator g:

G= {[1]g→ [2]g→ [3]g→ ··· → [n−1]g→O} (5.4)

For small pen and paper groups, the logarithmic order greatly simplifies complicated elliptic
curve addition to the much simpler case of modular n arithmetic. In order to add two curve
points P and Q, we only have to look up their discrete log relations with the generator P = [l]g
and Q = [m]g, and compute the group law as P⊕Q = [l +m]g, where l +m is addition in
modular n arithmetics.

The reader should keep in mind though, that many elliptic curves are believed to be DL-
secure 4.1.1, which implies that in those cases the logarithmic order can not be computed effi-
ciently.

In the following example, we will look at some implications of the fact that elliptic curves
are finite cyclic groups and apply the logarithmic order:

78

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

Example 76. Consider the elliptic curve group E1,1(F5) from example 68. Since it is a finite
cyclic group of order 9, and the prime factorization of 9 is 3 · 3, we can use the fundamental
theorem of finite cyclic groups 4.1 to reason about all its subgroups. In fact, since the only
factors of 9 are 1, 3 and 9, we know that E1,1(F5) has the following subgroups:

• E1,1(F5)[9] is a subgroup of order 9. By definition, any group is a subgroup of itself.

• E1,1(F5)[3] = {(2,1),(2,4),O} is a subgroup of order 3. This is the subgroup associated
to the prime factor 3.

• E1,1(F5)[1] = {O} is a subgroup of order 1. This is the trivial subgroup.

Moreover, since E1,1(F5) and all its subgroups are cyclic, we know from 36 that they must
have generators. For example, the curve point (2,1) is a generator of the order 3 subgroup
E1,1(F5)[3], since every element of E1,1(F5)[3] can be generated by repeatedly adding (2,1) to
itself:

[1](2,1) = (2,1)
[2](2,1) = (2,4)
[3](2,1) =O

Since (2,1) is a generator, we know from 4.1 that it gives rise to an exponential map from the
finite field F3 onto G2 defined by scalar multiplication:

[·](2,1) : F3→ E1,1(F5)[3] : x 7→ [x](2,1)

To give an example of a generator that generates the entire group E1,1(F5), consider the point
(0,1). Applying the tangent rule repeatedly, we compute as follows:

[0](0,1) = O
[2](0,1) = (4,2)
[4](0,1) = (3,4)
[6](0,1) = (2,4)
[8](0,1) = (0,4)

[1](0,1) = (0,1)
[3](0,1) = (2,1)
[5](0,1) = (3,1)
[7](0,1) = (4,3)
[9](0,1) = O

Again, since (0,1) is a generator, we know from 4.1 that it gives rise to an exponential map.
However, since the group order is not a prime number, the exponential map does not map from
any field, but from the ring Z9 of modular 9 arithmetics:

[·](0,1) : Z9→ E1,1(F5) : x 7→ [x](0,1)

Using the generator (0,1) and its associated exponential map, we can write E(F1) in logarithmic
order with respect to (0,1) as explained in 5.1.2. We get the following:

E1,1(F5) = {(0,1)→ (4,2)→ (2,1)→ (3,4)→ (3,1)→ (2,4)→ (4,3)→ (0,4)→O}

This indicates that the first element is a generator, and the n-th element is the scalar product of
n and the generator. To see how logarithmic orders like this simplify the computations in small
elliptic curve groups, consider example 73 again. In that example, we use the chord-and-tangent
rule to compute (0,1)⊕ (4,2). Now, in the logarithmic order of E1(F), we can compute that
sum much easier, since we can directly see that (0,1) = [1](0,1) and (4,2) = [2](0,1). We can
then deduce (0,1)⊕ (4,2) = (2,1) immediately, since [1](0,1)⊕ [2](0,1) = [3](0,1) = (2,1).

79

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

To give another example, we can immediately see that (3,4)⊕ (4,3) = (4,2), without do-
ing any expensive elliptic curve addition, since we know (3,4) = [4](0,1) as well as (4,3) =
[7](0,1) from the logarithmic ordering of E1,1(F5). Since 4+ 7 = 2 in Z9, the result must be
[2](0,1) = (4,2).

Finally we can use E1,1(F5) as an example to understand the concept of cofactor clearing
from 4.5. Since the order of E1,1(F5) is 9, we only have a single factor, which happen to be the
cofactor as well. Cofactor clearing then implies that we can map any element from E1,1(F5)
onto its prime factor group E1,1(F5)[3] by scalar multiplication with 3. For example, taking the
element (3,4), which is not in E1,1(F5)[3], and multiplying it with 3, we get [3](3,4) = (2,1),
which is an element of E1,1(F5)[3] as expected.

In the following example, we will look at the subgroups of the tiny-jubjub curve, define
generators, and compute the logarithmic order for pen-and-paper computations. Then we take
another look at the principle of cofactor clearing.

Example 77. Consider the tiny-jubjub curve TJJ_13 from example 69 again. Since the order of
TJJ_13 is 20, and the prime factorization of 20 is 22 · 5, we know that the TJJ_13 contains a
“large” prime-order subgroup of size 5 and a small prime oder subgroup of size 2.

To compute those groups, we can apply the technique of cofactor clearing in a try-and-repeat
loop. We start the loop by arbitrarily choosing an element P ∈ TJJ_13, then multiplying that
element with the cofactor of the group that we want to compute. If the result is O, we try a
different element and repeat the process until the result is different from the point at infinity O.

To compute a generator for the small prime-order subgroup (TJJ_13)[2], first observe that
the cofactor is 10, since 20 = 2 ·10. We then arbitrarily choose the curve point (5,11)∈ TJJ_13
and compute [10](5,11) = O. Since the result is the point at infinity, we have to try another
curve point, say (9,4). We get [10](9,4) = (4,0) and we can deduce that (4,0) is a generator of
(TJJ_13)[2]. Logarithmic order then gives the following order:

(TJJ_13)[2] = {(4,0)→O}

This is expected, since we know from example 74 that (4,0) is self-inverse, with (4,0)⊕(4,0)=
O. We double check the computations using Sage:

312sage: F13 = GF(13)
313sage: TJJ = EllipticCurve(F13,[8,8])
314sage: P = TJJ(5,11)
315sage: INF = TJJ(0)
316sage: 10*P == INF
317True
318sage: Q = TJJ(9,4)
319sage: R = TJJ(4,0)
320sage: 10*Q == R
321True

We can apply the same reasoning to the “large” prime-order subgroup (TJJ_13)[5], which
contains 5 elements. To compute a generator for this group, first observe that the associ-
ated cofactor is 4, since 20 = 5 · 4. We choose the curve point (9,4) ∈ TJJ_13 again, and
compute [4](9,4) = (7,11). Since the result is not the point at infinity, we know that (7,11)
is a generator of (TJJ_13)[5]. Using the generator (7,11), we compute the exponential map

80

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

[·](7,11) : F5→ TJJ_13[5] and get the following:

[0](7,11) =O
[1](7,11) = (7,11)
[2](7,11) = (8,5)
[3](7,11) = (8,8)
[4](7,11) = (7,2)

We can use this computation to write the large-order prime group (TJJ_13)[5] of the tiny-jubjub
curve in logarithmic order, which we will use quite frequently in what follows. We get the
following:

(TJJ_13)[5] = {(7,11)→ (8,5)→ (8,8)→ (7,2)→O} (5.5)

From this, we can immediately see, for example that (8,8)⊕ (7,2) = (8,5), since 3+4 = 2 in
F5.

From the previous two examples, the reader might get the impression that elliptic curve
computation can be largely replaced by modular arithmetics. This however, is not true in gen-
eral, but only an artifact of small groups, where it is possible to write the entire group in a
logarithmic order.

Exercise 63. Consider example 76 and compute the set {[1](0,1), [2](0,1), . . . , [8](0,1, [9](0,1)}
using the tangent rule only.

Exercise 64. Consider example 77 and compute the scalarmultiplications [10](5,11) as well as
[10](9,4) and [4](9,4) with pen and paper using the algorithm from exercise 37.

5.1.3 Projective short Weierstrass form
As we have seen in the previous section, describing elliptic curves as pairs of points that satisfy
a certain equation is relatively straight-forward. However, in order to define a group structure
on the set of points, we had to add a special point at infinity to act as the neutral element.

Recalling from the definition of projective planes 4.4, we know that points at infinity are
handled as ordinary points in projective geometry. Therefore, it makes sense to look at the
definition of a short Weierstrass curve in projective geometry.

To see what a short Weierstrass curve in projective coordinates is, let F be a finite field of
order q and characteristic > 3, let a,b ∈ F be two field elements such that 4a3 +27b2 mod q ̸=
0 and let FP2 be the projective plane over F as introduced in 4.4. Then a projective short
Weierstrass elliptic curve over F is the set of all points [X : Y : Z] ∈ FP2 from the projective
plane that satisfy the cubic equation Y 2 ·Z = X3 +a ·X ·Z2 +b ·Z3:

E(FP2) = {[X : Y : Z] ∈ FP2 | Y 2 ·Z = X3 +a ·X ·Z2 +b ·Z3} (5.6)

To understand how the point at infinity is unified in this definition, recall from 4.4 that, in
projective geometry, points at infinity are given by projective coordinates [X : Y : 0]. Inserting
representatives (x1,y1,0) ∈ [X : Y : 0] from those coordinates into the defining cubic equation
5.6 results in the following identity:

y2
1 ·0 = x3

1 +a · x1 ·02 +b ·03 ⇔
0 = x3

1

81

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

This implies X = 0 and shows that the only projective point at infinity, that is also a point
on a projective short Weierstrass curve is the class [0,1,0] = {(0,y,0) | y ∈ F}. The point
[0 : 1 : 0] is the projective representation of the point at infinity O in the affine representation.
The projective representation of a short Weierstrass curve, therefore, has the advantage that it
does not need a special symbol to represent the point at infinity from the affine definition.
Example 78. To get an intuition of how an elliptic curve in projective geometry looks, consider
curve E1,1(F5) from example 68. We know that, in its affine representation, the set of points on
the affine short Weierstrass curve is given as follows:

E1,1(F5) = {O,(0,1),(2,1),(3,1),(4,2),(4,3),(0,4),(2,4),(3,4)} (5.7)

This is defined as the set of all pairs (x,y) ∈ F5×F5 such that the affine short Weierstrass
equation y2 = x3 +ax+b with a = 1 and b = 1 is satisfied.

To find the set of elements of E1,1(F5) in the projective representation of a short Weierstrass
curve with the same parameters a = 1 and b = 1, we have to compute the set of projective points
[X : Y : Z] from the projective plane F5P2 that satisfy the following homogenous cubic equation
for any representative (x1,y1,z1) ∈ [X : Y : Z]:

y2
1z1 = x3

1 +1 · x1z2
1 +1 · z3

1 (5.8)

We know from 4.4 that the projective plane F5P2 contains 52 +5+1 = 31 elements, so we can
take the effort and insert all elements into equation 5.8 and see if both sides match.

For example, consider the projective point [0 : 4 : 1]. We know from 4.39 that this point in
the projective plane represents the following line in F3

5\{(0,0,0)}:

[0 : 4 : 1] = {(0,4,1),(0,3,2),(0,2,3),(0,1,4)} (5.9)

To check whether or not [0 : 4 : 1] satisfies 5.8, we can insert any representative, in other words,
any element from 5.9. Each element satisfies the equation if and only if all other elements
satisfy the equation. So, we insert (0,3,2) and get the following result:

32 ·2 = 03 +1 ·0 ·22 +1 ·23⇔ 3 = 3

This tells us that the affine point [0 : 4 : 1] is indeed a solution to the equation 5.8, but we could
just as well have inserted any other representative. For example, inserting (0,1,4) also satisfies
5.8:

12 ·4 = 03 +1 ·0 ·42 +1 ·43⇔ 4 = 4

To find the projective representation of E1,1(F5), we first observe that the projective line at
infinity [1 : 0 : 0] is not a curve point on any projective short Weierstrass curve, since it cannot
satisfy the defining equation in 5.6 for any parameter a and b. Therefore, we can exclude it
from our consideration.

Moreover, a point at infinity [X : Y : 0] can only satisfy the equation in 5.6 for any a and b, if
X = 0, which implies that the only point at infinity relevant for short Weierstrass elliptic curves
is [0 : 1 : 0], since [0 : k : 0] = [0 : 1 : 0] for all k ∈ F∗. Therefore, we can exclude all points at
infinity except the point [0 : 1 : 0].

All points that remain are the affine points [X : Y : 1]. Inserting all of them into 5.8 we get
the set of all projective curve points as follows:

E1(F5P2) = {[0 : 1 : 0], [0 : 1 : 1], [2 : 1 : 1], [3 : 1 : 1],
[4 : 2 : 1], [4 : 3 : 1], [0 : 4 : 1], [2 : 4 : 1], [3 : 4 : 1]}

82

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

If we compare this with the affine representation, we see that there is a 1:1 correspondence
between the points in the affine representation in 5.7 and the affine points in projective ge-
ometry, and that the projective point [0 : 1 : 0] represents the additional point O in the affine
representation.

Exercise 65. Consider example 78 and compute the set ?? by inserting all points from the
projective plane F5P2 into the defining projective short Weierstrass equation.

Exercise 66. Compute the projective representation of the tiny-jubjub curve and the logarithmic
order of its large prime-order subgroup with respect to the generator [7 : 11 : 1] in projective
coordinates.

Projective Group law As we have seen in section 5.1.2, one of the key properties of an el-
liptic curve is that it comes with a definition of a group law on the set of its points, described
geometrically by the chord-and-tangent rule 5.1.2. This rule was kind of intuitive, with the ex-
ception of the distinguished point at infinity, which appeared whenever the chord or the tangent
did not have a third intersection point with the curve.

One of the key features of projective coordinates is that, in projective space, it is guaranteed
that any chord will always intersect the curve in three points, and any tangent will intersect it in
two points. So, the geometric picture simplifies, as we don’t need to consider external symbols
and associated cases. The price to pay for this mathematical simplification is of course that for
a beginner, projective coordinates might be less intuitive.

It can be shown that the points of an elliptic curve in projective space form a commutative
group with respect to the tangent-and-chord rule such that the projective point [0 : 1 : 0] is
the neutral element, and the additive inverse of a point [X : Y : Z] is given by [X : −Y : Z].
The addition law is usually described by the following algorithm, minimizing the number of
necessary additions and multiplications in the base field.

Exercise 67. Consider example 78 again. Compute the following expression for projective
points on E1(F5P2) using algorithm 7:

• [0 : 1 : 0]⊕ [4 : 3 : 1]

• [0 : 3 : 0]⊕ [3 : 1 : 2]

• −[0 : 4 : 1]⊕ [3 : 4 : 1]

• [4 : 3 : 1]⊕ [4 : 2 : 1]

and then solve the equation [X : Y : Z]⊕ [0 : 1 : 1] = [2 : 4 : 1] for some point [X : Y : Z] from the
projective short Weierstrass curve E1(F5P2).

Exercise 68. Compare the affine addition law for short Weierstrass curves with the projective
addition rule. Which branch in the projective rule corresponds to which case in the affine law?

Coordinate Transformations As we can see by comparing the examples 78 and 78, there
is a close relation between the affine and the projective representation of a short Weierstrass
curve. This is not a coincidence. In fact, from a mathematical point of view, projective and
affine short Weierstrass curves describe the same thing, as there is a one-to-one correspondence
(an isomorphism) between both representations for any parameters a and b.

To specify the correspondence, let E(F) and E(FP2) be an affine and a projective short
Weierstrass curve defined for the same parameters a and b. Then the following function maps

83

CHAPTER 5. ELLIPTIC CURVES 5.1. SHORT WEIERSTRASS CURVES

Algorithm 7 Projective short Weierstrass Addition Law
Require: [X1 : Y1 : Z1], [X2 : Y2 : Z2] ∈ E(FP2)

procedure ADD-RULE([X1 : Y1 : Z1], [X2 : Y2 : Z2])
if [X1 : Y1 : Z1] == [0 : 1 : 0] then

[X3 : Y3 : Z3]← [X2 : Y2 : Z2]
else if [X2 : Y2 : Z2] == [0 : 1 : 0] then

[X3 : Y3 : Z3]← [X1 : Y1 : Z1]
else

U1← Y2 ·Z1
U2← Y1 ·Z2
V1← X2 ·Z1
V2← X1 ·Z2
if V1 ==V2 then

if U1 ̸=U2 then [X3 : Y3 : Z3]← [0 : 1 : 0]
else

if Y1 == 0 then [X3 : Y3 : Z3]← [0 : 1 : 0]
else

W ← a ·Z2
1 +3 ·X2

1
S← Y1 ·Z1
B← X1 ·Y1 ·S
H←W 2−8 ·B
X ′← 2 ·H ·S
Y ′←W · (4 ·B−H)−8 ·Y 2

1 ·S2

Z′← 8 ·S3

[X3 : Y3 : Z3]← [X ′ : Y ′ : Z′]
end if

end if
else

U =U1−U2
V =V1−V2
W = Z1 ·Z2
A =U2 ·W −V 3−2 ·V 2 ·V2
X ′ =V ·A
Y ′ =U · (V 2 ·V2−A)−V 3 ·U2
Z′ =V 3 ·W
[X3 : Y3 : Z3]← [X ′ : Y ′ : Z′]

end if
end if
return [X3 : Y3 : Z3]

end procedure
Ensure: [X3 : Y3 : Z3] == [X1 : Y1 : Z1]⊕ [X2 : Y2 : Z2]

84

CHAPTER 5. ELLIPTIC CURVES 5.2. MONTGOMERY CURVES

points from the affine representation to points from the projective representation of a short
Weierstrass curve. In other words, if the pair of field elements (x,y) satisfies the affine short
Weierstrass equation y2 = x3 +ax+b, then all homogeneous coordinates (x1,y1,z1) ∈ [x : y : 1]
satisfy the projective short Weierstrass equation y2

1 · z1 = x3
1 +ay1 · z2

1 +b · z3
1.

I : E(F)→ E(FP2) :
(x,y) 7→ [x : y : 1]
O 7→ [0 : 1 : 0] (5.10)

This map is a 1 : 1 correspondense, which means that it maps exactly one point from the affine
representation onto one point from the projective representation. It is therefore possible to
invert this map in order to map points from the projective representation to points from the
affine representation of a short Weierstrass curve. The inverse is given by the following map:

I−1 : E(FP2)→ E(F) : [X : Y : Z] 7→

{
(X

Z ,
Y
Z) if Z ̸= 0

O if Z = 0
(5.11)

Note that the only projective point [X : Y : Z] with Z = 0 that satisfies the equation in 5.6 is
given by the class [0 : 1 : 0]. A key feature of I and its inverse is that both maps respect the
group structure, which means that the neutral element is mapped to the neutral element, i.e.
I(O) = [0 : 1 : 0] and that I((x1,y1)⊕(x2,y2)) is equal to I(x1,y1)⊕ I(x2,y2) and the same holds
true for the inverse map I−1.

Maps with these properties are called group isomorphisms, and, from a mathematical point
of view, the existence of function I implies that the affine and the projective definition of short
Weierstrass elliptic curves are equivalent and represent the same mathematical thing in just two
different views. Implementations can therefore choose freely between both representations.

5.2 Montgomery Curves
Both the affine and the projective short Weierstrass forms are the most general ways to describe
elliptic curves over fields of characteristics larger then 3. However in certain situations it might
be advantageous to consider more specialized representations of elliptic curves for example to
get faster algorithms for the group law or the scalar multiplication.

As we will see in this section so called Montgomery curves are a subset of all elliptic curves
that can be written in the Montgomery form. Those curves allow for constant time algorithms
for (specializations of) the elliptic curve scalar multiplication.

To see what a Montgomery curve in its affine representation is, let F be a finite field of
characteristic p > 3, and let A,B ∈ F be two field elements such that B ̸= 0 and A2 ̸= 4. A
Montgomery elliptic curve M(F) over F in its affine representation is then the set of all pairs of
field elements (x,y)∈F×F that satisfy the Montgomery cubic equation B ·y2 = x3+A ·x2+x,
together with a distinguished symbol O, called the point at infinity.

M(F) = {(x,y) ∈ F×F | B · y2 = x3 +A · x2 + x}
⋃
{O} (5.12)

Despite the fact that Montgomery curves look different from short Weierstrass curves, they
are just a special way to describe certain short Weierstrass curves. In fact, every curve in affine
Montgomery form can be transformed into an elliptic curve in short Weierstrass form. To see
that, assume that a curve is given in Montgomery form By2 = x3+Ax2+x. The associated short
Weierstrass form is then defined as follows:

85

CHAPTER 5. ELLIPTIC CURVES 5.2. MONTGOMERY CURVES

y2 = x3 +
3−A2

3 ·B2 · x+
2 ·A3− (9 mod q) ·A

(27 mod q) ·B3 (5.13)

On the other hand, not every elliptic curve E(F) over base field F given in short Weierstrass
form y2 = x3 + ax+ b can be converted into Montgomery form. For a short Weierstrass curve
to be a Montgomery curve the following conditions need to hold:

• The number of points on E(F) is divisible by 4

• The polynomial z3 +az+b ∈ F[z] has at least one root z0 ∈ F

• 3z2
0 +a is a quadratic residue in F∗.

When these conditions are satisfied, then for s = (
√

3z2
0 +a)−1, a Montgomery curve is

defined by the following equation:

sy2 = x3 +(3z0s)x2 + x (5.14)

In the following example we will look at the tiny-jubjub curve again, and show that it is
actually a Montgomery curve.

Example 79. Consider the prime field F13 and the tiny-jubjub curve TJJ_13 from example 69.
To see that it is a Montgomery curve, we have to check the requirements from 5.2:

Since the order of TJJ_13 is 20, which is divisible by 4, the first requirement is met. More-
over, since a = 8 and b = 8, we have to check that the polynomial P(z) = z3 +8z+8 has a root
in F13. To see this we simply evaluate P at all numbers z ∈ F13, and find that P(4) = 0, so a
root is given by z0 = 4. In the last step, we have to check that 3 · z2

0 + a has a root in F∗13. We
compute as follows:

3z2
0 +a = 3 ·42 +8

= 3 ·3+8
= 9+8
= 4

To see that 4 is a quadratic residue in F13, we use Euler’s criterion (4.32) to compute the
Legendre symbol of 4. We get the following:(

4
13

)
= 4

13−1
2 = 46 = 1

This means that 4 does have a root in F13. In fact, computing a root of 4 in F13 is easy, since
the integer root 2 of 4 is also one of its roots in F13. The other root is given by 13−4 = 9.

Since all requirements are meet, we have shown that TJJ_13 is indeed a Montgomery curve,
and we can use 5.14 to compute its associated Montgomery form. We compute as follows:

s =
(√

3 · z2
0 +8

)−1

= 2−1 # Fermat’s little theorem

= 213−2 # 2048 mod 13 = 7
= 7

86

CHAPTER 5. ELLIPTIC CURVES 5.2. MONTGOMERY CURVES

The defining equation for the Montgomery form of the tiny-jubjub curve is then given by the
following equation:

sy2 = x3 +(3z0s)x2 + x ⇒
7 · y2 = x3 +(3 ·4 ·7)x2 + x ⇔
7 · y2 = x3 +6x2 + x

So, we get the defining parameters as B = 7 and A = 6, and we can write the tiny-jubjub curve
in its affine Montgomery representation as follows:

TJJ_13 = {(x,y) ∈ F13×F13 | 7 · y2 = x3 +6x2 + x}
⋃
{O} (5.15)

Now that we have the abstract definition of the tiny-jubjub curve in Montgomery form,
we can compute the set of points by inserting all pairs (x,y) ∈ F13×F13 similarly to how we
computed the curve points in its short Weierstrass representation. We get the following:

M_TJJ_13 = {O,(0,0),(1,4),(1,9),(2,4),(2,9),(3,5),(3,8),(4,4),(4,9),
(5,1),(5,12),(7,1),(7,12),(8,1),(8,12),(9,2),(9,11),(10,3),(10,10)}

322sage: F13 = GF(13)
323sage: L_MTJJ = []
324....: for x in F13:
325....: for y in F13:
326....: if F13(7)*y^2 == x^3 + F13(6)*x^2 +x:
327....: L_MTJJ.append((x,y))
328sage: MTJJ = Set(L_MTJJ)
329sage: # does not compute the point at infinity

Exercise 69. Consider example 79 and compute the set ?? by inserting every pair of field ele-
ments (x,y) ∈ F13×F13 into the defining Montgomery equation.

Exercise 70. Consider the elliptic curve E1(F) from example 68 and show that E1(F) is not a
Montgomery curve.

Exercise 71. Consider the elliptic curve secp256k1 from example 70 and show that secp256k1
is not a Montgomery curve.

Affine Montgomery coordinate transformation Comparing the Montgomery representa-
tion of the previous example 5.15 with the short Weierstrass representation of the same curve
5.2, we see that there is a 1:1 correspondence between the curve points in both examples. This
is no accident. In fact, if MA,B is a Montgomery curve, and Ea,b a short Weierstrass curve with
a = 3−A2

3B2 and b = 2A2−9A
27B3 then the following function maps all points in Montgomery represen-

tation onto the points in short Weierstrass representation:

I : MA,B→ Ea,b : (x,y) 7→
(

3x+A
3B

,
y
B

)
(5.16)

The point at infinity of the Montgomery form is mapped to the point at infinity of the short
Weierstrass form. This map is a 1:1 correspondence (an isomorphism), and its inverse map is

87

CHAPTER 5. ELLIPTIC CURVES 5.2. MONTGOMERY CURVES

given by the following equation (where z0 is a root of the polynomial z3 + az+ b ∈ F[z] and

s = (
√

3z2
0 +a)−1).

I−1 : Ea,b→MA,B : (x,y) 7→ (s · (x− z0),s · y) (5.17)

The point at infinity of the short Weierstrass form is mapped to the point at infinity of the
Montgomery form. Using this map, it is therefore possible for implementations of Montgomery
curves to freely transit between the short Weierstrass and the Montgomery form.

Example 80. Consider the tiny-jubjub curve again. In 5.2 we defined its short Weierstrass
representation and in example 5.15, we derived its Montgomery representation.

To see how the coordinate transformation I works in this example, let’s map points from the
Montgomery representation onto points from the short Weierstrass representation. Inserting, for
example, the point (0,0) from the Montgomery representation 5.15 into I gives the following:

I(0,0) =
(

3 ·0+A
3B

,
0
B

)
=

(
3 ·0+6

3 ·7
,
0
7

)
=

(
6
8
,0
)

= (4,0)

As we can see, the Montgomery point (0,0) maps to the self-inverse point (4,0) of the short
Weierstrass representation. On the other hand, we can use our computations of s = 7 and z0 = 4
from example 79 to compute the inverse map I−1, which maps points on the short Weierstrass
representation to points on the Mongomery form. Inserting, for example, (4,0) we get the
following:

I−1(4,0) = (s · (4− z0),s ·0)
= (7 · (4−4),0)
= (0,0)

As expected, the inverse map maps the short Weierstrass point back to where it originated
in the Montgomery form. We can invoke Sage to check that our computation of I is correct:

330sage: # Compute I of Montgomery form:
331sage: L_I_MTJJ = []
332sage: for (x,y) in L_MTJJ: # LMTJJ as defined previously
333....: v = (F13(3)*x + F13(6))/(F13(3)*F13(7))
334....: w = y/F13(7)
335....: L_I_MTJJ.append((v,w))
336sage: I_MTJJ = Set(L_I_MTJJ)
337sage: # Computation short Weierstrass form
338sage: C_WTJJ = EllipticCurve(F13,[8,8])
339sage: L_WTJJ = [P.xy() for P in C_WTJJ.points() if P.order() >

1]
340sage: WTJJ = Set(L_WTJJ)

88

CHAPTER 5. ELLIPTIC CURVES 5.2. MONTGOMERY CURVES

341sage: # check I(Montgomery) == Weierstrass
342sage: WTJJ == I_MTJJ
343True
344sage: # check the inverse map I^(-1)
345sage: L_IINV_WTJJ = []
346sage: for (v,w) in L_WTJJ:
347....: x = F13(7)*(v-F13(4))
348....: y = F13(7)*w
349....: L_IINV_WTJJ.append((x,y))
350sage: IINV_WTJJ = Set(L_IINV_WTJJ)
351sage: MTJJ == IINV_WTJJ
352True

5.2.1 Montgomery group law
We have seen that Montgomery curves are special cases of short Weierstrass curves. As such,
they have a group structure defined on the set of their points, which can also be derived from the
chord-and-tangent rule. In accordance with short Weierstrass curves, it can be shown that the
identity x1 = x2 implies y2 =±y1, meaning that the following rules are a complete description
of the elliptic curve group law:

• (The neutral element) The point at infinity O is the neutral element.

• (The inverse element) The inverse ofO isO. For any other curve point (x,y)∈M(Fq)\{O},
the inverse is given by (x,−y).

• (The group law) For any two curve points P,Q ∈M(Fq), the group law is defined by one
of the following cases:

1. (Neutral element) If Q =O, then the sum is defined as P⊕Q = P.

2. (Inverse elements) If P = (x,y) and Q = (x,−y), the group law is defined as P⊕Q =
O.

3. (Tangent rule) If P = (x,y) with y ̸= 0, the group law P⊕P = (x′,y′) is defined as
follows:

x′ = (
3x2

1+2Ax1+1
2By1

)2 ·B− (x1 + x2)−A , y′ = 3x2
1+2Ax1+1

2By1
(x1− x′)− y1

4. (Chord rule) If P = (x1,y1) and Q = (x2,y2) such that x1 ̸= x2, the group law R =
P⊕Q with R = (x3,y3) is defined as follows:

x′ = (y2−y1
x2−x1

)2B− (x1 + x2)−A , y′ = y2−y1
x2−x1

(x1− x′)− y1

Exercise 72. Consider the commutative group (M_TJJ_13,⊕) of the Tiny-jubjub-curve in its
Montgomery form from example ??.

1. Compute the inverse of (1,9), O, (7,12) and (4,9).

2. Solve the equation x⊕ (3,8) = (10,3) for some x ∈M_TJJ_13

Choose some element x ∈ M_TJJ_13 and test if x is a generator of M_TJJ_13. If x is not a
generator repeat until you find some generator x. Write M_TJJ_13 in logarithmic order with
respect to x.

89

CHAPTER 5. ELLIPTIC CURVES 5.3. TWISTED EDWARDS CURVES

5.3 Twisted Edwards Curves
As we have seen in 5.1.2 and 5.2.1 both short Weierstrass and Montgomery curves have some-
what complicated group laws, as many cases have to be distinguished. Cases which translate
to branches in computer programs. However in the context of SNARK development, compu-
tational models for bounded computations are used 6.2.2, 6.2.1 in which program branches are
undesirably costly. To make elliptic curves ”SNARK friendly”, it is therefore advantageous to
look for curves with a group law that requires no branches and utilizes as few field operations
as possible.

So called Snark friendly Twisted Edwards curves are particularly useful here, as these
curves have a compact and easily implementable group law that works for all points including
the point at infinity. Implementing this law needs no branching.

To see what a twisted Edwards curve in its affine form looks like, let F be a finite field of
characteristic > 3, and let a,d ∈ F\{0} be two non-zero field elements with a ̸= d. A twisted
Edwards elliptic curve in its affine representation is then the set of all pairs (x,y) from F×F
that satisfy the twisted Edwards equation a · x2 + y2 = 1+d · x2y2:

E(F) = {(x,y) ∈ F×F | a · x2 + y2 = 1+d · x2y2} (5.18)

A twisted Edwards curve is called a SNARK-friendly twisted Edwards curve if the parameter
a is a quadratic residue and the parameter d is a quadratic non-residue.

As we can see from the definition, affine twisted Edwards curves look somewhat different
from short Weierstrass curves, as their affine representation does not need a special symbol to
represent the point at infinity. In fact, the pair (0,1) is always a point on any twisted Edwards
curve, and it takes the role of the point at infinity.

Despite their different appearances however, twisted Edwards curves are equivalent to Mont-
gomery curves in the sense that, for every twisted Edwards curve, there is a Montgomery curve,
and a way to map the points of one curve in a 1:1 correspondence onto the other and vice versa.
To see that, assume that a curve in twisted Edwards form is given. The associated Montgomery
curve is then defined by the Montgomery equation:

4
a−d

y2 = x3 +
2(a+d)

a−d
· x2 + x (5.19)

On the other hand, a Montgomery curve By2 = x3 +Ax2 + x with B ̸= 0 and A2 ̸= 4 gives
rise to a twisted Edwards curve defined by the following equation:

(
A+2

B
)x2 + y2 = 1+(

A−2
B

)x2y2 (5.20)

Example 81. Consider the tiny-jubjub curve from example 69 again. We know from example 79
that it is a Montgomery curve, and, since Montgomery curves are equivalent to twisted Edwards
curves, we want to write this curve in twisted Edwards form. We use equation 5.20 and compute

90

CHAPTER 5. ELLIPTIC CURVES 5.3. TWISTED EDWARDS CURVES

the parameters a and d as follows:

a =
A+2

B
insert A=6 and B=7

=
8
7
= 3 # 7−1 = 2

d =
A−2

B

=
4
7
= 8

Thus, we get the defining parameters as a = 3 and d = 8. Since our goal is to use this curve
later on in implementations of pen-and-paper SNARKs, let us show that tiny-jubjub is also a
SNARK-friendly twisted Edwards curve. To see that, we have to show that a is a quadratic
residue and d is a quadratic non-residue. We therefore compute the Legendre symbols of a and
d using Euler’s criterion. We get the following:(

3
13

)
= 3

13−1
2

= 36 = 1

(
8

13

)
= 8

13−1
2

= 86 = 12 =−1

This proves that tiny-jubjub is SNARK-friendly. We can write the tiny-jubjub curve in its
affine twisted Edwards representation as follows:

TJJ_13 = {(x,y) ∈ F13×F13 | 3 · x2 + y2 = 1+8 · x2 · y2} (5.21)

Now that we have the abstract definition of our tiny-jubjub curve in twisted Edwards form,
we can compute the set of points by inserting all pairs (x,y) ∈ F13× F13, similarly to how
we computed the curve points in its short Weierstrass or Edwards representation. We get the
following:

TE_TJJ_13 = {(0,1),(0,12),(1,2),(1,11),(2,6),(2,7),(3,0),(5,5),(5,8),(6,4),
(6,9),(7,4),(7,9),(8,5),(8,8),(10,0),(11,6),(11,7),(12,2),(12,11)}

(5.22)

353sage: F13 = GF(13)
354sage: L_ETJJ = []
355....: for x in F13:
356....: for y in F13:
357....: if F13(3)*x^2 + y^2 == 1+ F13(8)*x^2*y^2:
358....: L_ETJJ.append((x,y))
359sage: ETJJ = Set(L_ETJJ)

91

CHAPTER 5. ELLIPTIC CURVES 5.3. TWISTED EDWARDS CURVES

5.3.1 Twisted Edwards group law
As we have seen, twisted Edwards curves are equivalent to Montgomery curves, and, as such,
also have a group law. However, in contrast to Montgomery and short Weierstrass curves, the
group law of SNARK-friendly twisted Edwards curves can be described by a single computation
that works in all cases, no matter if we add the neutral element, the inverse, or if we have to
double a point.

To see what the twisted Edwards group law looks like let (x1,y1), (x2,y2) be two points on
an Edwards curve E(F). The sum of those points is then given by the following equation:

(x1,y1)⊕ (x2,y2) =

(
x1y2 + y1x2

1+dx1x2y1y2
,

y1y2−ax1x2

1−dx1x2y1y2

)
(5.23)

In order to see what the neutral element of the group law is, first observe that the point (0,1)
is a solution to the twisted Edwards equation a · x2 + y2 = 1+d · x2 · y2 for any parameters a an
d and hence (0,1) is a point on any twisted Edwards curve. It can be shown that (0,1) serves as
the neutral element and that the inverse of a point (x1,y1) is given by the point (−x1,y1).

Example 82. Lets look at the tiny-jubjub curve in Edwards form from example 5.21 again. As
we have seen, this curve is given by

TE_TJJ_13 = {(0,1),(0,12),(1,2),(1,11),(2,6),(2,7),(3,0),(5,5),(5,8),(6,4),
(6,9),(7,4),(7,9),(8,5),(8,8),(10,0),(11,6),(11,7),(12,2),(12,11)}

To get an understanding of the twisted Edwards addition law, let’s first add the neutral element
(0,1) to itself. We apply the group law 5.23 and get the following:

(0,1)⊕ (0,1) =
(

0 ·1+1 ·0
1+8 ·0 ·0 ·1 ·1

,
1 ·1−3 ·0 ·0

1−8 ·0 ·0 ·1 ·1

)
= (0,1)

So, as expected, the neutral element added to itself gives the neutral element again. Now let’s
add the neutral element to some other curve point. We get the following:

(0,1)⊕ (8,5) =
(

0 ·5+1 ·8
1+8 ·0 ·8 ·1 ·5

,
1 ·5−3 ·0 ·8

1−8 ·0 ·8 ·1 ·5

)
= (8,5)

Again, as expected, adding the neutral element to any element will result in that element
again. Given any curve point (x,y), we know that its inverse is given by (−x,y). To see how the
addition of a point to its inverse works, we compute as follows:

(5,5)⊕ (8,5) =
(

5 ·5+5 ·8
1+8 ·5 ·8 ·5 ·5

,
5 ·5−3 ·5 ·8

1−8 ·5 ·8 ·5 ·5

)
=

(
12+1
1+5

,
12−3
1−5

)
=

(
0
6
,
12+10
1+8

)
=

(
0,

9
9

)
= (0,1)

92

CHAPTER 5. ELLIPTIC CURVES 5.4. ELLIPTIC CURVE PAIRINGS

Adding a curve point to its inverse gives the neutral element, as expected. As we have seen
from these examples, the twisted Edwards addition law handles edge cases particularly well and
in a unified way.

Exercise 73. Consider the commutative group (T E_T JJ_13,⊕) from example 82.

1. Compute the inverse of (1,11), (0,1), (3,0) and (5,8).

2. Solve the equation x⊕ (5,8) = (1,11) for some x ∈ TE_TJJ_13

Choose some element x ∈ TE_TJJ_13 and test if x is a generator of TE_TJJ_13. If x is not a
generator repeat until you find some generator x. Write TE_TJJ_13 in logarithmic order with
respect to x.

5.4 Elliptic Curve Pairings
As introduced in 4.6, some groups come with the notion of a pairing map. In this section, we
discuss pairings on elliptic curves, which form the basis of several zk-SNARKs and other
zero-knowledge proof schemes, essentially because it allows computations ”in the exponent”
36 to be split into different parts computable by different parties. A more detailed introduction
to elliptic curve pairings can be found for example in chapter 6, section 6.8 and 6.9 in Hoffstein
et al. [2008].

We start out by defining some important subgroups of the so called full torsion group of
an elliptic curve. We then introduce the Weil pairing of an elliptic curve and describe Miller’s
algorithm, which makes these pairings efficiently computable.

Embedding Degrees As we will see in what follows, every elliptic curve gives rise to a pair-
ing map. However, we will also see in example 85 that not every such pairing can be efficiently
computed. In order to distinguish curves with efficiently computable pairings from the rest, we
need to start with an introduction to the so-called embedding degree of a curve.

To see what the embedding degree of an elliptic curve is, let F be a finite field of order
|F| = q, E(F) an elliptic curve over F, and let r be a prime factor of the order n of E(F). The
embedding degree of E(F) with respect to r is then the smallest integer k such that

r |qk−1 (5.24)

Fermat’s little theorem 3.3 implies that there always exists an embedding degree k(r) for every
elliptic curve and any factor r of the curves order n, since k = r− 1 is always a solution to
the congruency qk ≡ 1 (mod r). This implies that the remainder of the integer division of
qr−1−1 by r is 0.

Notation and Symbols 12. Let F be a finite field of order q and E(F) an elliptic curve over F,
such that r is a prime factor of the order of E(F). We then write k(r) for the embedding degree
of E(F) with respect to r.

Example 83. To get a better intuition of the embedding degree, let’s consider the elliptic curve
E1,1(F5) from example 68. We know that the order of E1,1(F5) is 9, and, since the only prime
factor of 9 is 3, we compute the embedding degree of E1,1(F5) with respect to 3.

To find the embedding degree, we have to find the smallest integer k such that 3 divides
qk−1 = 5k−1. We try and increment until we find a proper k.

93

CHAPTER 5. ELLIPTIC CURVES 5.4. ELLIPTIC CURVE PAIRINGS

k = 1 : 51−1 = 4 not divisible by 3

k = 2 : 52−1 = 24 divisible by 3

This shows that the embedding degree of the elliptic curve E1,1(F5) is 2 relative to the the
prime factor 3 of the order of E1,1(F5).
Example 84. Let us consider the tiny-jubjub curve TJJ_13 from example 69. We know that the
order of TJJ_13 is 20, and that the order therefore has two prime factors. A “large” prime factor
5 and a small prime factor 2.

We start by computing the embedding degree of TJJ_13 with respect to the large prime
factor 5. To find that embedding degree, we have to find the smallest integer k such that 5
divides qk−1 = 13k−1. We try and increment until we find a proper k.

k = 1: 131−1 = 12 not divisible by 5

k = 2: 132−1 = 168 not divisible by 5

k = 3: 133−1 = 2196 not divisible by 5

k = 4: 134−1 = 28560 divisible by 5

Now we know that the embedding degree of TJJ_13 relative to the the prime factor 5 is k(5)= 4.
In real-world applications, like on pairing-friendly elliptic curves such as BLS_12-381, usu-

ally only the embedding degree of the large prime factor is relevant, which in the case of our
tiny-jubjub curve is represented by 5. It should be noted, however that every prime factor of
a curve’s order has its own notation of embedding degree despite the fact that this is mostly
irrelevant in applications.

To find the embedding degree of the small prime factor 2, we have to find the smallest
integer k such that 2 divides qk−1 = 13k−1. We try and increment until we find a proper k.

k = 1: 131−1 = 12 divisible by 2

Now we know that the embedding degree of TJJ_13 is 1 relative to the the prime factor 2.
As we have seen, different prime factors can have different embedding degrees in general.

360sage: p = ZZ(13)
361sage: # large prime factor
362sage: r = ZZ(5)
363sage: k = ZZ(1)
364sage: while k < r: # Fermat’s little theorem
365....: if (p^k-1)%r == 0:
366....: break
367....: k=k+1
368sage: k
3694
370sage: # small prime factor
371sage: r = ZZ(2)
372sage: k = ZZ(1)
373sage: while k < r: # Fermat’s little theorem
374....: if (p^k-1)%r == 0:
375....: break
376....: k=k+1

94

CHAPTER 5. ELLIPTIC CURVES 5.4. ELLIPTIC CURVE PAIRINGS

377sage: k
3781

Example 85. To give an example of a cryptographically secure real-world elliptic curve that
does not have a small embedding degree, let’s look at curve secp256k1 again. We know from
70 that the order of this curve is a prime number, so we only have a single embedding degree.

To test potential embedding degrees k, say, in the range 1≤ k < 1000, we can invoke Sage
and compute as follows:

379sage: p = ZZ(1157920892373161954235709850086879078532699846656
40564039457584007908834671663)

380sage: r = ZZ(1157920892373161954235709850086879078528375642790
74904382605163141518161494337)

381sage: k = ZZ(1)
382sage: while k < 1000:
383....: if (p^k-1)%r == 0:
384....: break
385....: k=k+1
386sage: k
3871000

We see that secp256k1 has at least no embedding degree k < 1000, which renders secp256k1 a
curve that has no small embedding degree. This property will be of importance later on.

Elliptic Curves over extension fields Suppose that p is a prime number, and Fp its associated
prime field. We know from equation 4.33that the fields Fpm are extensions of Fp in the sense
that Fp is a subfield of Fpm . This implies that we can extend the affine plane that an elliptic
curve is defined on by changing the base field to any extension field. To be more precise, let
E(F) = {(x,y)∈ F×F | y2 = x3+a ·x+b} be an affine short Weierstrass curve, with parameters
a and b taken from F. If F′ is an extension field of F, then we extend the domain of the curve
by defining E(F′) as follows:

E(F′) = {(x,y) ∈ F′×F′ | y2 = x3 +a · x+b} (5.25)

While we did not change the defining parameters, we consider curve points from the affine
plane over the extension field now. Since F⊂ F′, it can be shown that the original elliptic curve
E(F) is a sub-curve of the extension curve E(F′).
Example 86. Consider the prime field F5 from example 62 together with the elliptic curve
E1,1(F5) and its definition from example 68 and the construction the extension field F52 relative
to the polynomial t2 + 2 ∈ F5[t] from exercise 55. In this example we extend the definition of
E1,1(F5) to an elliptic curve over F52 and compute its set of points:

E1(F52) = {(x,y) ∈ F52×F52 | y2 = x3 + x+1}

Since F52 contains 25 points, in order to compute the set E1(F52), we have to try 25 ·25 = 625
pairs, which is probably a bit tedious. Instead, we invoke Sage to compute the curve for us. To
do, we choose the representation of F52 from 55. We get:

388sage: F5= GF(5)
389sage: F5t.<t> = F5[]

95

CHAPTER 5. ELLIPTIC CURVES 5.4. ELLIPTIC CURVE PAIRINGS

390sage: P_MOD_2 = F5t(t^2+2)
391sage: P_MOD_2.is_irreducible()
392True
393sage: F5_2.<t> = GF(5^2, name=’t’, modulus=P_MOD_2)
394sage: E1F5_2 = EllipticCurve(F5_2,[1,1])
395sage: E1F5_2.order()
39627

The curve E1(F52) consist of 27 points, in contrast to curve E1(F5), which consists of 9 points.
Writing those points down gives the following:

E1(F52) = {O,(0,4),(0,1),(3,4),(3,1),(4,3),(4,2),(2,4),(2,1),
(4t +3,3t +4),(4t +3,2t +1),(3t +2, t),(3t +2,4t),
(2t +2, t),(2t +2,4t),(2t +1,4t +4),(2t +1, t +1),
(2t +3,3),(2t +3,2),(t +3,2t +4),(t +3,3t +1),

(3t +1, t +4),(3t +1,4t +1),(3t +3,3),(3t +3,2),(1,4t),(1, t)}

As we can see, the set of points from the elliptic curve E1,1(F5) is a subset of the sets of points
from the elliptic curve E(F52). This was expected since the prime field F5 is a subfield of the
finite field F52 .

Exercise 74. Consider the short Weierstrass elliptic curve E(F52) from example 86, compute the
expression (4t +3,2t +1)⊕ (3t +3,2) using pen and paper and double check the computation
using sage. Then solve the equation x⊕ (3t + 3,3) = (3,4) for some x ∈ E(F52). After that
compute the scalar multiplication [5](2t + 1,4t + 4) using the double-and-add algorithm from
exercise 37.

Exercise 75. Consider the tiny-jubjub curve from example 69. Show that the polynomial t4 +
2∈ F13[t] is irreducible. Then write a sage program to implement the finite field extension F134 ,
implement the curve extension T JJ_13(F134) and compute the number of curve points.

Full torsion groups As we will see in what follows, cryptographically interesting pairings
are defined on so called torsion subgroups of elliptic curves. To define torsion groups of an
elliptic curve, let F be a finite field, E(F) an elliptic curve of order n and r a factor of n. Then
the r-torsion group of the elliptic curve E(F) is defined as the set

E(F)[r] := {P ∈ E(F) | [r]P =O} (5.26)

The fundamental theorem of finite cyclic groups 4.1 states that every factor r of a cyclic group’s
order uniquely defines a subgroup of the size of that factor and those subgroup are important
examples of r-torsion groups. We have seen examples of those subgroups in 76 and 77.

When we consider elliptic curve extensions as defined in 5.25, we could ask what happens
to the r-torsion groups in the extension. One might intuitively think that their extension just
parallels the extension of the curve. For example, when E(Fp) is a curve over prime field Fp,
with some r-torsion group E(Fp)[r] and when we extend the curve to E(Fpm), then there might
be a bigger r-torsion group E(Fpm)[r] such that E(Fp)[r] is a subgroup of E(Fpm)[r]. This might
make intuitive sense, as E(Fp) is a subset of E(Fpm).

However, the actual situation is a bit more surprising than that. To see that, let Fp be a
prime field and let E(Fp) be an elliptic curve of order n, such that r is a factor of n, with
embedding degree k(r) and r-torsion group E(Fp)[r]. Then the r-torsion group E(Fpm)[r] of a

96

CHAPTER 5. ELLIPTIC CURVES 5.4. ELLIPTIC CURVE PAIRINGS

curve extension is equal to E(Fp)[r], only as long as the power m is less than the embedding
degree k(r) of E(Fp).

For the prime power pk(r), the r-torsion group E(Fpk(r))[r] might then be larger than E(Fp)[r]
and it contains E(Fp)[r] as a subgroup. We call it the full r-torsion group of that elliptic curve
and write is as follows

E[r] := E(Fpk(r))[r] (5.27)

The r-torsion groups E(Fpm)[r] of any curve extensions for m > k(r) are all equal to E[r]. In
this sense E[r] is already the largest r-torsion group, which justifies the name. The full r-torsion
group contains r2 many elements and consists of r + 1 subgroups, one of which is E(Fp)[r].
The following diagram summarizes the situation:

E(Fp) ⊂ ·· · ⊂ E(Fpk(r)−1) ⊂ E(Fpk(r))[r] ⊂ E(Fpk(r)+1)[r] ⊂ . . .

E(Fp)[r] = · · · = E(Fpk(r)−1)[r] ⊂ E(Fpk(r))[r] = E(Fpk(r)+1)[r] = . . .
(5.28)

So, when we consider nested elliptic curve extensions as in 5.28, ordered by the prime power
m, then the r-torsion group stays constant for every level m that is smaller than the embedding
degree k(r), while it suddenly blossoms into a larger group on level k(r) with r+1 subgroups,
and then all r-torsion groups on higher levels m≥ k(r) stay the same. In other words, once the
extension field is big enough to find one more curve point P with [r]P =O that is not an element
of the curve over the base field, then we actually find all of the points in the full torsion group.

Example 87. Consider curve E1,1(F5) again. We know from 76 that it contains a 3-torsion group
and that the embedding degree of 3 is k(3) = 2. From this we can deduce that we can find the
full 3-torsion group E1[3] in the curve extension E1(F52), the latter of which we computed in
example 86.

Since that curve is small, in order to find the full 3-torsion, we can loop through all el-
ements of E1(F52) and check the defining equation [3]P = O. Invoking Sage and using our
implementation of E1(F52) in sage from 86, we compute as follows:

397sage: INF = E1F5_2(0) # Point at infinity
398sage: L_E1_3 = []
399sage: for p in E1F5_2:
400....: if 3*p == INF:
401....: L_E1_3.append(p)
402sage: E1_3 = Set(L_E1_3) # Full 3-torsion set

E1[3] = {O,(2,1),(2,4),(1, t),(1,4t),(2t+1, t+1),(2t+1,4t+4),(3t+1, t+4),(3t+1,4t+1)}
As we can see the group E1[3] contains 9= 33 many elements and the 3-torsion group E1,1(F5)[3]
of the curve over the prime field is a subset of the full torsion group.

Example 88. Consider the tiny-jubjub curve from example 69. We know from example 84 that
it contains a 5-torsion group and that the embedding degree of 5 is 4. This implies that we can
find the full 5-torsion group TJJ_13[5] in the curve extension TJJ_13(F134).

To compute the full torsion, first observe that, since F134 contains 28561 elements, comput-
ing TJJ_13(F134) means checking 285612 = 815730721 elements. From each of these curve
points P, we then have to check the equation [5]P = O. Doing this for 815730721 is a bit too
slow even on a computer.

Fortunately, Sage has a funcion that computes all points P, such that [m]P = Q for given
integer m and curve point Q. Using the curve extension from exercise 75, the following Sage
code provides a way to compute the full torsion group:

97

CHAPTER 5. ELLIPTIC CURVES 5.4. ELLIPTIC CURVE PAIRINGS

403sage: # define the extension field
404sage: F13= GF(13) # prime field
405sage: F13t.<t> = F13[] # polynomials over t
406sage: P_MOD_4 = F13t(t^4+2) # degree 4 irreducible polynomial
407sage: P_MOD_4.is_irreducible()
408True
409sage: F13_4.<t> = GF(13^4, name=’t’, modulus=P_MOD_4)
410sage: TJJF13_4 = EllipticCurve(F13_4,[8,8]) # TJJ extension
411sage: # compute the full 5-torsion
412sage: INF = TJJF13_4(0) # point at infinity
413sage: L_TJJF13_4_5 = INF.division_points(5) # [5]P == INF
414sage: TJJF13_4_5 = Set(L_TJJF13_4_5)
415sage: TJJF13_4_5.cardinality() # number of elements
41625

As expected, we get a group that contains 52 = 25 elements. To see that the embedding degree 4
is actually the smallest prime power to find the full 5-torsion group, let’s compute the 5-torsion
group over of the tiny-jubjub curve of the extension field F133 . We get the following:

417sage: # define the extension field
418sage: P_MOD_3 = F13t(t^3+2) # degree 3 irreducible polynomial
419sage: P_MOD_3.is_irreducible()
420True
421sage: F13_3.<t> = GF(13^3, name=’t’, modulus=P_MOD_3)
422sage: TJJF13_3 = EllipticCurve(F13_3,[8,8]) # TJJ extension
423sage: # compute the 5-torsion
424sage: INF = TJJF13_3(0)
425sage: L_TJJF13_3_5 = INF.division_points(5) # [5]P == INF
426sage: TJJF13_3_5 = Set(L_TJJF13_3_5) # 5-torsion
427sage: TJJF13_3_5.cardinality() # number of elements
4285

As we can see, the 5-torsion group of tiny-jubjub over F133 is equal to the 5-torsion group
of tiny-jubjub over F13 itself.

Example 89. Let’s look at the curve secp256k1. We know from example 70 that the curve is of
some prime order r. Because of this, the only torsion group to consider is the curve itself, so
the curve group is the r-torsion.

In order to find the full r-torsion of secp256k1, we need to compute the embedding degree
k. And as we have seen in 85 it is at least not small. However, we know from Fermat’s little
theorem 3.3 that a finite embedding degree must exist. It can be shown that it is given by the
following 256-bit number:

k =192986815395526992372618308347813175472927379845817397100860523586360249056

This means that the embedding degree is very large, which implies that the field extension Fpk

is very large too. To understand how big Fpk is, recall that an element of Fpm can be represented
as a string < x0, . . . ,xm > of m elements, each containing a number from the prime field Fp.
Now, in the case of secp256k1, such a representation has k-many entries, each of them 256 bits
in size. So, without any optimizations, representing such an element would need k · 256 bits,
which is too much to be representable in the observable universe. It follows that it is not only

98

CHAPTER 5. ELLIPTIC CURVES 5.4. ELLIPTIC CURVE PAIRINGS

infeasible to compute the full r-torsion group of secp256k1, but moreover to even write down
single elements of that group in general.

Exercise 76. Consider the full 5-torsion group T JJ_13[5] from example 88. Write down the set
of all elements from this group and identify the subset of all elements from T JJ_13(F13)[5] as
well as T JJ_13(F132)[5]. Then compute the 5-torsion group T JJ_13(F138)[5] .

Exercise 77. Consider the curve secp256k1 from example 70 and its full r-torsion group as
introduced in example 89. Write down a single element from the curves full torsion group that
is not the point at infinity.

Pairing groups As we have stated above, any full r-torsion group contains r+ 1 cyclic sub-
groups, two of which are of particular interest in pairing-based elliptic curve cryptography. To
characterize these groups, we need to consider the so-called Frobenius endomorphism of an
elliptic curve E(F) over some finite field F of characteristic p:

π : E(F)→ E(F) :
(x,y) 7→ (xp,yp)
O 7→ O (5.29)

It can be shown that π maps curve points to curve points. The first thing to note is that, in case
F is a prime field, the Frobenius endomorphism acts as the identity map, since (xp,yp) = (x,y)
on prime fields due to Fermat’s little theorem 3.3. This means that the Frobenius map is more
interesting on elliptic curves over prime field extensions.

With the Frobenius map at hand, we can characterize two important subgroups of the full r-
torsion group E[r] of an elliptic curve. The first subgroup is the group of elements from the full
r-torsion group, on which the Frobenius map acts trivially. Since in pairing-based cryptography,
this group is usually written as G1, assuming that the prime factor r in the definition is implicitly
given, we define G1 as follows:

G1[r] := {(x,y) ∈ E[r] | π(x,y) = (x,y) } (5.30)

It can be shown that G1 is precisely the r-torsion group E(Fp)[r] of the unextended elliptic
curve defined over the prime field. There is another subgroup of the full r-torsion group that
can be characterized by the Frobenius map and in the context of pairing-based cryptography,
this subgroup is often called G2. This group is defined as follows:

G2[r] := {(x,y) ∈ E[r] | π(x,y) = [p](x,y) } (5.31)

Notation and Symbols 13. If E(F) is an elliptic curve and r is the largest prime factor of the
curves order, we call G1[r] and G2[r] pairing groups. If the prime factor r is clear from the
context, we sometimes simply write G1 and G2 to mean G1[r] and G2[r], respectively.

It should be noted that other definitions of G2 exists in the literature, too. However, in
the context of pairing-based cryptography, this is a common choice as it is particularly useful
because we can define efficient hash functions that map into G2, which is not possible for all
subgroups of the full r-torsion.

Example 90. Consider the curve E1,1(F5) from example 68 again. As we have seen, this curve
has the embedding degree k = 2, and a full 3-torsion group is given as follows:

E1[3] = {O,(2,1),(2,4),(1, t),(1,4t),(2t +1, t +1),
(2t +1,4t +4),(3t +1, t +4),(3t +1,4t +1)} (5.32)

99

CHAPTER 5. ELLIPTIC CURVES 5.4. ELLIPTIC CURVE PAIRINGS

According to the general theory, E1[3] contains 4 subgroups, and we can characterize the
subgroups G1 and G2 using the Frobenius endomorphism. Unfortunately, at the time of writing,
Sage does not have a predefined Frobenius endomorphism for elliptic curves, so we have to use
the Frobenius endomorphism of the underlying field as a temporary workaround. Using our
implementation of E1[3] in sage from example 87, we compute G1 as follows:

429sage: L_G1 = []
430sage: for P in E1_3:
431....: PiP = E1F5_2([a.frobenius() for a in P]) # pi(P)
432....: if P == PiP:
433....: L_G1.append(P)
434sage: G1 = Set(L_G1)

As expected, the group G1 = {O,(2,4),(2,1)} is identical to the 3-torsion group of the (unex-
tended) curve over the prime field E1,1(F5).

In order to compute the group G2 for the curve E1,1(F5), we can use almost the same algo-
rithm as we used for the computation of G1. Since p = 5 we get the following:

435sage: L_G2 = []
436sage: for P in E1_3:
437....: PiP = E1F5_2([a.frobenius() for a in P]) # pi(P)
438....: pP = 5*P # [5]P
439....: if pP == PiP:
440....: L_G2.append(P)
441sage: G2 = Set(L_G2)

Thus, we have computed the pairing group G2 of the full 3-torsion group of curve E1,1(F5)
as the set G2 = {O,(1, t),(1,4t)}.
Example 91. Consider the tiny-jubjub curve TJJ_13 from example 69. In example 88 we com-
puted its full 5 torsion, which is a group that has 6 subgroups. We compute G1 using Sage as
follows:

442sage: L_TJJ_G1 = []
443sage: for P in TJJF13_4_5:
444....: PiP = TJJF13_4([a.frobenius() for a in P]) # pi(P)
445....: if P == PiP:
446....: L_TJJ_G1.append(P)
447sage: TJJ_G1 = Set(L_TJJ_G1)

We get G1 = {O,(7,2),(8,8),(8,5),(7,11)} and as expected, G1 is identical to the 5-torsion
group of the (unextended) curve over the prime field T JJ13 as computed in example 5.5.

In order to compute the group G2 for the tiny jubjub curve, we can use almost the same
algorithm as we used for the computation of G1. Since p = 13 we get the following:

448sage: L_TJJ_G2 = []
449sage: for P in TJJF13_4_5:
450....: PiP = TJJF13_4([a.frobenius() for a in P]) # pi(P)
451....: pP = 13*P # [13]P
452....: if pP == PiP: # pi(P) ==[13]P
453....: L_TJJ_G2.append(P)
454sage: TJJ_G2 = Set(L_TJJ_G2)

100

CHAPTER 5. ELLIPTIC CURVES 5.4. ELLIPTIC CURVE PAIRINGS

G2 = {O,(9t2 +7, t3 +11t),(9t2 +7,12t3 +2t),(4t2 +7,5t3 +10t),(4t2 +7,8t3 +3t)}
Example 92. Consider Bitcoin’s curve secp256k1 again. Since the group G1 is identical to the
torsion group of the unextended curve, and since secp256k1 has prime order, we know that, in
this case, G1 is identical to secp256k1 itself. However it is infeasible to compute elements from
G2, since according to example 89 we can not store avarage curve points from the extension
curve secp256k1(Fpk) on any computer, let alone compute their images under the Frobenious
map.
Exercise 78. Consider the small prime factor 2 of the tiny-jubjub curve. Compute the full 2-
torsion group of T JJ_13 and then compute the groups G1[2] and G2[2].

The Weil pairing Recall the definition of a non-degenerate group pairing from 4.6. In this
part, we consider a pairing function defined on the subgroups G1[r] and G2[r] of the full r-
torsion E[r] of a short Weierstrass elliptic curve. To be more precise, let E(Fp) be an elliptic
curve of embedding degree k such that r is a prime factor of its order. Then the Weil pairing is
defined as the following bilinear, non-degenerate map:

e(·, ·) : G1[r]×G2[r]→ F∗pk ; (P,Q) 7→ (−1)r ·
fr,P(Q)

fr,Q(P)
(5.33)

The extension field elements fr,P(Q), fr,Q(P) ∈ Fpk in the definition of the Weil pairing are
computed by Miller’s algorithm:

Understanding the details of how and why this algorithm works requires the concept of
divisors, which is outside of the scope this book. The interested reader might look at chapter
6, section 6.8.3 in Hoffstein et al. [2008], or at Craig Costello’s great tutorial on elliptic curve
pairings. As we can see the algorithm is more efficient on prime numbers r, that have a low
Hamming weight 3.4.

We call an elliptic curve E(Fp) pairing-friendly if there is a prime factor of the groups
order such that the Weil pairing is efficiently computable with respect to that prime factor. In
real-world applications of pairing-friendly elliptic curves, the embedding degree is usually a
small number like 2, 4, 6 or 12, and the number r is the largest prime factor of the curve’s order.
Example 93. Consider curve E1,1(F5) from example 68. Since the only prime factor of the
group’s order is 3, we cannot compute the Weil pairing on this group using our definition of
Miller’s algorithm. In fact, since G1 is of order 3, executing the algorithm will lead to a “division
by zero”.
Example 94. Consider the tiny-jubjub curve TJJ_13(F13) from example 69 and its associated
pairing groups from example 91:

G1[5] = {O,(7,2),(8,8),(8,5),(7,11)}
G2[5] = {O,(9t2 +7, t3 +11t),(9t2 +7,12t3 +2t),(4t2 +7,5t3 +10t),(4t2 +7,8t33+3t)}

Since we know from example 84 that the embedding degree of 5 id 4, we can instantiate the
general definition of the Weil pairing for this example as follows:

e(·, ·) : G1[5]×G2[5]→ F134

The first if-statement in Miller’s algorithm, implies that e(O,Q) = 1 as well as e(P,O) = 1
for all arguments P ∈ G1[5] and Q ∈ G2[5]. In order to compute a non-trivial Weil pairing, we
choose the argument P = (7,2) ∈G1 and Q = (9t2 +7,12t3 +2t) ∈G2. Invoking sage we get
the following computation of the Weil pairing:

101

https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff394720493bd28278889c6/1609798774687/PairingsForBeginners.pdf

CHAPTER 5. ELLIPTIC CURVES 5.4. ELLIPTIC CURVE PAIRINGS

Algorithm 8 Miller’s algorithm for short Weierstrass curves y2 = x3 +ax+b
Require: r > 3, P ∈ E[r], Q ∈ E[r] and

b0, . . . ,bt ∈ {0,1} with r = b0 ·20 +b1 ·21 + . . .+bt ·2t and bt = 1
procedure MILLER’S ALGORITHM(P,Q)

if P =O or Q =O or P = Q then
return fr,P(Q)← (−1)r

end if
(xT ,yT)← (xP,yP)
f1← 1
f2← 1
for j← t−1, . . . ,0 do

m← 3·x2
T+a

2·yT

f1← f 2
1 · (yQ− yT −m · (xQ− xT))

f2← f 2
2 · (xQ +2xT −m2)

x2T ← m2−2xT
y2T ←−yT −m · (x2T − xT)
(xT ,yT)← (x2T ,y2T)
if b j = 1 then

m← yT−yP
xT−xP

f1← f1 · (yQ− yT −m · (xQ− xT))
f2← f2 · (xQ +(xP + xT)−m2)
xT+P← m2− xT − xP
yT+P←−yT −m · (xT+P− xT)
(xT ,yT)← (xT+P,yT+P)

end if
end for
f1← f1 · (xQ− xT)

return fr,P(Q)← f1
f2

end procedure

102

CHAPTER 5. ELLIPTIC CURVES 5.5. HASHING TO CURVES

455sage: F13 = GF(13)
456sage: F13t.<t> = F13[]
457sage: P_MOD_4 = F13t(t^4+2)
458sage: F13_4.<t> = GF(13^4, name=’t’, modulus=P_MOD_4)
459sage: TJJF13_4 = EllipticCurve(F13_4,[8,8])
460sage: P=TJJF13_4([7,2])
461sage: Q=TJJF13_4([9*t^2+7,12*t^3+2*t])
462sage: P.weil_pairing(Q,5)
4637*t^3 + 7*t^2 + 6*t + 3

Example 95. Consider Bitcoin’s curve secp256k1 again. As we have seen in example 92, it is
infeasible to compute elements from the pairing group G2 and as we know from example 89
it is moreover infeasible to do calculations in the extension field Fpk . It follows that the Weil
pairing is not efficiently computable and that secp256k1 is not pairing friendly.

5.5 Hashing to Curves
Elliptic curve cryptography frequently requires the ability to hash data onto elliptic curves. If
the order of the curve is not a prime number, hashing to prime order subgroups is of importance,
too and in the context of pairing-friendly curves, it is sometimes necessary to hash specifically
onto the pairing group G1 or G2 as introduced in 5.4.

As we have seen in section 4.1.2, some general methods are known for hashing into fi-
nite cyclic groups and since elliptic curves over finite fields are finite and cyclic groups, those
methods can be utilized in this case, too. However, in what follows we want to describe some
methods specific to elliptic curves that are frequently used in real-world applications.

Try-and-increment hash functions One of the most straight-forward ways of hashing onto
an elliptic curve point in a secure way is to use a cryptographic hash function together with one
of the hashing into modular aithmetics methods as described in section 4.2.

Both constructions can be combined in such a way that the image provides an element of
the base field of the elliptic curve together with a single auxiliary bit. The base field element
can then be interpreted as the x-coordinate of a potential curve point, and the auxiliary bit can
be used to determine one of the two possible y coordinates of that curve point as explained in
5.1.1.

Such an approach would be deterministic and easy to implement, and it would conserve the
cryptographic properties of the original hash function. However, not all x coordinates generated
in such a way will result in quadratic residues when inserted into the defining equation. It
follows that not all field elements give rise to actual curve points.

In fact, on a prime field, only half of the field elements are quadratic residues. Hence,
assuming an even distribution of the hash values in the field, this method would fail to generate
a curve point in about half of the attempts.

One way to account for this problem is the following so-called try-and-increment method.
Instead of simply hashing a binary string s to the field, this method use a try-and-increment hash
to the base field as described in 4.2 in combination with a single auxiliary bit derived from the
underlying cryptographic hash function.

If any try of hashing to the field does not result in a field element or a valid curve point, the
counter is incremented, and the hashing is repeated. This is done until a valid curve point is
found.

103

CHAPTER 5. ELLIPTIC CURVES 5.5. HASHING TO CURVES

Algorithm 9 Hash-to-E(Fp)

Require: p ∈ Z with |p|= k and s ∈ {0,1}∗
Require: Curve equation y2 = x3 +ax+b over Fp

procedure TRY-AND-INCREMENT(r,k,s)
c← 0 ▷ Try-and-Increment counter
repeat

s′← s||Bits(c)
x← H(s′)0 ·20 +H(s′)1 ·21 + . . .+H(s′)k ·2k ▷ potential x
y2← z3 +a · z+b ▷ potential y2

c← c+1
until x < p and (y2)

p−1
2 mod r = 1 ▷ Check x in field and y2 has root

if H(s′)k+1 == 0 then ▷ auxiliary bit decides root
y← y′ ∈

√
y2 with 0≤ y′ ≤ (p−1)/2

else
y← y′ ∈

√
y2 with (p−1)/2 < y′ < p

end if
return (x,y)

end procedure
Ensure: (x,y) ∈ E(Fr)

The try-and-increment method is relatively easy to implement, and it maintains the crypto-
graphic properties of the original hash function. It should be noted that if the curve is not of
prime order, the image of the try-and-increment hash will be a general curve point that might
not be an element from the large prime-order subgroup. To map onto the large prime order
subgroup it is therefore necessary to apply the technique of cofactor clearing as explained in
4.5.

Example 96. Consider the tiny-jubjub curve from example 69. We want to construct a try-and-
increment hash function that maps a binary string s of arbitrary length onto the large prime-order
subgroup of size 5 from example 5.5.

Since the curve T JJ_13 is defined over the field F13, and the binary representation of 13
is Bits(13) =< 1,1,0,1 >, one way to implement a try-and-increment function is to apply
SHA256 from Sage’s hashlib library on the concatenation s||c for some binary counter string c,
and use the first 4 bits of the image to try to hash into F13. In case we are able to hash to a value
x such that x3 +8 · x+8 is a quadratic residue in F13, we use the fifth bit to decide which of the
two possible roots of x3+8 ·x+8 we will choose as the y coordinate. The result is a curve point
different from the point at infinity. To project it onto the large prime order subgroup T JJ_13[5],
we multiply it with the cofactor 4. If the result is not the point at infinity, it is the result of the
hash.

To make this concrete, let s =< 1,1,1,0,0,1,0,0,0,0 > be our binary string that we want to
hash onto T JJ13[5]. We use a binary counter string starting at zero, that is, we choose c=< 0>.
Invoking Sage, we define the try-hash function as follows:

464sage: import hashlib
465sage: def try_hash(s,c):
466....: s_1 = s+c # string concatenation
467....: hasher = hashlib.sha256(s_1.encode(’utf-8’)) #

compute SHA256

104

CHAPTER 5. ELLIPTIC CURVES 5.5. HASHING TO CURVES

468....: digest = hasher.hexdigest()
469....: z = ZZ(digest, 16) # cast into integer
470....: z_bin = z.digits(base=2, padto=256) # cast to 256

bits
471....: x = z_bin[0]*2^0 + z_bin[1]*2^1 + z_bin[2]*2^2+z_bin

[3]*2^3
472....: return (x,z_bin[4])
473sage: try_hash(’1110010000’,’0’)
474(15, 1)

As we can see, our first attempt to hash into F13 was not successful, as 15 is not an element
in F13, so we increment the binary counter by 1 and try again:

475sage: try_hash(’1110010000’,’1’)
476(3, 1)

With this try, we found a hash into F13. However, this point is not guaranteed to define a
curve point. To see that, we insert x = 3 into the right side of the short Weierstrass equation of
the tiny-jubjub curve, and compute 33 +8 ·3+8 = 7. However, 7 is not a quadratic residue in
F13, since 7

13−1
2 = 76 = 12 = −1. This means that the field element 7 is a not suitable as the

x-coordinate of any curve point. We therefore have to increment the counter another time:

477sage: try_hash(’1110010000’,’10’)
478(12, 1)

Since 123 +8 ·12+8 = 12, and we have
√

12 = {5,8}, we finally found the valid x-coordinate
x = 12 for a curve point hash. Now, since the auxiliary bit of this hash is 1, we choose the larger
root y = 8 as the y coordinate and get the following hash which is a valid curve point on the
tiny-jubjub curve:

HT JJ_13(< 1,1,1,0,0,0,0,0 >) = (12,8)

In order to project this onto the “large” prime-order subgroup, we have to do cofactor clear-
ing, that is, we have to multiply the point with the cofactor 4. Using sage we get

479sage: P = TJJ_13(12,8)
480sage: (4*P).xy()
481(8, 8)

This implies that hashing the binary string < 1,1,1,0,0,0,0,0 > onto the large prime order
subgroup T JJ_13[5] gives the hash value (8,8) as a result.

HT JJ_13[5](< 1,1,1,0,0,0,0,0 >) = (8,8)

Exercise 79. Use our definition of the try_hash algorithm to implement a hash function HT JJ_13[5] :
{0,1}∗→ T JJ_13(F13)[5] that maps binary strings of arbitrary length onto the 5-torsion group
of T JJ13(F13).

Exercise 80. Implement a cryptographic hash function Hsecp256k1 : {0,1}∗ → secp256k1 that
maps binary strings of arbitrary length onto the elliptic curve secp256k1.

105

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

5.6 Constructing elliptic curves
Cryptographically secure elliptic curves like secp256k1 70 have been known for quite some
time. Given the latest advancements of cryptography, however, it is often necessary to design
and instantiate elliptic curves from scratch that satisfy certain very specific properties.

For example, in the context of SNARK development, it became necessary to design elliptic
curves that can be efficiently implemented inside of a so-called in order to enable primitives
like elliptic curve in a zero-knowledge proof. Such a curve is given by the Baby-jubjub curve
in XXX, and we have paralleled its definition by introducing the tiny-jubjub curve from ex-
ample 69. As we have seen, those curves are instances of so-called twisted Edwards curves,
and as such have easy to implement addition laws that work without branching. However, we
introduced the tiny-jubjub curve out of thin air, as we just gave the curve parameters without
explaining how we came up with them.

Another requirement in the context of many so-called pairing-based zero-knowledge proof-
ing systems is the existence of a suitable, pairing-friendly curve with a specified security level
and a low embedding degree as defined in 5.24. Famous examples are the BLS_12 and the
NMT curves.

The major goal of this section is to explain the most important method of designing elliptic
curves with predefined properties from scratch, called the complex multiplication method, as
as explained for example in chapter 6 of Silverman and Tate [1994]. We will apply this method
in section to synthesize a particular BLS_6 curve, which is one of the most insecure curves,
that is particular well suited to serve as the main curve to build our pen-and-paper SNARKs on.
As we will see, this curve has a “large” prime factor subgroup of order 13, which implies that
we can use our tiny-jubjub curve to implement certain elliptic curve cryptographic primitives in
circuits over that BLS_6 curve.

Before we introduce the complex multiplication method, we have to explain a few properties
of elliptic curves that are of key importance in understanding that method.

The Trace of Frobenius To understand the complex multiplication method of elliptic curves,
we have to define the so-called trace of an elliptic curve first.

We know that elliptic curves are cyclic groups of finite order. Therefore, an interesting
question is whether it is possible to estimate the number of elements that this curve contains.
Since an affine short Weierstrass curve consists of pairs (x,y) of elements from a finite field Fq
plus the point at infinity, and the field Fq contains q elements, the number of curve points cannot
be arbitrarily large, since it can contain at most q2 +1 many elements.

There is however, a more precise estimation, usually called the Hasse bound. To understand
it, let E(Fq) be an affine short Weierstrass curve over a finite field Fq of order q, and let |E(Fq)|
be the order of the curve. Then there is an integer t ∈ Z, called the trace of Frobenius of the
curve, such that |t| ≤ 2

√
q and the following equation holds:

|E(F)|= q+1− t (5.34)

A positive trace, therefore, implies that the curve contains no more points than the under-
lying field, whereas a non-negative trace means that the curve contains more points. However,
the estimation |t| ≤ 2

√
q implies that the difference is not very large in either direction, and the

number of elements in an elliptic curve is always approximately in the same order of magnitude
as the size of the curve’s base field.

Example 97. Consider the elliptic curve E1,1(F5) from example 68. We know that it contains 9
curve points. Since the order of F5 is 5, we compute the trace of E1,1(F5) to be t = −3, since

106

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

the Hasse bound is given by the following equation:

9 = 5+1− (−3)

Indeed, we have |t| ≤ 2
√

q, since
√

5 > 2 and |−3|= 3≤ 4 = 2 ·2 < 2 ·
√

5.

Example 98. To compute the trace of the tiny-jubjub curve, recall from example 69 that the
order of TJJ_13 is 20. Since the order of F13 is 13, we can therefore use the Hasse bound and
compute the trace as t =−6:

20 = 13+1− (−6) (5.35)

Again, we have |t| ≤ 2
√

q, since
√

13 > 3 and |−6|= 6 = 2 ·3 < 2 ·
√

13.

Example 99. To compute the trace of secp256k1, recall from example 70 that this curve is
defined over a prime field with p elements, and that the order of that group is given by r:

p =115792089237316195423570985008687907853269984665640564039457584007908834671663

r =115792089237316195423570985008687907852837564279074904382605163141518161494337

Using the Hasse bound r = p+1− t, we therefore compute t = p+1− r, which gives the
trace of curve secp256k1 as follows:

t =432420386565659656852420866390673177327

As we can see, secp256k1 contains less elements than its underlying field. However, the
difference is tiny, since the order of secp256k1 is in the same order of magnitude as the order
of the underlying field. Compared to p and r, the integer t is tiny.

482sage: p = 1157920892373161954235709850086879078532699846656405
64039457584007908834671663

483sage: r = 1157920892373161954235709850086879078528375642790749
04382605163141518161494337

484sage: t = p + 1 -r
485sage: t.nbits()
486129
487sage: abs(RR(t)) <= 2*sqrt(RR(p))
488True

The j-invariant As we have seen in XXX, two elliptic curves E1(F) defined by y2 = x3+ax+
b and E2(F) defined by y2 + a′x+ b′ are strictly isomorphic if and only if there is a quadratic
residue d ∈ F such that a′ = ad2 and b′ = bd3.

There is, however, a more general way to classify elliptic curves over finite fields Fq, based
on the so-called j-invariant of an elliptic curve with j(E(Fq)) ∈ Fq, as defined below:

j(E(Fq)) = 1728 · 4 ·a3

4 ·a3 +27 ·b2 mod q (5.36)

A detailed description of the j-invariant is beyond the scope of this book. For our present
purposes, it is sufficient to note that two elliptic curves E1(F) and E2(F′) are isomorphic over
the of F and F′, if and only if F= F′ and j(E1) = j(E2).

So, the j-invariant is an important tool to classify elliptic curves and it is needed in the com-
plex multiplication method to decide on an actual curve instantiation that implements abstractly
chosen properties.

107

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

Example 100. Consider the elliptic curve E1,1(F5) from example 68. We compute its j-invariant
as follows:

j(E1,1(F5)) = 1728 · 4 ·13

4 ·13 +27 ·12 mod 5

= 3
4

4+2
= 3 ·4
= 2

Example 101. Consider the elliptic curve TJJ_13 from example 69. We compute its j-invariant
as follows:

j(T JJ_13) = 1728 · 4 ·83

4 ·83 +27 ·82 mod 13

= 12 · 4 ·5
4 ·5+1 ·12

= 12 · 7
7+12

= 12 ·7 ·6−1

= 2 ·7
= 1

Example 102. Consider secp256k1 from example secp256k1. We compute its j-invariant using
Sage:

489sage: p = 1157920892373161954235709850086879078532699846656405
64039457584007908834671663

490sage: F = GF(p)
491sage: j = F(1728)*((F(4)*F(0)^3)/(F(4)*F(0)^3+F(27)*F(7)^2))
492sage: j == F(0)
493True

The Complex Multiplication Method As we have seen in the previous sections, elliptic
curves have various defining properties, like their order, their prime factors, the embedding de-
gree, or the cardinality (number of elements) of the base field. The complex multiplication
(CM) method provides a practical way of constructing elliptic curves with pre-defined restric-
tions on the order and the base field. A detailed explanation of the complex multiplication
method and its derivation can be found for example in Grechnikov [2012].

The complex multiplication method starts by choosing a base field Fq of the curve E(Fq)
we want to construct such that q = pm for some prime number p, and m ∈N. We assume p > 3
to simplify things in what follows.

Next, the trace of Frobenius t ∈ Z of the curve is chosen such that p and t are coprime, that
is, gcd(p, t) = 1 holds true and |t| ≤ 2

√
q. The choice of t also defines the curve’s order r, since

r = p+1− t by the Hasse bound 5.34, so choosing t will determine the large order subgroup as
well as all small cofactors. The resulting r must be such that the curve meets the application’s
security requirements.

Note that the choice of p and t also determines the embedding degree k of any prime-order
subgroup of the curve, since k is defined as the smallest number such that the prime order n
divides the number qk−1.

108

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

In order for the complex multiplication method to work, neither q nor t can be arbitrary,
but must be chosen in such a way that two additional integers D ∈ Z and v ∈ Z exist and the
following conditions hold:

D < 0
(D = 0 or D = 1) mod 4

4q = t2 + |D|v2
(5.37)

If such numbers exist, we call D the CM-discriminant, and we know that we can construct
a curve E(Fq) over a finite field Fq such that the order of the curve is |E(Fq)|= q+1− t.

It is the goal of the complex multiplication method to actually construct such a curve, that is
finding the parameters a and b from Fq in the defining Weierstrass equation such that the curve
has the desired order r.

Finding solutions to equation 5.37 can be achieved in different ways. In general, it can
be said that there are well-known constraints for elliptic curve families (e.g. the BLS families
REFERENCES) that provides families of solutions. In what follows, we will look at one type
curve in the BLS-family, which gives an entire range of solutions.

Assuming that proper parameters q, t, D and v are found, we have to compute the so-called
Hilbert class polynomial HD ∈ Z[x] of the CM-discriminant D, which is a polynomial with
integer coefficients. To do so, we first have to compute the following set:

S(D) = {(A,B,C) | A,B,C ∈ Z, D = B2−4AC, gcd(A,B,C) = 1,

|B| ≤ A≤
√
|D|
3
, A≤C, if B < 0 then |B|< A <C}

One way to compute this set is to first compute the integer Amax = Floor(
√
|D|
3), then loop

through all the integers 0≤ A≤ Amax, as well as through all the integers−A≤ B≤ A and check
if there is an integer C that satisfies the equation D = B2−4AC and the rest of the requirements
from ??.

To compute the Hilbert class polynomial, the so-called j-function (or j-invariant) is needed,
which is a complex function defined on the upper half H of the complex plane C, usually written
as follows:

j : H→ C (5.38)

What this means is that the j-functions takes complex numbers (x+ y · i) with a positive
imaginary part y > 0 as inputs and returns a complex number j(x+ i · y) as a result.

For the purposes of this book, it is not important to understand the j-function in detail, and
we can use Sage to compute it in a similar way that we would use Sage to compute any other
well-known function. It should be noted, however, that the computation of the j-function in
Sage is sometimes prone to precision errors. For example, the j-function has a root in −1+i

√
3

2 ,
which Sage only approximates. Therefore, when using Sage to compute the j-function, we need
to take precision loss into account and possibly round to the nearest integer.

494sage: z = ComplexField(100)(0,1)
495sage: z # (0+1i)
4961.0000000000000000000000000000*I
497sage: elliptic_j(z)

109

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

4981728.0000000000000000000000000
499sage: # j-function only defined for positive imaginary

arguments
500sage: z = ComplexField(100)(1,-1)
501sage: try:
502....: elliptic_j(z)
503....: except PariError:
504....: pass
505sage: # root at (-1+i sqrt(3))/2
506sage: z = ComplexField(100)(-1,sqrt(3))/2
507sage: elliptic_j(z)
508-2.6445453750358706361219364880e-88
509sage: elliptic_j(z).imag().round()
5100
511sage: elliptic_j(z).real().round()
5120

With a way to compute the j-function and the precomputed set S(D) at hand, we can now
compute the Hilbert class polynomial as follows:

HD(x) = Π(A,B,C)∈S(D)

(
x− j

(
−B+

√
D

2A

))
(5.39)

In other words, we loop over all elements (A,B,C) from the set S(D) and compute the j-
function at the point −B+

√
D

2A , where D is the CM-discriminant that we chose in a previous step.
The result defines a factor of the Hilbert class polynomial and all factors are multiplied together.

It can be shown that the Hilbert class polynomial is an integer polynomial, but actual com-
putations need high-precision arithmetic to avoid approximation errors that usually occur in
computer approximations of the j-function (as shown above). So, in case the calculated Hilbert
class polynomial does not have integer coefficients, we need to round the result to the nearest
integer. Given that the precision we used was high enough, the result will be correct.

In the next step, we use the Hilbert class polynomial HD ∈ Z[x], and project it to a polyno-
mial HD,q ∈ Fq[x] with coefficients in the base field Fq as chosen in the first step. We do this by
simply reducing the coefficients modulo p, that is, if HD(x)= amxm+am−1xm−1+ . . .+a1x+a0,
we compute the q-modulus of each coefficient ã j = a j mod p, which yields the projected
Hilbert class polynomial as follows:

HD,p(x) = ãmxm + ãm−1xm−1 + . . .+ ã1x+ ã0

We then search for roots of HD,p, since every root j0 of HD,p defines a family of elliptic curves
over Fq, which all have a j-invariant 5.38 equal to j0. We can pick any root, since all of them
define an elliptic curve. However, some of the curves with the correct j-invariant might have an
order different from the one we initially decided on. Therefore, we need a way to decide on a
curve with the correct order.

To compute a curve with the correct order, we have to distinguish a few different cases
based on our choice of the root j0 ∈ Fq and of the CM-discriminant D ∈ Z. If j0 ̸= 0 or
j0 ̸= 1728 mod q, we compute c1 =

j0
(1728 mod q)− j0

∈ Fq, then we chose some arbitrary quadratic
non-residue c2 ∈ Fq, and some arbitrary cubic non-residue c3 ∈ Fq.

The following table is guaranteed to define a curve with the correct order r = q+ 1− t for
the fields order q and the trace of Frobenius t we initially decided on:

110

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

• Case j0 ̸= 0 and j0 ̸= 1728 mod q. A curve with the correct order is defined by one of the
following equations:

y2 = x3 +3c1x+2c1 or y2 = x3 +3c1c2
2x+2c1c3

2 (5.40)

• Case j0 = 0 and D ̸=−3. A curve with the correct order is defined by one of the following
equations:

y2 = x3 +1 or y2 = x3 + c3
2 (5.41)

• Case j0 = 0 and D=−3. A curve with the correct order is defined by one of the following
equations:

y2 = x3 +1 or y2 = x3 + c3
2 or

y2 = x3 + c2
3 or y2 = c2

3c3
2 or

y2 = x3 + c−2
3 or y2 = x3 + c−2

3 c3
2

• Case j0 = 1728 mod q and D ̸= −4. A curve with the correct order is defined by one of
the following equations:

y2 = x3 + x or y2 = x3 + c2
2x (5.42)

• Case j0 = 1728 mod q and D = −4. A curve with the correct order is defined by one of
the following equations:

y2 = x3 + x or y2 = x3 + c2x or

y2 = x3 + c2
2x or y2 = x3 + c3

2x

To decide the proper defining short Weierstrass equation, we therefore have to compute
the order of any of the potential curves above, and then choose the one that fits our initial
requirements.

To summarize, using the complex multiplication method, it is possible to synthesize elliptic
curves with predefined order over predefined base fields from scratch. However, the curves that
are constructed this way are just some representatives of a larger class of curves, all of which
have the same order. Therefore, in real-world applications, it is sometimes more advantageous
to choose a different representative from that class. To do so recall from 5.1.1 that any curve
defined by the short Weierstrass equation y2 = x3 +ax+b is isomorphic to a curve of the form
y2 = x3 +ad4x+bd6 for some invertible field element d ∈ F∗q.

In order to find a suitable representative (e.g. with small parameters a and b) in the last step,
the curve designer might choose an invertible field element d such that the transformed curve
has the properties they wanted.
Example 103. Consider curve E1,1(F5) from example 68. We want to use the complex multi-
plication method to derive that curve from scratch. Since E1,1(F5) is a curve of order r = 9 over
the prime field of order q = 5, we know from example 97 that its trace of Frobenius is t =−3,
which also implies that q and |t| are coprime.

We then have to find parameters D,v ∈ Z such that the criteria in 5.37 hold. We get the
following:

4q = t2 + |D|v2 ⇒
20 = (−3)2 + |D|v2 ⇔
11 = |D|v2

111

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

Now, since 11 is a prime number, the only solution is |D|= 11 and v = 1 here. With D =−11
and the Euclidean division of−11 by 4 being−11 =−3 ·4+1, we have−11 mod 4 = 1, which
shows that D =−11 is a proper choice.

In the next step, we have to compute the Hilbert class polynomial H−11. To do so, we first

have to find the set S(D). To compute that set, observe that, since
√
|D|
3 ≈ 1.915 < 2, we know

from A≤
√
|D|
3 and A ∈ Z that A must be either 0 or 1.

For A = 0, we know B = 0 from the constraint |B| ≤ A. However, in this case, there could be
no C satisfying−11= B2−4AC. So we try A= 1 and deduce B∈ {−1,0,1} from the constraint
|B| ≤ A. The case B = −1 can be excluded, since then B < 0 has to imply |B| < A. The case
B = 0 can also be excluded, as there cannot be an integer C with −11 = −4C, since 11 is a
prime number.

This leaves the case B = 1, and we compute C = 3 from the equation−11 = 12−4C, which
gives the solution (A,B,C) = (1,1,3):

S(D) = {(1,1,3)}

With the set S(D) at hand, we can compute the Hilbert class polynomial of D = −11. To
do so, we have to insert the term −1+

√
−11

2·1 into the j-function. To do so, first observe that√
−11 = i

√
11, where i is the imaginary unit, defined by i2 = −1. Using this, we can invoke

Sage to compute the j-invariant and get the following:

H−11(x) = x− j

(
−1+ i

√
11

2

)
= x+32768

As we can see, in this particular case, the Hilbert class polynomial is a linear function with a
single integer coefficient. In the next step, we have to project it onto a polynomial from F5[x] by
computing the modular 5 remainder of the coefficients 1 and 32768. We get 32768 mod 5 = 3,
from which it follows that the projected Hilbert class polynomial is considered a polynomial
from F5[x]:

H−11,5(x) = x+3

As we can see, the only root of this polynomial is j = 2, since H−11,5(2) = 2+ 3 = 0. We
therefore have a situation with j ̸= 0 and j ̸= 1728, which tells us that we have to compute the
parameter c1 in modular 5 arithmetics:

c1 =
2

1728−2

Since 1728 mod 5 = 3, we get c1 = 2.
Next, we have to check if the curve E(F5) defined by the short Weierstrass equation y2 =

x3 +3 ·2x+2 ·2 has the correct order. We invoke Sage, and find that the order is indeed 9, so it
is a curve with the required parameters. Thus, we have successfully constructed the curve with
the desired properties.

Note, however, that in real-world applications, it might be useful to choose parameters a and
b that have certain properties, e.g. to be a small as possible. As we know from XXX, choosing
any quadratic residue d ∈ F5 gives a curve of the same order defined by y2 = x2 + ak2x+ bk3.
Since 4 is a quadratic residue in F4, we can transform the curve defined by y2 = x3 + x+4 into
the curve y2 = x3 +42 +4 ·43 which gives the following:

y2 = x3 + x+1

112

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

This is the curve E1,1(F5) that we used extensively throughout this book. Thus, using the
complex multiplication method, we were able to derive a curve with specific properties from
scratch.

Example 104. Consider the tiny-jubjub curve TJJ_13 from example 69. We want to use the
complex multiplication method to derive that curve from scratch. Since TJJ_13 is a curve of
order r = 20 over the prime field of order q = 13, we know from example 98 that its trace of
Frobenius is t =−6, which also implies that q and |t| are coprime.

We then have to find parameters D,v ∈ Z such that 5.37 holds. We get the following:

4q = t2 + |D|v2 ⇒
4 ·13 = (−6)2 + |D|v2 ⇒

52 = 36+ |D|v2 ⇔
16 = |D|v2

This equation has two solutions for (D,v), namely (−4,±2) and (−16,±1). Looking at the
first solution, we know that D =−4 implies j = 1728, and the constructed curve is defined by a
short Weierstrass equation 5.1 that has a vanishing parameter b = 0. We can therefore conclude
that choosing D =−4 will not help us reconstructing TJJ_13. It will produce curves with order
20, just not the one we are looking for.

So we choose the second solution D = −16. In the next step, we have to compute the
Hilbert class polynomial H−16. To do so, we first have to find the set S(D). To compute that set,

observe that since
√
|−16|

3 ≈ 2.31 < 3, we know from A≤
√
|−16|

3 and A ∈ Z that A must be in
the range 0..2. So we loop through all possible values of A and through all possible values of B
under the constraints |B| ≤ A, and if B < 0 then |B| < A. Then we compute potential C’s from
−16 = B2−4AC. We get the following two solutions for S(D): we get

S(D) = {(1,0,4),(2,0,2)}

With the set S(D) at hand, we can compute the Hilbert class polynomial of D = −16. We can
invoke Sage to compute the j-invariant and get the following:

H−16(x) =

(
x− j

(
i
√

16
2

))(
x− j

(
i
√

16
4

))
= (x−287496)(x−1728)

As we can see, in this particular case, the Hilbert class polynomial is a quadratic function
with two integer coefficients. In the next step, we have to project it onto a polynomial from
F5[x] by computing the modular 5 remainder of the coefficients 1, 287496 and 1728. We get
287496 mod 13 = 1 and 1728 mod 13 = 2, which means that the projected Hilbert class poly-
nomial is as follows:

H−11,5(x) = (x−1)(x−12) = (x+12)(x+1)

This is considered a polynomial from F13[x]. Thus, we have two roots, namely j = 1 and
j = 12. We already know that j = 12 is the wrong root to construct the tiny-jubjub curve, since
1728 mod 13 = 2, and that case is not compatible with a curve with b ̸= 0. So we choose j = 1.

113

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

Another way to decide the proper root is to compute the j-invariant of the tiny-jubjub curve.
We get the following:

j(TJJ_13) = 12
4 ·83

4 ·83 +1 ·82

= 12
4 ·5

4 ·5+12

= 12
7

7+12

= 12
7

7+12
= 1

This is equal to the root j = 1 of the Hilbert class polynomial H−16,13 as expected. We
therefore have a situation with j ̸= 0 and j ̸= 1728, which tells us that we have to compute the
parameter c1 in modular 5 arithmetics:

c1 =
1

12−1
= 6

Since 1728 mod 13 = 12, we get c1 = 6. Then we have to check if the curve E(F5) defined by
the short Weierstrass equation y2 = x3 +3 ·6x+2 ·6, which is equivalent to y2 = x3 +5x+12,
has the correct order. We invoke Sage and find that the order is 8, which implies that the trace
of this curve is 6, not−6 as required. So we have to consider the second possibility, and choose
some quadratic non-residue c2 ∈ F13. We choose c2 = 5 and compute the short Weierstrass
equation y2 = x3 +5c2

2 +12c3
2 as follows:

y2 = x3 +8x+5

We invoke Sage and find that the order is 20, which is indeed the correct one. As we know
from XXX, choosing any quadratic residue d ∈ F5 gives a curve of the same order defined by
y2 = x2+ad2x+bd3. Since 12 is a quadratic residue in F13, we can transform the curve defined
by y2 = x3 +8x+5 into the curve y2 = x3 +122 ·8+5 ·123 which gives the following:

y2 = x3 +8x+8

This is the tiny-jubjub curve that we used extensively throughout this book. So using the
complex multiplication method, we were able to derive a curve with specific properties from
scratch.

Example 105. To consider a real-world example, we want to use the complex multiplication
method in combination with Sage to compute secp256k1 from scratch. So based on example
70, we decided to compute an elliptic curve over a prime field Fp of order r for the following
security parameters:

p =115792089237316195423570985008687907853269984665640564039457584007908834671663

r =115792089237316195423570985008687907852837564279074904382605163141518161494337

According to example 99, this gives the following trace of Frobenius:

t =432420386565659656852420866390673177327

114

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

We also decided that we want a curve of the form y2 = x3+b, that is, we want the parameter
a to be zero. This implies that the j-invariant of our curve must be zero.

In a first step, we have to find a CM-discriminant D and some integer v such that the equation
4p = t2 + |D|v2 is satisfied. Since we aim for a vanishing j-invariant, the first thing to try is
D = −3. In this case, we can compute v2 = (4p− t2), and if v2 happens to be an integer that
has a square root v, we are done. Invoking Sage we compute as follows:

513sage: D = -3
514sage: p = 1157920892373161954235709850086879078532699846656405

64039457584007908834671663
515sage: r = 1157920892373161954235709850086879078528375642790749

04382605163141518161494337
516sage: t = p+1-r
517sage: v_sqr = (4*p - t^2)/abs(D)
518sage: v_sqr.is_integer()
519True
520sage: v = sqrt(v_sqr)
521sage: v.is_integer()
522True
523sage: 4*p == t^2 + abs(D)*v^2
524True
525sage: v
526303414439467246543595250775667605759171

The pair (D,v) = (−3,303414439467246543595250775667605759171) does indeed solve the
equation, which tells us that there is a curve of order r over a prime field of order p, defined by
a short Weierstrass equation y2 = x3 +b for some b ∈ Fp. Now we need to compute b.

For D = −3, we already know that the associated Hilbert class polynomial is given by
H−3(x) = x, which gives the projected Hilbert class polynomial as H−3,p = x and the j-invariant
of our curve is guaranteed to be j = 0. Now, looking at 5.6, we see that there are 6 possible
cases to construct a curve with the correct order r. In order to construct the curves in question,
we have to choose some arbitrary quadratic and cubic non-residue. So we loop through Fp to
find them, invoking Sage:

527sage: F = GF(p)
528sage: for c2 in F:
529....: try: # quadratic residue
530....: _ = c2.nth_root(2)
531....: except ValueError: # quadratic non-residue
532....: break
533sage: c2
5343
535sage: for c3 in F:
536....: try:
537....: _ = c3.nth_root(3)
538....: except ValueError:
539....: break
540sage: c3
5412

115

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

We found the quadratic non-residue c2 = 3 and the cubic non-residue c3 = 2. Using those
numbers, we check the six cases against the the expected order r of the curve we want to
synthesize:

542sage: C1 = EllipticCurve(F,[0,1])
543sage: C1.order() == r
544False
545sage: C2 = EllipticCurve(F,[0,c2^3])
546sage: C2.order() == r
547False
548sage: C3 = EllipticCurve(F,[0,c3^2])
549sage: C3.order() == r
550False
551sage: C4 = EllipticCurve(F,[0,c3^2*c2^3])
552sage: C4.order() == r
553False
554sage: C5 = EllipticCurve(F,[0,c3^(-2)])
555sage: C5.order() == r
556False
557sage: C6 = EllipticCurve(F,[0,c3^(-2)*c2^3])
558sage: C6.order() == r
559True

As expected, we found an elliptic curve of the correct order r over a prime field of size p. In
principle. we are done, as we have found a curve with the same basic properties as secp256k1.
However, the curve is defined by the following equation, which uses a very large parameter b1,
and so it might perform too slowly in certain algorithms.

y2=x3+86844066927987146567678238756515930889952488499230423029593188005931626003754

It is also not very elegant to be written down by hand. It might therefore be advantageous to
find an isomorphic curve with the smallest possible parameter b2. In order to find such a b2, we
have to choose a quadratic residue d such that b2 = b1 ·d3 is as small as possible. To do so, we
rewrite the last equation into the following form:

d = 3

√
b2

b1

Then we invoke Sage to loop through values b2 ∈ Fp until it finds some number such that
the quotient b2

b1
has a cube root d and this cube root itself is a quadratic residue.

560sage: b1=86844066927987146567678238756515930889952488499230423
029593188005931626003754

561sage: for b2 in F:
562....: try:
563....: d = (b2/b1).nth_root(3)
564....: try:
565....: _ = d.nth_root(2)
566....: if d != 0:
567....: break
568....: except ValueError:

116

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

569....: pass
570....: except ValueError:
571....: pass
572sage: b2
5737

Indeed, the smallest possible value is b2 = 7 and the defining short Weierstrass equation of a
curve over Fp with prime order r is y2 = x3 + 7, which we might call secp256k1. As we have
just seen, the complex multiplication method is powerful enough to derive cryptographically
secure curves like secp256k1 from scratch.

Exercise 81. Show that the Hilbert class polynomials for the CM-discriminants D = −3 and
D =−4 are given by H−3,q(x) = x and H−4,q = x− (1728 mod q).

5.6.1 The BLS6_6 pen-and-paper curve
In this paragraph, we summarize our understanding of elliptic curves to derive our main pen-
and-paper example for the rest of the book. To do so, we want to use the complex multiplication
method to derive a pairing-friendly elliptic curve that has similar properties to curves that are
used in actual cryptographic protocols. However, we design the curve specifically to be use-
ful in pen-and-paper examples, which mostly means that the curve should contain only a few
points so that we are able to derive exhaustive addition and pairing tables. Specifically, we use
construction 6.6 in Freeman et al. [2010].

A well-understood family of pairing-friendly curves is the the group of BLS curves , which
are derived in [XXX]. BLS curves are particularly useful in our case if the embedding degree
k satisfies k ≡ 6 (mod 0). Of course, the smallest embedding degree k that satisfies this
congruency is k = 6 and we therefore aim for a BLS6 curve as our main pen-and-paper example.

To apply the complex multiplication method from page 5.6 to construction 6.6 from Free-
man et al. [2010], recall that this method starts with a definition of the base field Fpm , as well as
the trace of Frobenius t and the order of the curve. If the order pm+1− t is not a prime number,
then the order r of the largest prime factor group needs to be controlled.

In the case of BLS_6 curves, the parameter m is chosen to be 1, which means that the
curves are defined over prime fields. All relevant parameters p, t and r are then themselves
parameterized by the following three polynomials:

r(x) = Φ6(x)
t(x) = x+1

q(x) =
1
3
(x−1)2(x2− x+1)+ x

(5.43)

In the equations above, Φ6 is the 6-th and x ∈ N is a parameter that the designer has to
choose in such a way that the evaluation of p, t and r at the point x gives integers that have
the proper size to meet the security requirements of the curve that they want to design. It is
then guaranteed that the complex multiplication method can be used in combination with those
parameters to define an elliptic curve with CM-discriminant D =−3, embedding degree k = 6,
and curve equation y2 = x3 +b for some b ∈ Fp.

For example, if the curve should target the 128-bit security level, due to the (TODO) the
parameter r should be prime number of at least 256 bits.

117

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

In order to design the smallest BLS_6 curve, we therefore have to find a parameter x such
that r(x), t(x) and q(x) are the smallest natural numbers that satisfy q(x)> 3 and r(x)> 3.1

We therefore initiate the design process of our BLS6 curve by looking up the 6-th cyclo-
tomic polynomial, which is Φ6 = x2− x+1, and then insert small values for x into the defining
polynomials r, t,q. We get the following results:

x = 1 (r(x), t(x),q(x)) (1,2,1)
x = 2 (r(x), t(x),q(x)) (3,3,3)
x = 3 (r(x), t(x),q(x)) (7,4, 37

3)
x = 4 (r(x), t(x),q(x)) (13,5,43)

Since q(1) = 1 is not a prime number, the first x that gives a proper curve is x = 2. However,
such a curve would be defined over a base field of characteristic 3, and we would rather like to
avoid that, because in this book elliptic curves are only defined for fields of chracteristic > 3.
We therefore find x = 4, which defines a curve over the prime field of characteristic 43 that has
a trace of Frobenius t = 5 and a larger order prime group of size r = 13.

Since the prime field F43 has 43 elements and 43’s binary representation is 432 = 101011,
which consists of 6 digits, the name of our pen-and-paper curve should be BLS6_6, since its is
common to name a BLS curve by its embedding degree and the bit-length of the modulus in the
base field. We call BLS6_6 the moon-math-curve.

Based on 5.34, we know that the Hasse bound implies that BLS6_6 will contain exactly 39
elements. Since the prime factorization of 39 is 39 = 3 · 13, we have a “large” prime factor
group of size 13, as expected, and a small cofactor group of size 3. Fortunately, a subgroup of
order 13 is well suited for our purposes, as 13 elements can be easily handled in the associated
addition, scalar multiplication and pairing tables in a pen-and-paper style.

We can check that the embedding degree is indeed 6 as expected, since k = 6 is the smallest
number k such that r = 13 divides 43k−1.

574sage: for k in range(1,42): # Fermat’s little theorem
575....: if (43^k-1)%13 == 0:
576....: break
577sage: k
5786

In order to compute the defining equation y2 = x3 +ax+b of BLS6-6, we use the complex
multiplication method as described in 5.6. The goal is to find a,b ∈ F43 representations that
are particularly nice to work with. The authors of XXX showed that the CM-discriminant of
every BLS curve is D =−3 and, indeed, the following equation has the four solutions (D,v) ∈
{(−3,−7),(−3,7),(−49,−1),(−49,1)} if D is required to be negative, as expected:

4p = t2 + |D|v2 ⇒
4 ·43 = 52 + |D|v2 ⇒

172 = 25+ |D|v2 ⇔
49 = |D|v2

This means that D = −3 is indeed a proper CM-discriminant, and we can deduce that the
parameter a has to be 0, and that the Hilbert class polynomial is given by H−3,43(x) = x.

1The smallest BLS curve will also be the most insecure BLS curve. However, since our goal with this curve is
ease of pen-and-paper computation rather than security, it fits the purposes of this book.

118

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

This implies that the j-invariant of BLS6_6 is given by j(BLS6_6) = 0. We therefore have
to look at case XXX in table 5.6 to derive a parameter b. To decide the proper case for j0 = 0
and D = −3, we therefore have to choose some arbitrary quadratic non-residue c2 and cubic
non-residue c3 in F43. We choose c2 = 5 and c3 = 36. We check these with Sage:

579sage: F43 = GF(43)
580sage: c2 = F43(5)
581....: try: # quadratic residue
582....: c2.nth_root(2)
583....: except ValueError: # quadratic non-residue
584....: c2
585sage: c3 =F43(36)
586....: try:
587....: c3.nth_root(3)
588....: except ValueError:
589....: c3

Using those numbers we check the six possible cases from 5.6 against the the expected order
39 of the curve we want to synthesize:

590sage: BLS61 = EllipticCurve(F43,[0,1])
591sage: BLS61.order() == 39
592False
593sage: BLS62 = EllipticCurve(F43,[0,c2^3])
594sage: BLS62.order() == 39
595False
596sage: BLS63 = EllipticCurve(F43,[0,c3^2])
597sage: BLS63.order() == 39
598True
599sage: BLS64 = EllipticCurve(F43,[0,c3^2*c2^3])
600sage: BLS64.order() == 39
601False
602sage: BLS65 = EllipticCurve(F43,[0,c3^(-2)])
603sage: BLS65.order() == 39
604False
605sage: BLS66 = EllipticCurve(F43,[0,c3^(-2)*c2^3])
606sage: BLS66.order() == 39
607False
608sage: BLS6 = BLS63 # our BLS6 curve in the book

As expected, we found an elliptic curve of the correct order 39 over a prime field of size 43,
defined by the following equation:

BLS6_6 := {(x,y) | y2 = x3 +6 for all x,y ∈ F43} (5.44)

There are other choices for b, such as b = 10 or b = 23, but all these curves are isomorphic,
and hence represent the same curve in a different way. Since BLS6-6 only contains 39 points ,it
is possible to give a visual impression of the curve:

119

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

0 5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

As we can see, our curve has some desirable properties: it does not contain self-inverse
points, that is, points with y = 0. It follows that the addition law can be optimized, since the
branch for those cases can be eliminated.

Summarizing the previous procedure, we have used the method of Barreto, Lynn and Scott
to construct a pairing-friendly elliptic curve of embedding degree 6. However, in order to do
elliptic curve cryptography on this curve, note that, since the order of BLS6_6 is 39, its group
of rational points is not a finite cyclic group of prime order. We therefore have to find a suitable
subgroup as our main target. Since 39 = 13 ·3, we know that the curve must contain a “large”
prime-order group of size 13 and a small cofactor group of order 3.

The following step is to construct this group. One way to do so is to find a generator. We
can achieve this by choosing an arbitrary element of the group that is not the point at infinity,
and then multiply that point with the cofactor of the group’s order. If the result is not the point
at infinity, the result will be a generator. If it is the point at infinity we have to choose a different
element.

In order to find a generator for the large order subgroup of size 13, we first notice that the
cofactor of 13 is 3, since 39 = 3 · 13. We then need to construct an arbitrary element from
BLS6_6. To do so in a pen-and-paper style, we can choose some arbitraryx ∈ F43 and see if
there is some solution y ∈ F43 that satisfies the defining short Weierstrass equation y2 = x3 +6.
We choose x = 9, and check that y = 2 is a proper solution:

y2 = x3 +6 ⇒
22 = 93 +6 ⇔
4 = 4

This implies that P = (9,2) is therefore a point on BLS6_6. To see if we can project this
point onto a generator of the large order prime group BLS6_6[13], we have to multiply P with
the cofactor, that is, we have to compute [3](9,2). After some computation (EXERCISE) we
get [3](9,2) = (13,15). Since this is not the point at infinity, we know that (13,15) must be a
generator of BLS6_6[13]. The generator gBLS6_6[13], which we will use in pairing computations
in the remainder of this book, is given as follows:

gBLS6_6[13] = (13,15) (5.45)

Since gBLS6_6[13] is a generator, we can use it to construct the subgoup BLS6_6[13] by re-
peatedly adding the generator to itself. Using Sage, we get the following:

609sage: P = BLS6(9,2)

120

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

610sage: Q = 3*P
611sage: Q.xy()
612(13, 15)
613sage: BLS6_13 = []
614sage: for x in range(0,13): # cyclic of order 13
615....: P = x*Q
616....: BLS6_13.append(P)

Repeatedly adding a generator to itself, as we just did, will generate small groups in logarithmic
order with respect to the generator as, explained on page 36 ff. We therefore get the following
description of the large prime-order subgroup of BLS6_6:

BLS6_6[13] =
{(13,15)→ (33,34)→ (38,15)→ (35,28)→ (26,34)→ (27,34)→

(27,9)→ (26,9)→ (35,15)→ (38,28)→ (33,9)→ (13,28)→O} (5.46)

Having a logarithmic description of this group is tremendously helpful in pen-and-paper com-
putations. To see that, observe that we know fromXXX that there is an exponential map from
the scalar field F13 to BLS6_6[13] with respect to our generator, which generates the group in
logarithmic order:

[·](13,15) : F13→ BLS6_6[13] ; x 7→ [x](13,15)

So, for example, we have [1](13,15) = (13,15), [7](13,15) = (27,9) and [0](13,15) =O and so on.
The relevant point here is that we can use this representation to do computations in BLS6_6[13]
efficiently in our head using XXX, as in the following example:

(27,34)⊕ (33,9) = [6](13,15)⊕ [11](13,15)
= [6+11](13,15)
= [4](13,15)
= (35,28)

So XXX is really all we need to do computations in BLS6_6[13] in this book efficiently. How-
ever, out of convenience, the following picture lists the entire addition table of that group, as it
might be useful in pen-and-paper computations:

⊕ O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28)

O O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28)

(13,15) (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O

(33,34) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15)

(38,15) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34)

(35,28) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15)

(26,34) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28)

(27,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34)

(27,9) (27,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34)

(26,9) (26,9) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9)

(35,15) (35,15) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9)

(38,28) (38,28) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15)

(33,9) (33,9) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28)

(13,28) (13,28) O (13,15) (33,34) (38,15) (35,28) (26,34) (27,34) (27,9) (26,9) (35,15) (38,28) (33,9)

121

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

Now that we have constructed a “large” cyclic prime-order subgroup of BLS6_6 suitable for
many pen-and-paper computations in elliptic curve cryptography, we have to look at how to do
pairings in this context. We know that BLS6_6 is a pairing-friendly curve by design, since it has
a small embedding degree k = 6. It is therefore possible to compute Weil pairings efficiently.
However, in order to do so, we have to decide the groups G1 and G2 as explained in exercise
76.

Since BLS6_6 has two non-trivial subgroups, it would be possible to use any of them as
the n-torsion group. However, in cryptography, the only secure choice is to use the large prime-
order subgroup, which in our case is BLS6_6[13]. We therefore decide to consider the 13-torsion
and define G1[13] as the first argument for the Weil pairing function:

G1[13] = {(13,15)→ (33,34)→ (38,15)→ (35,28)→ (26,34)→ (27,34)→
(27,9)→ (26,9)→ (35,15)→ (38,28)→ (33,9)→ (13,28)→O}

In order to construct the domain for the second argument, we need to construct G2[13],
which, according to the general theory, should be defined by those elements P of the full 13-
torsion group BLS6_6[13] that are mapped to 43 ·P under the Frobenius endomorphism (equa-
tion 5.29).

To compute G2[13], we therefore have to find the full 13-torsion group first. To do so, we
use the technique from XXX, which tells us that the full 13-torsion can be found in the curve
extension over the extension field F436 , since the embedding degree of BLS6_6 is 6:

BLS6_6 := {(x,y) | y2 = x3 +6 for all x,y ∈ F436} (5.47)

Thus, we have to construct F436 , a field that contains 6321363049 elements. In order to do
so, we use the procedure of XXX and start by choosing a non-reducible polynomial of degree 6
from the ring of polynomials F43[t]. We choose p(t) = t6+6. Using Sage, we get the following:

617sage: F43 = GF(43)
618sage: F43t.<t> = F43[]
619sage: p = F43t(t^6+6)
620sage: p.is_irreducible()
621True
622sage: F43_6.<v> = GF(43^6, name=’v’, modulus=p)

Recall from XXX that elements x ∈ F436 can be seen as polynomials a0+a1v+a2v2+ . . .+
a5v5 with the usual addition of polynomials and multiplication modulo t6 +6.

In order to compute G2[13], we first have to extend BLS6_6 to F436 , that is, we keep the
defining equation, but expand the domain from F43 to F436 . After that, we have to find at least
one element P from that curve that is not the point at infinity, is in the full 13-torsion and
satisfies the identity π(P) = [43]P. We can then use this element as our generator of G2[13] and
construct all other elements by repeatedly adding the generator to itself.

Since BLS6(F436) contains 6321251664 elements, it’s not a good strategy to simply loop
through all elements. Fortunately, Sage has a way to loop through elements from the torsion
group directly:

623sage: BLS6 = EllipticCurve (F43_6,[0 ,6]) # curve extension
624sage: INF = BLS6(0) # point at infinity

122

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

625sage: for P in INF.division_points(13): # full 13-torsion
626....: # PI(P) == [q]P
627....: if P.order() == 13: # exclude point at infinity
628....: PiP = BLS6([a.frobenius() for a in P])
629....: qP = 43*P
630....: if PiP == qP:
631....: break
632sage: P.xy()
633(7*v^2, 16*v^3)

We found an element from the full 13-torsion that is in the Eigenspace of the Eigenvalue 43,
which implies that it is an element of G2[13]. As G2[13] is cyclic of prime order, this element
must be a generator:

gG2[13] = (7v2,16v3) (5.48)

We can use this generator to compute G2 in logarithmic order with respect to gG[13]. Using
Sage we get the following:

634sage: Q = BLS6(7*v^2,16*v^3)
635sage: BLS6_13_2 = []
636sage: for x in range(0,13):
637....: P = x*Q
638....: BLS6_13_2.append(P)

G2 = {(7v2,16v3)→ (10v2,28v3)→ (42v2,16v3)→ (37v2,27v3)→
(16v2,28v3)→ (17v2,28v3)→ (17v2,15v3)→ (16v2,15v3)→

(37v2,16v3)→ (42v2,27v3)→ (10v2,15v3)→ (7v2,27v3)→O} (5.49)

Again, having a logarithmic description of G2[13] is tremendously helpful in pen-and-paper
computations, as it reduces complicated computation in the extended curves to modular 13
arithmetics, as in the following example:

(17v2,28v3)⊕ (10v2,15v2) = [6](7v2,16v3)⊕ [11](7v2,16v3)

= [6+11](7v2,16v3)

= [4](7v2,16v3)

= (37v2,27v3)

So XXX is really all we need to do computations in G2[13] in this book efficiently.
To summarize the previous steps, we have found two subgroups, G1[13] and G2[13] suit-

able to do Weil pairings on BLS6_6 as explained in 5.33. Using the logarithmic order XXX
of G1[13], the logarithmic order XXX of G2[13] and the bilinearity in 5.50, we can do Weil
pairings on BLS6_6 in a pen-and-paper style:

e([k1]gBLS6_6[13], [k2]gG2[13]) = e(gBLS6_6[13],gG2[13])
k1·k2 (5.50)

Observe that the Weil pairing between our two generators is given by the following identity:

e(gBLS6_6[13],gG2[13]) = 5v5 +16v4 +16v3 +15v2 +3v+41 (5.51)

123

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

639sage: g1 = BLS6([13,15])
640sage: g2 = BLS6([7*v^2, 16*v^3])
641sage: g1.weil_pairing(g2,13)
6425*v^5 + 16*v^4 + 16*v^3 + 15*v^2 + 3*v + 41

Hashing to pairing groups We give various constructions to hash into G1 and G2.
We start with hashing to the scalar field... TO APPEAR
None of these techniques work for hashing into G2. We therefore implement Pederson’s

Hash for BLS6.
We start with G1. Our goal is to define an 12-bit bounded hash function:

H1 : {0,1}12→G1

Since 12 = 3 ·4 we “randomly” select 4 uniformly distributed generators {(38,15),(35,28),
(27,34),(38,28)} from G1 and use the pseudo-random function from XXX. Therefore, we have
to choose a set of 4 randomly generated invertible elements from F13 for every generator. We
choose the following:

(38,15) : {2,7,5,9}
(35,28) : {11,4,7,7}
(27,34) : {5,3,7,12}
(38,28) : {6,5,1,8}

Our hash function is then computed as follows:

H1(x11,x1, . . . ,x0) = [2 ·7x11 ·5x10 ·9x9](38,15)+ [11 ·4x8 ·7x7 ·7x6](35,28)+
[5 ·3x5 ·7x4 ·12x3](27,34)+ [6 ·5x2 ·1x1 ·8x0](38,28)

Note that ax = 1 when x = 0. Hence, those terms can be omitted in the computation. In
particular, the hash of the 12-bit zero string is given as follows:

WRONG−ORDERING−REDO
H1(0) = [2](38,15)+ [11](35,28)+ [5](27,34)+ [6](38,28) =

(27,34)+(26,34)+(35,28)+(26,9) = (33,9)+(13,28) = (38,28)

The hash of 011010101100 is given as follows:

H1(011010101100) =WRONG−ORDERING−REDO

[2 ·70 ·51 ·91](38,15)+[11 ·40 ·71 ·70](35,28)+[5·31 ·70 ·121](27,34)+[6 ·51 ·10 ·80](38,28)=
[2 ·5 ·9](38,15)+ [11 ·7](35,28)+ [5 ·3 ·12](27,34)+ [6 ·5](38,28) =

[12](38,15)+ [12](35,28)+ [11](27,34)+ [4](38,28) =
TOAPPEAR

We can use the same technique to define a 12-bit bounded hash function in G2:

H2 : {0,1}12→G2

124

CHAPTER 5. ELLIPTIC CURVES 5.6. CONSTRUCTING ELLIPTIC CURVES

Again, we “randomly” select 4 uniformly distributed generators {(7v2,16v3),(42v2,16v3),
(17v2,15v3),(10v2,15v3)} from G2, and use the pseudo-random function from XXX. There-
fore, we have to choose a set of 4 randomly generated invertible elements from F13 for every
generator:

(7v2,16v3) : {8,4,5,7}
(42v2,16v3) : {12,1,3,8}
(17v2,15v3) : {2,3,9,11}
(10v2,15v3) : {3,6,9,10}

Our hash function is then computed like this:

H1(x11,x10, . . . ,x0) = [8 ·4x11 ·5x10 ·7x9](7v2,16v3)+ [12 ·1x8 ·3x7 ·8x6](42v2,16v3)+

[2 ·3x5 ·9x4 ·11x3](17v2,15v3)+ [3 ·6x2 ·9x1 ·10x0](10v2,15v3)

We extend this to a hash function that maps unbounded bitstrings to G2 by precompos-
ing with an actual hash function like MD5, and feed the first 12 bits of its outcome into our
previously defined hash function, with TinyMD5G2(s) = H2(MD5(s)0, . . .MD5(s)11):

TinyMD5G2 : {0,1}∗→G2

For example, since MD5(””) =
0xd41d8cd98 f 00b204e9800998ec f 8427e, and the binary representation of the hexadecimal
number 0x27e is 001001111110, we compute TinyMD5G2 of the empty string as follows:

TinyMD5G2(””) = H2(MD5(s)11, . . .MD5(s)0) = H2(001001111110) =

125

Chapter 6

Statements

As we have seen in the informal introduction XXX, a SNARK is a succinct non-interactive ar-
gument of knowledge, where the knowledge-proof attests to the correctness of statements like
“The prover knows the prime factorization of a given number” or “The prover knows the preim-
age to a given SHA2 digest value” and similar things. However, human-readable statements
like these are imprecise and not very useful from a formal perspective.

In this chapter we therefore look more closely at ways to formalize statements in mathemati-
cally rigorous ways, useful for SNARK development. We start by introducing formal languages
as a way to define statements properly (section 6.1). Formal languages are introduced in detail
for example in Moll et al. [2012]. We will then look at algebraic circuits and Rank-1 Con-
straint Systems [R1CS] as two particularly useful ways to define statements in certain formal
languages (section6.2). Rank-1 Constraint Systems and algebraic circuits are introduced for
example in appendix E of Ben-Sasson et al. [2013].

Proper statement design should be of high priority in the development of SNARKs, since
unintended true statements can lead to potentially severe and almost undetectable security vul-
nerabilities in the applications of SNARKs.

6.1 Formal Languages
Formal languages provide the theoretical background in which statements can be formulated
in a logically rigorous way and where proving the correctness of any given statement can be
realized by computing words in that language.

One might argue that the understanding of formal languages is not very important in SNARK
development and associated statement design, but terms from that field of research are standard
jargon in many papers on zero-knowledge proofs. We therefore believe that at least some in-
troduction to formal languages and how they fit into the picture of SNARK development is
beneficial, mostly to give developers a better intuition about where all this is located in the big-
ger picture of the logic landscape. In addition, formal languages give a better understanding of
what a formal proof for a statement actually is.

Roughly speaking, a formal language (or just language for short) is nothing but a set of
words and words, in turn, are strings of letters taken from some alphabet and formed according
to some defining rules of the language.

To be more precise, let Σ be any set and Σ∗ the set of all strings of finite length < x1, . . . ,xn >
of elements x j from Σ including the empty string <>∈ Σ∗. Then, a language L, in its most
general definition, is nothing but a subset of the set of all finite strings Σ∗. In this context, the
set Σ is called the alphabet of the language L, elements from Σ are called letters and elements

126

CHAPTER 6. STATEMENTS 6.1. FORMAL LANGUAGES

from L are called words. If there are rules that specify which strings from Σ∗ belong to the
language and which don’t, those rules are called the grammar of the language. If L1 and L2 are
two formal languages over the same alphabet, we call L1 and L2 equivalent if they consist of
the same set of words. A more detailed explanation of this definition can be found for example
in section 1.2 of Moll et al. [2012].

While the term language might suggest a deeper relation to the well known natural lan-
guages like English, formal languages and natural languages differ in many ways. The follow-
ing two examples will provide some intuition about formal languages and their differences to
natural languages:

Example 106 (The English language). To given a better understanding of formal languages
consider the natural language English. The English alphabet is given by the following set

ΣEnglish = {A,a,B,b,C,c,D,d,E,e,F, f ,G,g,H,h, I, i,J, j,K,k,L, l,M,m,N,n,O,

o,P, p,Q,q,R,r,S,s,T, t,U,u,V,v,W,w,X ,x,Y,y,Z,z}

The natural language English does not define words by abstract rules, but by something we
might call historical human convention as a word in the language English is distinguished from
any other string from the English alphabet by human convention not by formal rules. In that
regard strings like “tea” or “eat” are words in English, but “aet” and “tae” are not, because
people agree on that. So while the set of all English words is a formal language LEnglish ⊂
ΣEnglish there is no formal grammar that defines what a word in English is and what not.

It should also be recognized that in such a simple definition, the ”grammar” of the natural
language English is different from the grammar of the formal language English. The grammar
of natural English defines how sentences are generated from words, while sentences have no
meaning in our simple formal language English.

In order to express natural English sentences in a formal English language, one has to extend
the alphabet by a space character together with the set of all punctuations and then include the
grammar of the natural language English into the formal language English. It should be noted
however that in such a formal language, sentences like "I drink tea, but I don’t eat meat." from
the natural language English are actually words in the formal language English.

Example 107 (Alternating Binary strings). To consider a very basic formal language with an
almost trivial grammar, consider the set of the two letters 0 and 1 as our alphabet Σ:

Σ = {0,1}

Also imply the grammar that a proper word must consist of alternating binary letters of arbitrary
length including the empty string. The associated language Lalt is the set of all finite binary
strings, where a 1 must follow a 0 and vice versa. So, for example, < 1,0,1,0,1,0,1,0,1>∈ Lalt
is a word in this languages as is < 0 >∈ Lalt or the empty word <>∈ Lalt . However, the binary
string < 1,0,1,0,1,0,1,1,1 >∈ {0,1}∗ is not a proper word, as it violates the grammar of Lalt ,
since the last 3 letters are all 1. Furthermore, the string < 0,A,0,A,0,A,0 > is not a proper
word, as not all its letters are from the alphabet Σ.

Decision Functions Our previous definition of formal languages is very general and many
subclasses of languages are known in the literature. However, in the context of SNARK de-
velopment, languages are commonly defined as decision problems where a so-called deciding
relation R⊂ Σ∗ decides whether a given string x ∈ Σ∗ is a word in the language or not. If x ∈ R
then x is a word in the associated language LR and if x /∈ R then not. The relation R therefore
summarizes the grammar of language LR.

127

CHAPTER 6. STATEMENTS 6.1. FORMAL LANGUAGES

Unfortunately, in some literature on proof systems, x ∈ R is often written as R(x), which is
misleading since in general R is not a function but a relation in Σ∗. For the sake of this book, we
therefore adopt a different point of view and work with what we might call a decision function
instead:

R : Σ
∗→{true, f alse} (6.1)

Decision functions decide if a string x∈ Σ∗ is an element of a language or not. In case a decision
function is given, the associated language itself can be written as the set of all strings that are
decided by R, i.e as the set:

LR := {x ∈ Σ
∗ | R(x) = true} (6.2)

In the context of formal languages and decision problems, a statement S is the claim that
language L contains a word x, i.e a statement claims that there exists some x∈ L. A constructive
proof for statement S is given by some string P∈ Σ∗ and a proof is verified by checking R(P) =
true. In this case, P is called an instance of the statement S.
Example 108 (Alternating Binary strings). To consider a very basic formal language with a de-
cision function, consider the language Lalt from example 107. Attempting to write the grammar
of this language in a more formal way, we can define the following decision function:

R : {0,1}∗→{true, f alse} ; < x0,x1, . . . ,xn >7→

{
true x j−1 ̸= x j for all 1≤ j ≤ n
f alse else

We can use this function to decide if given binary strings are words in Lalt or not. Some exam-
ples are given below:

R(< 1,0,1 >) = true, R(< 0 >) = true, R(<>) = true, R(< 1,1 >) = f alse

Given language Lalt , it makes sense to claim the following statement: “There exists an alternat-
ing string.” One way to prove this statement constructively is by providing an actual instance,
that is, providing an example of an alternating string like x =< 1,0,1 >. Constructing string
< 1,0,1 > therefore proves the statement “There exists an alternating string.", because one can
verify that R(< 1,0,1 >) = true.
Example 109 (Programming Language). Programming languages are a very important class of
formal languages. For these languages, the alphabet is usually (a subset) of the ASCII table,
and the grammar is defined by the rules of the programming language’s compiler. Words, then,
are nothing but properly written computer programs that the compiler accepts. The compiler
can therefore be interpreted as the decision function.

To give an unusual example strange enough to highlight the point, consider the programming
language Malbolge as defined in XXX. This language was specifically designed to be almost
impossible to use and writing programs in this language is a difficult task. An interesting claim
is therefore the statement: “There exists a computer program in Malbolge". As it turned out,
proving this statement constructively, that is, providing an example instance of such a program,
is not an easy task, as it took two years after the introduction of Malbolge to write a program that
its compiler accepts. So, for two years, no one was able to prove the statement constructively.

To look at the high-level description of Malbolge more formally, we write LMalbolge for the
language that uses the ASCII table as its alphabet and its words are strings of ASCII letters
that the Malbolge compiler accepts. Proving the statement “There exists a computer program
in Malbolge” is then equivalent to the task of finding some word x ∈ LMalbolge. The string

(=<′:9876Z4321UT.−Q+∗)M′&%$H”! }|Bzy?=|{z]KwZY 44Eq0/{mlk∗∗

hKs_dG5[m_BA{?−Y ;;V b′rR5431M}/.zHGwEDCBA@98\6543W10/.R,+O<

128

https://en.wikipedia.org/wiki/Malbolge

CHAPTER 6. STATEMENTS 6.1. FORMAL LANGUAGES

is an example of such a proof, as it is excepted by the Malbolge compiler and is compiled to
an executable binary that displays “Hello, World.” (See XXX). In this example, the Malbolge
compiler therefore serves as the verification process.

Example 110 (The Empty Language). To see that not every language has even a single word,
consider the alphabet Σ=Z6, where Z6 is the ring of modular 6 arithmetic as derived in example
9. Distinguishing the set Z∗6 of all elements in modular 6 arithmetic that have multiplicative
inverses from the set (Z6)

∗ of all finite strings over the alphabet Z6, we define the following
decision function:

R /0 : (Z6)
∗→{true, f alse} ; < x1, . . . ,xn >7→

{
true n = 1 and x · x = 2
f alse else

We write L /0 for the associated language. As we can see from the multiplication table of Z6
in example 9, the ring Z6 does not contain any element x such that x · x = 2, which implies
R /0(< x1, . . . ,xn >) = f alse for all strings < x1, . . . ,xn >∈ Σ∗. The language therefore does
not contain any words. Proving the statement “There exists a word in L /0” constructively by
providing an instance is therefore impossible. The verification will never check any string.

Example 111 (3-Factorization). We will use the following simple example repeatedly through-
out this book. The task is to develop a SNARK that proves knowledge of three factors of an
element from the finite field F13. There is nothing particularly useful about this example from
an application point of view, however, in a sense, it is the most simple example that gives rise
to a non trivial SNARK in some of the most common zero-knowledge proof systems.

Formalizing the high-level description, we use Σ := F13 as the underlying alphabet of this
problem and define the language L3. f ac to consists of those strings of field elements from F13
that contain exactly 4 letters x1,x2,x3,x4 which satisfy the equation x1 · x2 · x3 = x4.

So, for example, the string < 2,12,4,5 > is a word in L3. f ac, while neither < 2,12,11 >,
nor < 2,12,4,7 > nor < 2,12,7,UPS > are words in L3. f ac as they don’t satisfy the grammar
or are not defined over the alphabet F13.

Distinguishing the set F∗13 of all elements in the multiplicative group of F13 from the set
(F13)

∗ of all finite strings over the alphabet F13, we can describe the language L3. f ac more
formally by introducing a decision function:

R3. f ac : (F13)
∗→{true, f alse} ; < x1, . . . ,xn >7→

{
true n = 4 and x1 · x2 · x3 = x4

f alse else

Having defined the language L3. f ac, it then makes sense to claim the statement “There is a word
in L3. f ac". The way L3. f ac is designed, this statement is equivalent to the statement “There are
four elements x1,x2,x3,x4 from the finite field F13 such that the equation x1 ·x2 ·x3 = w4 holds.”

Proving the correctness of this statement constructively means to actually find some concrete
field elements like x1 = 2, x2 = 12, x3 = 4 and x4 = 5 that satisfy the decision function R3. f ac.
The string < 2,12,4,5 > is therefore a constructive proof for the statement that L3. f ac contains
words and the computation R3. f ac(< 2,12,4,5 >) = true is a verification of that proof. In
contrast, the string < 2,12,4,7 > is not a proof of the statement, since the check R3. f ac(<
2,12,4,7 >) = f alse does not verify the proof.

Example 112 (Tiny-jubjub Membership). In one of our main examples, we derive a SNARK
that proves a pair (x,y) of field elements from F13 to be a point on the tiny- curve in its twisted
Edwards form as derived in example 5.21.

129

CHAPTER 6. STATEMENTS 6.1. FORMAL LANGUAGES

In the first step, we define a language such that points on the tiny-jubjub curve are in 1:1
correspondence with words in that language.

Since the tiny-jubjub curve is an elliptic curve over the field F13, we choose the alphabet
Σ = F13. In this case, the set (F13)

∗ consists of all finite strings of field elements from F13. To
define the grammar, recall from 5.21 that a point on the tiny-jubjub curve is a pair (x,y) of field
elements such that 3 · x2 + y2 = 1+8 · x2 · y2. We can use this equation to derive the following
decision function:

Rtiny. j j : (F13)
∗→{true, f alse} ; < x1, . . . ,xn >7→

{
true n = 2 and 3 · x2

1 + x2
2 = 1+8 · x2

1 · x2
2

f alse else

The associated language Ltiny. j j is then given as the set of all strings from (F13)
∗ that are mapped

onto true by Rtiny. j j. We get

Ltiny. j j = {< x1, . . . ,xn >∈ (F13)
∗ | Rtiny. j j(<x1,...,xn>)=true}

We can claim the statement “There is a word in Ltiny. j j” and because Ltiny. j j is defined by Rtiny. j j,
this statement is equivalent to the claim “The tiny-jubjub curve in its twisted Edwards form has
a curve point.”

A constructive proof for this statement is a string < x,y > of field elements from F13 that
satisfies the twisted Edwards equation. Example 5.21 therefore implies that the string < 11,6 >
is a constructive proof and the computation Rtiny. j j(< 11,6 >) = true is a proof verification.
In contrast, the string < 1,1 > is not a proof of the statement, since the computation Rtiny. j j(<
1,1 >) = f alse does not verify the proof.
Exercise 82. Define a decision function such that the associated language LExercise1 consist
precisely of all solutions to the equation 5x+ 4 = 28+ 2x over F13. Provide a constructive
proof for the claim: “There exist a word in LExercise1 and verify the proof.
Exercise 83. Consider modular 6 arithmetic Z6 from example 9, the alphabet Σ = Z6 and the
decision function

Rexample_9 : Σ
∗→{true, f alse} ; < x1, . . . ,xn >7→

{
true n = 1 and 3 · x1 +3 = 0
f alse else

Compute all words in the associated language Lexample_9, provide a constructive proof for the
statement “There exist a word in Lexample_9” and verify the proof.

Instance and Witness As we have seen in the previous paragraph, statements provide mem-
bership claims in formal languages, and instances serve as constructive proofs for those claims.
However, in the context of zero-knowledge proof systems, our notion of constructive proofs is
refined in such a way that it is possible to hide parts of the proof instance and still be able to
prove the statement. In this context, it is therefore necessary to split a proof into an unhidden,
public part called the instance and a hidden, private part called a witness.

To account for this separation of a proof instance into an instance and a witness part, our
previous definition of formal languages needs a refinement. Instead of a single alphabet, the
refined definition considers two alphabets ΣI and ΣW , and a decision function defined as follows:

R : Σ
∗
I ×Σ

∗
W →{true, f alse} ; (i ;w) 7→ R(i ;w) (6.3)

Words are therefore strings (i ;w) ∈ Σ∗I ×Σ∗W with R(i ;w) = true. The refined definition differ-
entiates between inputs i∈ ΣI and inputs w∈ ΣW . The input i is called an instance and the input
w is called a witness of R.

130

CHAPTER 6. STATEMENTS 6.1. FORMAL LANGUAGES

If a decision function is given, the associated language is defined as the set of all strings
from the underlying alphabets that are verified by the decision function:

LR := {(i ;w) ∈ Σ
∗
I ×Σ

∗
W | R(i ;w) = true} (6.4)

In this refined context, a statement S is a claim that, given an instance i ∈ Σ∗I , there is a witness
w ∈ Σ∗W such that language L contains a word (i ;w). A constructive proof for statement S is
given by some string P = (i ;w) ∈ Σ∗I ×Σ∗W and a proof is verified by R(P) = true.

At this point, it is important to note that, while constructive proofs in languages that distin-
guish between instance and witness as in don’t look very different from constructive proofs in
languages from 6.1, we will see in 8 that given some instance, there are proof systems able to
prove the statement (at least with high probability) without revealing anything about the wit-
ness. In this sense the witness is often called the private input and the instance is called the
public input.

It is worth understanding the difference between statements as defined in 6.1 and the re-
fined notion of statements from this paragraph. While statements in the sense of the previous
paragraph can be seen as membership claims, statements in the refined definition can be seen
as knowledge-claims, where a prover claims knowledge of a witness for a given instance. For a
more detailed discussion on this topic see [XXX sec 1.4]

Example 113 (SHA256 – Knowlege of Preimage). One of the most common examples in the
context of zero-knowledge proof systems is the knowledge-of-a-preimage proof for some
cryptographic hash function like SHA256, where a publicly known SHA256 digest value is
given, and the task is to prove knowledge of a preimage for that digest under the SHA256
function, without revealing that preimage.

To understand this problem in detail, we have to introduce a language able to describe
the knowledge-of-preimage problem in such a way that the claim “Given digest i, there is a
preimage w such that SHA256(w) = i” becomes a statement in that language. Since SHA256 is
a function

SHA256 : {0,1}∗→{0,1}256

that maps binary strings of arbitrary length onto binary strings of length 256 and we want to
prove knowledge of preimages, we have to consider binary strings of size 256 as instances and
binary strings of arbitrary length as witnesses.

An appropriate alphabet ΣI for the set of all instances and an appropriate alphabet ΣW for
the set of all witnesses is therefore given by the set {0,1} of the two binary letters and a proper
decision function is given by:

RSHA256 : {0,1}∗×{0,1}∗→{true, f alse} ;

(i;w) 7→

{
true |i|= 256, i = SHA256(w)
f alse else

We write LSHA256 for the associated language and note that it consists of words, which are
strings (i ;w) such that the instance i is the SHA256 image of the witness w.

Given some instance i ∈ {0,1}256, a statement in LSHA256 is the claim “Given digest i, there
is a preimage w such that SHA256(w) = i", which is exactly what the knowledge-of-preimage
problem is about. A constructive proof for this statement is therefore given by a preimage w to
the digest i and proof verification is achieved by verifying that SHA256(w) = i.

Example 114 (3-factorization). To give another intuition about the implication of refined lan-
guages, consider L3. f ac from example 111 again. As we have seen, a constructive proof in

131

CHAPTER 6. STATEMENTS 6.1. FORMAL LANGUAGES

L3. f ac is given by 4 field elements x1, x2, x3 and x4 from F13 such that the product in modular
13 arithmetic of the first three elements is equal to the 4’th element.

Splitting words from L3. f ac into instance and witness parts, we can reformulate the problem
and introduce different levels of knowledge-claims into the problem. For example, we could
reformulate the membership statement of L3. f ac into a statement where all factors x1, x2, x3 of
x4 are witnesses and only the product x4 is the instance. A statement for this reformulation is
then expressed by the claim: “Given an instance field element x4, there are three witness factors
of x4". Assuming some instance x4, a constructive proof for the associated knowledge claim is
then provided by any string (x1,x2,x3) such that x1 · x2 · x3 = x4.

We can formalize this new language, which we might call L3. f ac_zk, by defining the follow-
ing decision function:

R3. f ac_zk : (F13)
∗× (F13)

∗→{true, f alse} ;

(< i1, . . . , in >;< w1, . . . ,wm >) 7→

{
true n = 1, m = 3, i1 = w1 ·w2 ·w3

f alse else

The associated language L3. f ac_zk is defined by all strings from (F13)
∗× (F13)

∗ that are mapped
onto true under the decision function R3. f ac_zk.

Considering the distinction we made between the instance and the witness part in L3. f ac_zk,
one might ask why we chose the factors x1, x2 and x3 to be the witness and the product x4 to
be the instance and why we didn’t choose another combination? This was an arbitrary choice
in the example. Every other combination of instance and witness would be equally valid. For
example, it would be possible to declare all variables as witness or to declare all variables as
instance. Actual choices are determined by the application only.
Example 115 (The Tiny-Jubjub Curve). Consider the language Ltiny. j j from example 112. As
we have seen, a constructive proof in Ltiny. j j is given by a pair (x1,x2) of field elements from
F13 such that the pair is a point of the tiny-jubjub curve in its Edwards representation.

We look at a reasonable splitting of words from Ltiny. j j into instance and witness parts. The
two obvious choices are to either choose both coordinates x1 as x2 as instance inputs, or to
choose both coordinates x1 as x2 as witness inputs.

In case both coordinates are instance, we define the grammar of the associated language by
introducing the following decision function:

Rtiny. j j.1 : (F13)
∗× (F13)

∗→{true, f alse} ;

(< I1, . . . , In >;<W1, . . . ,Wm >) 7→

{
true n = 2,m = 0 and 3 · I2

1 + I2
2 = 1+8 · I2

1 · I2
2

f alse else

The language Ltiny. j j.1 is defined as the set of all strings from (F13)
∗× (F13)

∗ that are mapped
onto true by Rtiny. j j.1.

In case both coordinates are witness inputs, we define the grammar of the associated refined
language by introducing the following decision function:

Rtiny. j j_zk : (F13)
∗× (F13)

∗→{true, f alse} ;

(< I1, . . . , In >;<W1, . . . ,Wm >) 7→

{
true n = 0,m = m and 3 ·W 2

1 +W 2
2 = 1+8 ·W 2

1 ·W 2
2

f alse else

The language Ltiny. j j_zk is defined as the set of all strings from (F13)
∗× (F13)

∗ that are mapped
onto true by Rtiny. j j_zk.

132

CHAPTER 6. STATEMENTS 6.1. FORMAL LANGUAGES

Exercise 84. Consider the modular 6 arithmetic Z6 from example 9 as alphabets ΣI and ΣW and
the following decision function

Rlinear : Σ
∗×Σ

∗→{true, f alse} ;

(i;w) 7→

{
true |i|= 3 and |w|= 1 and i1 ·w1 + i2 = i3
f alse else

Which of the following instances (i1, i2, i3) has a proof of knowledge in Llinear?

(3,3,0), (2,1,0), (4,4,2)

Exercise 85 (Edwards Addition on Tiny-Jubjub). Consider the tiny-jubjub curve together with
its twisted Edwards addition law from example 69. Define an instance alphabet ΣI , a witness
alphabet ΣW and a decision function Radd with associated language Ladd such that a string
(i ;w) ∈ Σ∗I ×Σ∗W is a word in Ladd if and only if i is a pair of curve points on the tiny-jubjub
curve in Edwards form and w is the sum of those curve points.

Choose some instance i ∈ Σ∗I , provide a constructive proof for the statement “There is a
witness w ∈ Σ∗W such that (i ;w) is a word in Ladd” and verify that proof. Then find some
instance i ∈ Σ∗I such that i has no knowledge proof in Ladd .

Modularity From a developers perspective, it is often useful to construct complex statements
and their representing languages from simple ones. In the context of zero-knowledge proof
systems, those simple building blocks are often called gadgets, and gadget libraries usually
contain representations of atomic types like booleans, integers, various hash functions, elliptic
curve cryptography and many more (See chapter 7 for that). In order to synthesize statements,
developers then combine predefined gadgets into complex logic. We call the ability to combine
statements into more complex statements modularity.

To understand the concept of modularity on the level of formal languages defined by deci-
sion functions, we need to look at the intersection of two languages, which exists whenever
both languages are defined over the same alphabet. In this case, the intersection is a language
that consists of strings which are words in both languages.

To be more precise, let L1 and L2 be two languages defined over the same instance and
witness alphabets ΣI and ΣW . Then the intersection L1∩L2 of L1 and L2 is defined as

L1∩L2 := {x | x ∈ L1 and x ∈ L2} (6.5)

If both languages are defined by decision functions R1 and R2, the following function is a
decision function for the intersection language L1∩L2:

RL1∩L2 : Σ
∗
I ×Σ

∗
W →{true, f alse} ; (i,w) 7→ R1(i,w) and R2(i,w) (6.6)

Thus, the intersection of two decision-function-based languages is a also decision-function-
based language. This is important from an implementations point of view: It allows us to
construct complex decision functions, their languages and associated statements from simple
building blocks. Given a publicly known instance i ∈ Σ∗I a statement in an intersection language
then claims knowledge of a witness that satisfies all relations simultaneously.

133

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

6.2 Statement Representations
As we have seen in the previous section, formal languages and their definitions by decision
functions are a powerful tool to describe statements in a formally rigorous manner.

However, from the perspective of existing zero-knowledge proof systems, not all ways to
actually represent decision functions are equally useful. Depending on the proof system, some
are more suitable than others. In this section, will describe two of the most common ways to
represent decision functions and their statements.

6.2.1 Rank-1 Quadratic Constraint Systems
Although decision functions are expressible in various ways, many contemporary proving sys-
tems require the decision function to be expressed in terms of a system of quadratic equations
over a finite field. This is true in particular for pairing-based proving systems like the once we
describe in chapter 8, roughly because it is possible to separate instance and witness and then
check solutions to those equations “in the exponent” of pairing-friendly cryptographic groups.

In this section, we will have a closer look at a particular type of quadratic equations called
Rank-1 (quadratic) Constraints Systems, which are a common standard in zero-knowledge
proof systems, as introduced for example in appendix E of Ben-Sasson et al. [2013]. We will
start with a general introduction to those constrain systems and then look at their relation to
formal languages. Then we will look into a common way to compute solutions to those systems.

R1CS representation To understand what Rank-1 (quadratic) Constraint Systems [R1CS]
are in detail, let F be a field, n, m and k ∈N three numbers and ai

j, bi
j and ci

j ∈ F constants from
F for every index 0≤ j ≤ n+m and 1≤ i≤ k. Then a Rank-1 Constraint System is defined as
the following set of k many equations:

(a1
0+∑

n
j=1 a1

j ·I j+∑
m
j=1 a1

n+ j·W j)·(b1
0+∑

n
j=1 b1

j ·I j+∑
m
j=1 b1

n+ j·W j) = c1
0+∑

n
j=1 c1

j ·I j+∑
m
j=1 c1

n+ j·W j

...

(ak
0+∑

n
j=1 ak

j·I j+∑
m
j=1 ak

n+ j·W j)·(bk
0+∑

n
j=1 bk

j·I j+∑
m
j=1 bk

n+ j·W j) = ck
0+∑

n
j=1 ck

j·I j+∑
m
j=1 ck

n+ j·W j

If a Rank-1 Constraint System is given, the parameter k is called the number of constraints
and each equation is called a constraint. If a pair of strings (< I1, . . . , In >;<W1, . . . ,Wm >) of
field elements satisfies theses equations, < I1, . . . , In > is called an instance and <W1, . . . ,Wm >
is called a witness of the system.

Remark 5 (Matrix notation). The presentation of Rank-1 Constraint Systems can be simplified
using the notation of vectors and matrices, which abstracts over the indices. In fact if x =
(1, I,W) ∈ F1+n+m is a (n+m+1)-dimensional vector, A, B, C are (n+m+1)×k-dimensional
matrices and ⊙ is the , then a R1CS can be written as

Ax⊙Bx =Cx

However, since we did not introduced vector spaces and matrix calculus in the book, we use
?? as the defining equation for rank-1 constraints systems. We only highlighted the matrix
notation, because it is sometimes used in the literature.

It can be shown that every bounded computation is expressible as a Rank-1 Constraint Sys-
tem and R1CS is therefore a universal model for bounded computations. We will derive some

134

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

insights into common approaches of how to compile bounded computation into Rank-1 Con-
straint Systems in chapter 7.

Generally speaking, the idea of a Rank-1 Constraint System is to keep track of all the values
that any variable can hold during a computation and to bind the relationships among all those
variables that are implied by the computation itself. Once relations between all steps of a com-
puter program are constrained, program execution is then enforced to be computed in exactly
in the expected way without any opportunity for deviations. In this sense, solutions to Rank-1
Constraint Systems are proofs of proper program execution.

Example 116 (R1CS for 3-Factorization). To provide a better intuition of Rank-1 Constraint
Systems, consider the language L3. f ac_zk from example 114 again. As we have seen, L3. f ac_zk
consists of words (< I1 >;< W1,W2,W3 >) over the alphabet F13 such that I1 = W1 ·W2 ·W3.
We show how to rewrite the problem as a Rank-1 Constraint System.

Since R1CS are systems of quadratic equations, expressions like W1 ·W2 ·W3 which contain
products of more than two factors (which are therefore not quadratic) have to be rewritten in a
process often called flattening. To flatten the defining equation I1 =W1 ·W2 ·W3 of L3. f ac_zk we
introduce a new variable W4, which captures two of the three multiplications in W1 ·W2 ·W3. We
get the following two constraints

W1 ·W2 =W4 constraint 1
W4 ·W3 = I1 constraint 2

Given some instance I1, any solution (W1,W2,W3,W4) to this system of equations provides a
solution to the original equation I1 = W1 ·W2 ·W3 and vice versa. Both equations are therefore
equivalent in the sense that solutions are in a 1:1 correspondence.

Looking at both equations from this constraints system, we see how each constraint enforces
a step in the computation. In fact, constraint 1 forces any computation to multiply the witness
W1 and W2 first. Otherwise it would not be possible to compute the witness W4, which is
needed to solve constraint 2. Witness W4 therefore expresses the constraining of an intermediate
computational state.

At this point, one might ask why equation 1 constrains the system to compute W1 ·W2 first.
In order to compute W1 ·W2 ·W3, calculating W2 ·W3, or W1 ·W3 in the beginning and then
multiplying the result with the remaining factor gives the exact same result. The reason is purely
a matter of choice. For example, the following R1CS would define the exact same language:

W2 ·W3 =W4 constraint 1
W4 ·W1 = I1 constraint 2

It follows that R1CS are in general not unique descriptions of any given situation: many dif-
ferent R1CS are able to describe the same problem.

To see that the two quadratic equations qualify as a Rank-1 Constraint System, choose the
parameter n = 1, m = 4 and k = 2 as well as

a1
0 = 0 a1

1 = 0 a1
2 = 1 a1

3 = 0 a1
4 = 0 a1

5 = 0
a2

0 = 0 a2
1 = 0 a2

2 = 0 a2
3 = 0 a2

4 = 0 a2
5 = 1

b1
0 = 0 b1

1 = 0 b1
2 = 0 b1

3 = 1 b1
4 = 0 b1

5 = 0
b2

0 = 0 b2
1 = 0 b2

2 = 0 b2
3 = 0 b2

4 = 1 b2
5 = 0

c1
0 = 0 c1

1 = 0 c1
2 = 0 c1

3 = 0 c1
4 = 0 c1

5 = 1
c2

0 = 0 c2
1 = 1 c2

2 = 0 c2
3 = 0 c2

4 = 0 c2
5 = 0

135

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

With this choice, the Rank-1 Constraint System of our 3-factorization problem can be written
in its most general form as follows:

(a1
0+a1

1I1+a1
2W1+a1

3W2+a1
4W3+a1

5W4)·(b1
0+b1

1I1+b1
2W1+b1

3W2+b1
4W3+b1

5W4) =(c1
0+c1

1I1+c1
2W1+c1

3W2+c1
4W3+c1

5W4)

(a2
0+a2

1I1+a2
2W2+a2

3W2+a2
4W3+a2

5W4)·(b2
0+b2

1I1+b2
2W2+b2

3W2+b2
4W3+b2

5W4) =(c2
0+c2

1I1+c2
2W2+c2

3W2+c2
4W3+c2

5W4)

Example 117 (R1CS for the Tiny-Jubjub curve points). Consider the languages Ltiny. j j.1 from
example 115, which consist of words < I1, I2 > over the alphabet F13 such that 3 · I2

1 + I2
2 =

1+8 · I2
1 · I2

2 .
We derive a Rank-1 Constraint System such that its solutions are in a 1:1 correspondence

with words in Ltiny. j j.1. To achieve this, we first rewrite the defining equation:

3 · I2
1 + I2

2 = 1+8 · I2
1 · I2

2 ⇔
0 = 1+8 · I2

1 · I2
2 −3 · I2

1 − I2
2 ⇔

0 = 1+8 · I2
1 · I2

2 +10 · I2
1 +12 · I2

2

Since R1CSs are systems of quadratic equations, we have to reformulate this expression into
a system of quadratic equations. To do so, we have to introduce new variables that constrain
intermediate steps in the computation and we have to decide if those variables should be instance
or witness variable. We decide to declare all new variables as witness variables and get the
following constraints

I1 · I1 =W1 constraint 1
I2 · I2 =W2 constraint 2

(8 ·W1) ·W2 =W3 constraint 3
(12 ·W2 +W3 +10 ·W1 +1) ·1 = 0 constraint 4

To see that these four quadratic equations qualify as a Rank-1 Constraint System according to
equation ??, choose the parameter n = 2, m = 3 and k = 4:

a1
0 = 0 a1

1 = 1 a1
2 = 0 a1

3 = 0 a1
4 = 0 a1

5 = 0
a2

0 = 0 a2
1 = 0 a2

2 = 1 a2
3 = 0 a2

4 = 0 a2
5 = 0

a3
0 = 0 a3

1 = 0 a3
2 = 0 a3

3 = 8 a3
4 = 0 a3

5 = 0
a4

0 = 1 a4
1 = 0 a4

2 = 0 a4
3 = 10 a4

4 = 12 a4
5 = 1

b1
0 = 0 b1

1 = 1 b1
2 = 0 b1

3 = 0 b1
4 = 0 b1

5 = 0
b2

0 = 0 b2
1 = 0 b2

2 = 1 b2
3 = 0 b2

4 = 0 b2
5 = 0

b3
0 = 0 b3

1 = 0 b3
2 = 0 b3

3 = 0 b3
4 = 1 b3

5 = 0
b4

0 = 1 b4
1 = 0 b4

2 = 0 b4
3 = 0 b4

4 = 0 b4
5 = 0

c1
0 = 0 c1

1 = 0 c1
2 = 0 c1

3 = 1 c1
4 = 0 c1

5 = 0
c2

0 = 0 c2
1 = 0 c2

2 = 0 c2
3 = 0 c2

4 = 1 c2
5 = 0

c3
0 = 0 c3

1 = 0 c3
2 = 0 c3

3 = 0 c3
4 = 0 c3

5 = 1
c4

0 = 0 c4
1 = 0 c4

2 = 0 c4
3 = 0 c4

4 = 0 c4
5 = 0

With this choice, the Rank-1 Constraint System of our tiny-jubjub curve point problem can be

136

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

written in its most general form as follows:

(a1
0+a1

1I1+a1
2I2+a1

3W1+a1
4W2+a1

5W3)·(b1
0+b1

1I1+b1
2I2+b1

3W1+b1
4W2+b1

5W3) =(c1
0+c1

1I1+c1
2I2+c1

3W1+c1
4W2+c1

5W3)

(a2
0+a2

1I1+a2
2I2+a2

3W1+a2
4W2+a2

5W3)·(b2
0+b2

1I1+b2
2I2+b2

3W1+b2
4W2+b2

5W3) =(c2
0+c2

1I1+c2
2I2+c2

3W1+c2
4W2+c2

5W3)

(a3
0+a3

1I1+a3
2I2+a3

3W1+a3
4W2+a3

5W3)·(b3
0+b3

1I1+b3
2I2+b3

3W1+b3
4W2+b3

5W3) =(c3
0+c3

1I1+c3
2I2+c3

3W1+c3
4W2+c3

5W3)

(a4
0+a4

1I1+a4
2I2+a4

3W1+a4
4W2+a4

5W3)·(b4
0+b4

1I1+b4
2I2+b4

3W1+b4
4W2+b4

5W3) =(c4
0+c4

1I1+c4
2I2+c4

3W1+c4
4W2+c4

5W3)

To see that solutions to this constraints system are in 1:1 correspondence with words in Ltiny. j j.1,
let (< I1, I2 >;< W1,W2,W3 >) be a solution, then < I1, I2 > is a word in Ltiny. j j.1, since the
defining R1CS implies that I1 and I2 satisfy the twisted Edwards equation of the tiny-jubjub
curve. On the other hand, let < I1, I2 > be a word in Ltiny. j j.1. Then (< I1, I2 >;< I2

1 , I
2
2 ,8 · I2

1 ·
I2
2 >) is a solution to our R1CS.

Exercise 86. Consider the language Ladd from exercise 85. Define an R1CS, such that solutions
to this R1CS are in 1:1 correspondence with words in Ladd .

R1CS Satisfiability To understand how Rank-1 Constraint Systems define formal languages,
observe that every R1CS over a field F defines a decision function over the alphabet ΣI×ΣW =
F×F in the following way:

RR1CS : (F)∗× (F)∗→{true, f alse} ; (I;W) 7→

{
true (I;W) satisfies R1CS
f alse else

(6.7)

Every R1CS therefore defines a formal language. The grammar of this language is encoded
in the constraints, words are solutions to the equations and a statement is a knowledge claim
“Given instance I, there is a witness W such that (I;W) is a solution to the Rank-1 Constraint
System". A constructive proof to this claim is therefore an assignment of a field element to
every witness variable, which is verified whenever the set of all instance and witness variables
solves the R1CS.
Remark 6 (R1CS satisfiability). It should be noted that in our definition, every R1CS defines its
own language. However, in more theoretical approaches, another language usually called R1CS
satisfiability is often considered, which is useful when it comes to more abstract problems like
expressiveness or the computational complexity of the class of all R1CS. From our perspective,
the R1CS satisfiability language is obtained by the union of all R1CS languages that are in our
definition. To be more precise, let the alphabet Σ = F be a field. Then

LR1CS_SAT (F) = {(i;w) ∈ Σ
∗×Σ

∗ | there is a R1CS R such that R(i;w) = true}

Example 118 (3-Factorization). Consider the language L3. f ac_zk from example 114 and the
R1CS defined in example 116. As we have seen in 116, solutions to the R1CS are in 1:1 cor-
respondence with solutions to the decision function of L3. f ac_zk. Both languages are therefore
equivalent in the sense that there is a 1:1 correspondence between words in both languages.

To give an intuition of what constructive R1CS based proofs in L3. f ac_zk look like, consider
the instance I1 = 11. To prove the statement “There exists a witness W such that (I1;W) is a
word in L3. f ac_zk” constructively, a proof has to provide a solution to the R1CS from example
116, that is an assignments to all witness variables W1, W2, W3 and W4. Since the alphabet is
F13, an example assignment is given by W =< 2,3,4,6 > since (I1;W) satisfies the R1CS

W1 ·W2 =W4 # 2 ·3 = 6
W4 ·W3 = I1 # 6 ·4 = 11

137

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

A proper constructive proof is therefore given by π =< 2,3,4,6 >. Of course, π is not the only
possible proof for this statement. Since factorization is not unique in a field in general, another
constructive proof is given by π ′ =< 3,5,12,2 >.

Example 119 (The tiny-jubjub curve). Consider the language Ltiny. j j.1 from example 115 and its
associated R1CS from example 117. To see how constructive proofs in Ltiny. j j.1 using the R1CS
from example 117 look like, consider the instance < I1, I2 >=< 11,6 >. To prove the statement
“There exists a witness W such that (< I1, I2 >;W) is a word in Ltiny. j j.1” constructively , a proof
has to provide a solution to the R1CS 117, which is an assignments to all witness variables W1,
W2 and W3. Since the alphabet is F13, an example assignment is given by W =< 4,10,8 > since
(< I1, I2 >;W) satisfies the R1CS

I1 · I1 =W1 11 ·11 = 4
I2 · I2 =W2 6 ·6 = 10

(8 ·W1) ·W2 =W3 (8 ·4) ·10 = 8
(12 ·W2 +W3 +10 ·W1 +1) ·1 = 0 12 ·10+8+10 ·4+1 = 0

A proper constructive proof is therefore given by π =< 4,10,8>, which shows that the instance
< 11,6 > is a point on the tiny-jubjub curve.

Modularity As we discussed in 6.1, it is often useful to construct complex statements and
their representing languages from simple ones. Rank-1 Constraint Systems are particularly
useful for this, as the intersection of two R1CS over the same alphabet results in a new R1CS
over that same alphabet.

To be more precise, let S1 and S2 be two R1CS over F, then a new R1CS S3 is obtained
by the intersection S3 = S1∩ S2 of S1 and S2. In this context, intersection means that both the
equations of S1 and the equations of S2 have to be satisfied in order to provide a solution for the
system S3.

As a consequence, developers are able to construct complex R1CS from simple ones and
this modularity provides the theoretical foundation for many R1CS compilers, as we will see in
chapter 7.

6.2.2 Algebraic Circuits
As we have seen in the previous paragraphs, Rank-1 Constraint Systems are quadratic equations
such that solutions are knowledge proofs for the existence of words in associated languages.
From the perspective of a prover, it is therefore important to solve those equations efficiently.

However, in contrast to systems of linear equations, no general methods are known that solve
systems of quadratic equations efficiently. Rank-1 Constraint Systems are therefore impractical
from a provers perspective and auxiliary information is needed that helps to compute solutions
efficiently.

Methods which compute R1CS solutions are sometimes called witness generator func-
tions. To provide a common example, we introduce another class of decision functions called
algebraic circuits. As we will see, every algebraic circuit defines an associated R1CS and also
provides an efficient way to compute solutions for that R1CS. This method is introduced for
example in Ben-Sasson et al. [2013].

It can be shown that every space- and time-bounded computation is expressible as an alge-
braic circuit. Transforming high-level computer programs into those circuits is a process often
called flattening. We will look at those transformations in chapter 7.

138

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

In this section we will introduce our model for algebraic circuits and look at the concept
of circuit execution and valid assignments. After that, we will show how to derive Rank-1
Constraint Systems from circuits and how circuits are useful to compute solutions to associated
R1CS efficiently.

Algebraic circuit representation To see what algebraic circuits are, let F be a field. An
algebraic circuit is then a directed acyclic (multi)graph that computes a polynomial function
over F. Nodes with only outgoing edges (source nodes) represent the variables and constants
of the function and nodes with only incoming edges (sink nodes) represent the outcome of the
function. All other nodes have exactly two incoming edges and represent the field operations
addition as well as multiplication. Graph edges are directed and represent the flow of the
computation along the nodes.

To be more precise, in this book, we call a directed acyclic multi-graph C(F) an algebraic
circuit over F if the following conditions hold:

• The set of edges has a total order.

• Every source node has a label that represents either a variable or a constant from the field
F.

• Every sink node has exactly one incoming edge and a label that represents either a variable
or a constant from the field F.

• Every node that is neither a source nor a sink has exactly two incoming edges and a label
from the set {+,∗} that represents either addition or multiplication in F.

• All outgoing edges from a node have the same label.

• Outgoing edges from a node with a label that represents a variable have a label.

• Outgoing edges from a node with a label that represents multiplication have a label, if
there is at least one labeled edge in both input path.

• All incoming edges to sink nodes have a label.

• If an edge has two labels Si and S j it gets a new label Si = S j.

• No other edge has a label.

• Incoming edges to labeled sink nodes, where the label is a constant c ∈ F are labeled
with the same constant. Every other edge label is taken from the set {W, I} and indexed
compatible with the order of the edge set.

It should be noted that the details in the definitions of algebraic circuits vary between dif-
ferent sources. We use this definition as it is conceptually straightforward and well-suited for
pen-and-paper computations.

To get a better intuition of our definition, let C(F) be an algebraic circuit. Source nodes are
the inputs to the circuit and either represent variables or constants. In a similar way, sink nodes
represent termination points of the circuit and are either output variables or constants. Constant
sink nodes enforce computational outputs to take on certain values.

Nodes that are neither source nodes nor sink nodes are called arithmetic gates. Arithmetic
gates that are decorated with the “+"-label are called addition-gates and arithmetic gates that

139

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

are decorated with the “·"-label are called multiplication-gates. Every arithmetic gate has
exactly two inputs, represented by the two incoming edges.

Since the set of edges is ordered, we can write it as a string < E1,E2, . . . ,En > for some
n ∈ N and we use those indices to index the edge labels, too. Edge labels are therefore either
constants or symbols like I j, Wj, where j is an index compatible with the edge order. Labels I j
represent instance variables, labels Wj witness variables. Labels on the outgoing edges of input
variables constrain the associated variable to that edge.

Notation and Symbols 14. In synthesizing algebraic circuits, assigning instance I j or witness
Wj labels to appropriate edges is often the final step. It is therefore convenient to not distinguish
these two types of edges in previous steps. To account for that, we often simply write S j for an
edge label, indicating that the instance/witness property of the label is unspecified and it might
represent both an instance or a witness label.

Example 120 (Generalized factorization SNARK). To give a simple example of an algebraic
circuit, consider our 3-factorization problem from example 114 again. To express the problem
in the algebraic circuit model, consider the following function

f3. f ac : F13×F13×F13→ F13;(x1,x2,x3) 7→ x1 · x2 · x3

Using this function, we can describe the zero-knowledge 3-factorization problem from 114,
in the following way: Given instance I1 ∈ F13, a valid witness is a preimage of f3. f ac at
the point I1, i.e., a valid witness consists of three values W1, W2 and W3 from F13 such that
f3. f ac(W1,W2,W3) = I1.

To see how this function can be transformed into an algebraic circuit over F13, it is a com-
mon first step to introduce brackets into the function’s definition and then write the operations
as binary operators, in order to highlight how exactly every field operation acts on its two inputs.
Due to the associativity laws in a field, we have several choices. We choose

f3. f ac(x1,x2,x3) = x1 · x2 · x3 # bracket choice
= (x1 · x2) · x3 # operator notation
= MUL(MUL(x1,x2),x3)

Using this expression, we can write an associated algebraic circuit by first constraining the
variables to edge labels W1 = x1, W2 = x2 and W3 = x3 as well as I1 = f3. f ac(x1,x2,x3), taking
the distinction between witness and instance inputs into account. We then rewrite the operator
representation of f3. f ac into circuit nodes and get the following:

x_2

*

W_2

*

W_4

f_(3.fac_zk)

 I_1

x_1
 W_1

x_3

 W_3

140

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

In this case, the directed acyclic multi-graph is a binary tree with three leaves (the source
nodes) labeled by x1, x2 and x3, one root (the single sink node) labeled by f3. f ac(x1,x2,x3) and
two internal nodes, which are labeled as multiplication gates.

The order we use to label the edges is chosen to make the edge labeling consistent with
the choice of W4 as defined in definition 6.2.2. This order can be obtained by a depth-first
right-to-left-first traversal algorithm.

Example 121. To give a more realistic example of an algebraic circuit, look at the defining
equation of the tiny-jubjub curve 69 again. A pair of field elements (x,y) ∈ F2

13 is a curve point,
precisely if the following equation holds:

3 · x2 + y2 = 1+8 · x2 · y2

To understand how one might transform this identity into an algebraic circuit, we first rewrite
this equation by shifting all terms to the right. We get the following:

3 · x2 + y2 = 1+8 · x2 · y2 ⇔
0 = 1+8 · x2 · y2−3 · x2− y2 ⇔
0 = 1+8 · x2 · y2 +10 · x2 +12 · y2

Then we use this expression to define a function such that all points of the tiny-jubjub curve are
characterized as the function preimages at 0.

ftiny− j j : F13×F13→ F13 ; (x,y) 7→ 1+8 · x2 · y2 +10 · x2 +12 · y2

Every pair of field elements (x,y) ∈ F2
13 with ftiny− j j(x,y) = 0 is a point on the tiny-jubjub

curve, and there are no other curve points. The preimage f−1
tiny− j j(0) is therefore a complete

description of the tiny-jubjub curve.
We can transform this function into an algebraic circuit over F13. We first introduce brackets

into potentially ambiguous expressions and then rewrite the function in terms of binary opera-
tors. We get the following:

ftiny− j j(x,y) = 1+8 · x2 · y2 +10 · x2 +12y2 ⇔
= ((8 · ((x · x) · (y · y)))+(1+10 · (x · x)))+(12 · (y · y)) ⇔
=ADD(ADD(MUL(8,MUL(MUL(x,x),MUL(y,y))),ADD(1,MUL(10,MUL(x,x)))),MUL(12,MUL(y,y)))

Since we haven’t decided which part of the computation should be instance and which part
should be witness, we use the unspecified symbol S to represent edge labels. Constraining all
variables to edge labels S1 = x, S2 = y and S6 = ftiny− j j, we get the following circuit, rep-
resenting the function ftiny− j j, by inductively replacing binary operators with their associated
arithmetic gates:

141

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

x

*

S_1

*

S_3

*

S_3

+ *

S_5

y

*

S_2

S_4

*
S_4

+

10

+

f_tiny-jj

 S_6

12

1 8

This circuit is not a graph, but a multigraph, since there is more than one edge between some of
the nodes.

In the process of designing of circuits from functions, it should be noted that circuit rep-
resentations are not unique in general. In case of the function ftiny− j j, the circuit shape is
dependent on our choice of bracketing in ??. An alternative design is for example, given by the
following circuit, which occurs when the bracketed expression 8 · ((x · x) · (y · y)) is replaced by
the expression (x · x) · (8 · (y · y)).

x

*

S_1

*

S_3

*

S_3

+

+

S_5

y

*

S_2

*

S_4

*

S_4

+

108

f_tiny-jj

 S_6

12

1

Of course, both circuits represent the same function, due to the associativity and commutativity
laws that hold true in any field.

With a circuit that represents the function ftiny− j j, we can now proceed to derive a circuit
that constrains arbitrary pairs (x,y) of field elements to be points on the tiny-jubjub curve. To do
so, we have to constrain the output to be zero, that is, we have to constrain S6 = 0. To indicate

142

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

this in the circuit, we replace the output variable by the constant 0 and constrain the related edge
label accordingly. We get the following:

x

*

S_1

*

S_3

*

S_3

+

+

S_5

y

*

S_2

*

S_4

*
S_4

+

108

0

 S_6=0

12

1

The previous circuit enforces input values assigned to the labels S1 and S2 to be points on the
tiny-jubjub curve. However, it does not specify which labels are considered instance and which
are considered witness. The following circuit defines the inputs to be instances, while all other
labels represent witnesses:

x

*

I_1

*

W_1

*

W_1

+

+

W_3

y

*

I_2

*

W_2

*
W_2

+

108

0

 0

12

1

It can be shown that every space- and time-bounded computation can be transformed into
an algebraic circuit. We call any process that transforms a bounded computation into a circuit
flattening.

143

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

Circuit Execution Algebraic circuits are directed, acyclic multi-graphs, where nodes repre-
sent variables, constants, or addition and multiplication gates. In particular, every algebraic
circuit with n input nodes decorated with variable symbols and m output nodes decorated with
variables can be seen as a function that transforms an input string (x1, . . . ,xn) from Fn into an
output string (f1, . . . , fm) from Fm. The transformation is done by sending values associated to
nodes along their outgoing edges to other nodes. If those nodes are gates, then the values are
transformed according to the gate label and the process is repeated along all edges until a sink
node is reached. We call this computation circuit execution.

When executing a circuit, it is possible to not only compute the output values of the circuit
but to derive field elements for all edges, and, in particular, for all edge labels in the circuit. The
result is a string < S1,S2, . . . ,Sn > of field elements associated to all labeled edges, which we
call a valid assignment to the circuit. In contrast, any assignment < S′1,S

′
2, . . . ,S

′
n > of field

elements to edge labels that can not arise from circuit execution is called an invalid assignment.
Valid assignments can be interpreted as proofs for proper circuit execution because they

keep a record of the computational result as well as intermediate computational steps.

Example 122 (3-factorization). Consider the 3-factorization problem from example 114 and its
representation as an algebraic circuit from example 120. We know that the string of edge labels
is given by S :=< I1;W1,W2,W3,W4 >.

To understand how this circuit is executed, consider the variables x1 = 2, x2 = 3 as well as
x3 = 4. Following all edges in the graph, we get the assignments W1 = 2, W2 = 3 and W3 = 4.
Then the assignments of W1 and W2 enter a multiplication gate and the output of the gate is
2 · 3 = 6, which we assign to W4, i.e. W4 = 6. The values W4 and W3 then enter the second
multiplication gate and the output of the gate is 6 ·4 = 11, which we assign to I1, i.e. I1 = 11.

A valid assignment to the 3-factorization circuit C3. f ac(F13) is therefore given by the fol-
lowing string of field elements from F13:

Svalid :=< 11;2,3,4,6 > (6.8)

We can visualise this assignment by assigning every computed value to its associated label
in the circuit as follows:

x_2

*W_2=3

*

W_4=6

f_(3.fac_zk)

 I_1=11

x_1W_1=2

x_3

 W_3=4

To see what an invalid assignment looks like, consider the assignment Serr :=< 8;2,3,4,7 >.
In this assignment, the input values are the same as in the previous case. The associated circuit
is:

144

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

x_2

*W_2=3

*

W_4=7

f_(3.fac_zk)

 I_1=8

x_1W_1=2

x_3

 W_3=4

This assignment is invalid, as the assignments of I1 and W4 cannot be obtained by executing the
circuit.

Example 123. To compute a more realistic algebraic circuit execution, consider the defining
circuit Ctiny− j j(F13) from example 121 again. We already know from the way this circuit is
constructed that any valid assignment with S1 = x, S2 = y and S6 = 0 will ensure that the pair
(x,y) is a point on the tiny-jubjub curve in its Edwards representation (equation 5.21.

From example 5.21, we know that the pair (11,6) is a proper point on the tiny-jubjub curve
and we use this point as input to a circuit execution. We get the following:

x

*

S_1=11

*

S_3=4

*

S_3=4

+[10*4=1] *

S_5=1

y

*

S_2=6

S_4=10

*

S_4=10

+

 [10*12=3]

10

+[1+1=2]

 [8*1=8]

0

 S_6=0

12

1

 [2+8=10]

8

Executing the circuit, we indeed compute S6 = 0 as expected, which proves that (11,6) is a point
on the tiny-jubjub curve in its Edwards representation. A valid assignment of Ctiny− j j(F13) is
therefore given by the following string:

Stiny− j j =< S1,S2,S3,S4,S5,S6 >=< 11,6,4,10,1,0 >

Circuit Satisfiability To understand how algebraic circuits give rise to formal languages, ob-
serve that every algebraic circuit C(F) over a fields F defines a decision function over the al-

145

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

phabet ΣI×ΣW = F×F in the following way:

RC(F) : F∗×F∗→{true, f alse} ; (I;W) 7→

{
true (I;W)is valid assignment to C(F)
f alse else

(6.9)

Every algebraic circuit therefore defines a formal language. The grammar of this language is
encoded in the shape of the circuit, words are assignments to edge labels that are derived from
circuit execution, and statements are knowledge claims “Given instance I, there is a witness
W such that (I;W) is a valid assignment to the circuit". A constructive proof to this claim
is therefore an assignment of a field element to every witness variable, which is verified by
executing the circuit to see if the assignment of the execution meets the assignment of the
proof.

In the context of zero-knowledge proof systems, executing circuits is also often called wit-
ness generation, since in applications the instance part is usually public, while its the task of a
prover to compute the witness part.

Remark 7 (Circuit satisfiability). Similar to 6, it should be noted that, in our definition, every
circuit defines its own language. However, in more theoretical approaches another language
usually called circuit satisfiability is often considered, which is useful when it comes to more
abstract problems like expressiveness, or computational complexity of the class of all algebraic
circuits over a given field. From our perspective the circuit satisfiability language is obtained
by union of all circuit languages that are in our definition. To be more precise, let the alphabet
Σ = F be a field. Then

LCIRCUIT _SAT (F)= {(i;w)∈Σ
∗×Σ

∗ | there is a circuit C(F) such that (i;w) is valid assignment}

Example 124 (3-Factorization). Consider the circuit C3. f ac from example 120 again. We call
the associated language L3. f ac_circ.

To understand how a constructive proof of a statement in L3. f ac_circ looks like, consider the
instance I1 = 11. To provide a proof for the statement “There exist a witness W such that (I1;W)
is a word in L3. f ac_circ” a proof therefore has to consists of proper values for the variables W1,
W2, W3 and W4. Any prover therefore has to find input values for W1, W2 and W3 and then
execute the circuit to compute W4 under the assumption I1 = 11.

Example 122implies that < 2,3,4,6 > is a proper constructive proof and in order to verify
the proof a verifier needs to execute the circuit with instance I1 = 11 and inputs W1 = 2, W2 = 3
and W3 = 4 to decide whether the proof is a valid assignment or not.

Exercise 87. Consider the circuit Ctiny− j j(F13) from example 121, with its associated language
Ltiny− j j. Construct a proof π for the instance < 11,6 > and verify the proof.

Associated Constraint Systems As we have seen in 6.2.1, Rank-1 Constraint Systems define
a way to represent statements in terms of a system of quadratic equations over finite fields,
suitable for pairing-based zero-knowledge proof systems. However, those equations provide no
practical way for a prover to actually compute a solution. On the other hand, algebraic circuits
can be executed in order to derive valid assignments efficiently.

In this paragraph, we show how to transform any algebraic circuit into a Rank-1 Constraint
System such that valid circuit assignments are in 1:1 correspondence with solutions to the asso-
ciated R1CS.

To see this, let C(F) be an algebraic circuit over a finite field F, with a string of edge labels
< S1,S2, . . . ,Sn >. Then we start with an empty R1CS and one of the following steps is executed
for every edge label S j from that set:

146

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

• If the edge label S j is an outgoing edge of a multiplication gate, the R1CS gets a new
quadratic constraint

(left input) · (right input) = S j (6.10)

In this expression (left input) is the output from the symbolic execution of the subgraph
that consists of the left input edge of this gate and all edges and nodes that have this edge
in their path, starting with constant inputs or labeled outgoing edges of other nodes.

In the same way (right input) is the output from the symbolic execution of the subgraph
that consists of the right input edge of this gate and all edges and nodes that have this
edge in their path, starting with constant inputs or labeled outgoing edges of other nodes.

• If the edge label S j is an outgoing edge of an addition gate, the R1CS gets a new quadratic
constraint

(left input+ right input) ·1 = S j (6.11)

In this expression (left input) is the output from the symbolic execution of the subgraph
that consists of the left input edge of this gate and all edges and nodes that have this edge
in their path, starting with constant inputs or labeled outgoing edges of other nodes.

In the same way (right input) is the output from the symbolic execution of the subgraph
that consists of the right input edge of this gate and all edges and nodes that have this
edge in their path, starting with constant inputs or labeled outgoing edges of other nodes.

• No other edge label adds a constraint to the system.

If an algebraic circuit C(F) is constructed according to the rules from 6.2.2, the result of this
method is a Rank-1 Constraint System, and, in this sense, every algebraic circuit C(F) generates
a R1CS R, which we call the associated R1CS of the circuit. It can be shown that a string of
field elements < S1,S2, . . . ,Sn > is a valid assignment to a circuit if and only if the same string
is a solution to the associated R1CS. Circuit executions therefore compute solutions to Rank-1
constraint Systems efficiently.

To understand the contribution of algebraic gates to the number of constraints, note that,
according to construction 6.2.2, multiplication gates have labels on their outgoing edges if and
only if there is at least one labeled edge in both input paths, or if the outgoing edge is an input
to a sink node. This implies that multiplication with a constant is essentially free in the sense
that it doesn’t add a new constraint to the system, as long as that multiplication gate is not am
input to an output node.

Moreover, addition gates have labels on their outgoing edges if and only if they are inputs
to sink nodes. This implies that addition is essentially free in the sense that it doesn’t add a new
constraint to the system, as long as that addition gate is not an input to an output node.

Example 125 (3-factorization). Consider our 3-factorization problem from example 114 and the
associated circuit C3. f ac(F13) from example 120. Our task is to transform this circuit into an
equivalent Rank-1 Constraint System.

147

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

x_2

*

W_2

*

W_4

f_(3.fac_zk)

 I_1

x_1
 W_1

x_3

 W_3

We start with an empty R1CS, and, in order to generate all constraints, we have to iterate over
the set of edge labels < I1;W1,W2,W3,W4 >.

Starting with the edge label I1, we see that it is an outgoing edge of a multiplication gate,
and, since both input edges are labeled, we have to add the following constraint to the system:

(left input) · (right input) = I1 ⇔
W4 ·W3 = I1

Next, we consider the edge label W1 and, since, it’s not an outgoing edge of a multiplication or
addition gate, we don’t add a constraint to the system. The same holds true for the labels W2
and W3.

For edge label W4 , we see that it is an outgoing edge of a multiplication gate, and, since
both input edges are labeled, we have to add the following constraint to the system:

(left input) · (right input) =W4 ⇔
W2 ·W1 =W4

Since there are no more labeled edges, all constraints are generated, and we have to combine
them to get the associated R1CS of C3. f ac(F13):

W4 ·W3 = I1

W2 ·W1 =W4

This system is equivalent to the R1CS we derived in example 116. The languages L3. f ac_zk and
L3. f ac_circ are therefore equivalent and both the circuit as well as the R1CS are just two different
ways of expressing the same language.

Example 126. To consider a more general transformation, we consider the tiny-jubjub circuit
from example 123 again. A proper circuit is given by the following graph, where we highlighted
all nodes that contribute a constraint to the R1CS:

148

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

x

*

S_1

*

S_3

*

S_3

+

+

S_5

y

*

S_2

*

S_4

*
S_4

+

108

0

 S_6=0

12

1

To compute the number of constraints, observe that we have 3 multiplication gates that have
labels on their outgoing edges and 1 addition gate that has a label on its outgoing edge. We
therefore have to compute 4 quadratic constraints.

In order to derive the associated R1CS, we have start with an empty R1CS and then iterate
over the set < S1,S2,S3,S4,S5,S6 = 0 > of all edge labels, in order to generate the constraints.

Considering edge label S1, we see that the associated edges are not outgoing edges of any
algebraic gate, and we therefore have to add no new constraint to the system. The same holds
true for edge label S2. Looking at edge label S3, we see that the associated edges are outgoing
edges of a multiplication gate and that the associated subgraph is given by:

x

*

S_1

*

S_3

*

S_3

+

+

S_5

y

*

S_2

*

S_4

*
S_4

+

108

0

 S_6=0

12

1

Both the left and the right input to this multiplication gate are labeled by S1. We therefore have

149

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

to add the following constraint to the system:

S1 ·S1 = S3

Looking at edge label S4, we see that the associated edges are outgoing edges of a multiplication
gate and that the associated subgraph is given by:

x

*

S_1

*

S_3

*

S_3

+

+

S_5

y

*

S_2

*

S_4

*
S_4

+

108

0

 S_6=0

12

1

Both the left and the right input to this multiplication gate are labeled by S2 and we therefore
have to add the following constraint to the system:

S2 ·S2 = S4

Edge label S5 is more interesting. To see how it implies a constraint, we have to construct
the associated subgraph first, which consists of all edges, nodes, and paths, starting either at a
constant input or a labeled edge. We get

x

*

S_1

*

S_3

*

S_3

+

+

S_5

y

*

S_2

*

S_4

*
S_4

+

108

0

 S_6=0

12

1

150

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

The right input to the associated multiplication gate is given by the labeled edge S3. However,
the left input is not a labeled edge, but has a labeled edge in one of its path. To compute the left
factor of that constraint, we have to compute the output of the subgraph associated to the left
edge, which is S4 ·8. This gives the constraint

(S4 ·8) ·S3 = S5

The last edge label is the constant S6 = 0. To see how it implies a constraint, we have to
construct the associated subgraph, which consists of all edges, nodes, and paths, starting either
at a constant input or a labeled edge. We get

x

*

S_1

*

S_3

*

S_3

+

+

S_5

y

*

S_2

*

S_4

*
S_4

+

108

0

 S_6=0

12

1

Both the left and the right input are unlabeled, but have a labeled edges in their path. Since the
gate is an addition gate, the right factor in the quadratic constraint is always 1 and the left factor
is computed by symbolically executing all inputs to all gates in the sub-circuit. We get

(12 ·S4 +S5 +10 ·S3 +1) ·1 = 0

Since there are no more labeled outgoing edges, we are done deriving the constraints. Com-
bining all constraints together, we get the following R1CS:

S1 ·S1 = S3

S2 ·S2 = S4

(S4 ·8) ·S3 = S5

(12 ·S4 +S5 +10 ·S3 +1) ·1 = 0

which is equivalent to the R1CS we derived in example 117 both the circuit as well as the R1CS
are just two different ways to express the same language.

6.2.3 Quadratic Arithmetic Programs
We have introduced algebraic circuits and their associated Rank-1 Constraint Systems as two
particular models able to represent bounded computation. Both models define formal languages,

151

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

and associated membership as well as knowledge claims can be proofed in a constructive way
by executing the circuit in order to compute solutions to its associated R1CS.

One reason why those systems are useful in the context of succinct zero-knowledge proof
systems is because any R1CS can be transformed into another computational model called a
Quadratic Arithmetic Program [QAP], which serves as the basis for some of the most effi-
cient succinct non-interactive zero-knowledge proof generators that currently exist. Quadratic
Arithmetic Programs are introduced for example in Groth [2016].

As we will see, proving statements for languages that have decision functions defined by
Quadratic Arithmetic Programs can be achieved by providing certain polynomials, and those
proofs can be verified by checking a particular divisibility property of those polynomials.

QAP representation To understand what Quadratic Arithmetic Programs are in detail, let F
be a field and R a Rank-1 Constraint System over F such that the number of non-zero elements
in F is strictly larger then the number k of constraints in R. Moreover, let ai

j, bi
j and ci

j ∈ F for
every index 0≤ j ≤ n+m and 1≤ i≤ k, be the defining constants of the R1CS and m1, . . ., mk
be arbitrary, invertible and distinct elements from F.

Then a Quadratic Arithmetic Program associated to the R1CS R is the following set of
polynomials over F:

QAP(R) =
{

T ∈ F[x],
{

A j,B j,C j ∈ F[x]
}n+m

h=0

}
(6.12)

Here T (x) := Πk
l=1(x−ml) is a polynomial of degree k, called the target polynomial of the

QAP and A j, B j as well as C j are the unique degree k−1 polynomials defined by the following
equation:

A j(mi) = ai
j, B j(mi) = bi

j, C j(mi) =Ci
j for all j = 1, . . . ,n+m+1, i = 1, . . . ,k (6.13)

Given some Rank-1 Constraint System, an associated Quadratic Arithmetic Program is there-
fore nothing but a set of polynomials, computed from the constants in the R1CS. To see that the
polynomials A j, B j and C j are uniquely defined by the equations 6.13, recall that a polynomial
of degree k− 1 is completely determined by k evaluation points and it can be computed for
example by Lagrange interpolation 4.

Computing a QAP from any given R1CS can be achieved in the following three steps. If
the R1CS consists of k constraints, first choose k different, invertible element from the field F.
Every choice defines a different QAP for the same R1CS. Then compute the target polynomial T
according to its definition 6.12. After that use Lagrange’s method 4 to compute the polynomials
A j for every 1≤ j ≤ k from the set

SA j = {(m1,a1
j), . . . ,(mk,ak

j)} (6.14)

After that is done, execute the analog computation for the polynomials B j and C j for every
1≤ j ≤ k.

Example 127 (Generalized factorization SNARK). To provide a better intuition of Quadratic
Arithmetic Programs and how they are computed from their associated Rank-1 Constraint Sys-
tems, consider the language L3. f ac_zk from example 114 and its associated R1CS from example
116:

W1 ·W2 =W4 constraint 1
W4 ·W3 = I1 constraint 2

152

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

In this example we want to transform this R1CS into an associated QAP. According to example
116 the defining constants ai

j, bi
j and ci

j of the R1CS are given as follows:

a1
0 = 0 a1

1 = 0 a1
2 = 1 a1

3 = 0 a1
4 = 0 a1

5 = 0
a2

0 = 0 a2
1 = 0 a2

2 = 0 a2
3 = 0 a2

4 = 0 a2
5 = 1

b1
0 = 0 b1

1 = 0 b1
2 = 0 b1

3 = 1 b1
4 = 0 b1

5 = 0
b2

0 = 0 b2
1 = 0 b2

2 = 0 b2
3 = 0 b2

4 = 1 b2
5 = 0

c1
0 = 0 c1

1 = 0 c1
2 = 0 c1

3 = 0 c1
4 = 0 c1

5 = 1
c2

0 = 0 c2
1 = 1 c2

2 = 0 c2
3 = 0 c2

4 = 0 c2
5 = 0

Since the R1CS is defined over the field F13 and since it has two constraints, we need to choose
two arbitrary but invertible and distinct elements m1 and m2 from F13. We choose m1 = 5, and
m2 = 7 and with this choice we get the target polynomial

T (x) = (x−m1)(x−m2) # Definition of T
= (x−5)(x−7) # Insert our choice
= (x+8)(x+6) # Negatives in F13

= x2 + x+9 # expand

Then we have to compute the polynomials A j, B j and C j by their defining equation from the
R1CS coefficients. Since the R1CS has two constraining equations, those polynomials are of
degree 1 and they are defined by their evaluation at the point m1 = 5 and the point m2 = 7.

At point m1, each polynomial A j is defined to be a1
j and at point m2, each polynomial A j is

defined to be a2
j . The same holds true for the polynomials B j as well as C j. Writing all these

equations down, we get:

A0(5) = 0, A1(5) = 0, A2(5) = 1, A3(5) = 0, A4(5) = 0, A5(5) = 0
A0(7) = 0, A1(7) = 0, A2(7) = 0, A3(7) = 0, A4(7) = 0, A5(7) = 1

B0(5) = 0, B1(5) = 0, B2(5) = 0, B3(5) = 1, B4(5) = 0, B5(5) = 0
B0(7) = 0, B1(7) = 0, B2(7) = 0, B3(7) = 0, B4(7) = 1, B5(7) = 0

C0(5) = 0, C1(5) = 0, C2(5) = 0, C3(5) = 0, C4(5) = 0, C5(5) = 1
C0(7) = 0, C1(7) = 1, C2(7) = 0, C3(7) = 0, C4(7) = 0, C5(7) = 0

Lagrange’s interpolation implies that a polynomial of degree k, that is zero on k+1 points has
to be the zero polynomial. Since our polynomials are of degree 1 and determined on 2 points,
we therefore know that the only non-zero polynomials in our QAP are A2, A5, B3, B4, C1 and
C5, and that we can use Lagrange’s interpolation to compute them.

To compute A2 we note that the set SA2 in our version of Lagrange’s interpolation is given
by SA2 = {(m1,a1

2),(m2,a2
2)}= {(5,1),(7,0)}. Using this set we get:

A2(x) = a1
2 · (

x−m2

m1−m2
)+a2

2 · (
x−m1

m2−m2
) = 1 · (x−7

5−7
)+0 · (x−5

7−5
)

=
x−7
−2

=
x−7

11
11−1 = 6

= 6(x−7) = 6x+10 # −7 = 6 and 6 ·6 = 10

153

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

To compute A5, we note that the set SA5 in our version of Lagrange’s method is given by SA5 =
{(m1,a1

5),(m2,a2
5)}= {(5,0),(7,1)}. Using this set we get:

A5(x) = a1
5 · (

x−m2

m1−m2
)+a2

5 · (
x−m1

m2−m1
) = 0 · (x−7

5−7
)+1 · (x−5

7−5
)

=
x−5

2
2−1 = 7

= 7(x−5) = 7x+4 # −5 = 8 and 7 ·8 = 4

Using Lagrange’s interpolation, we can deduce that A2 = B3 = C5 as well as A5 = B4 = C1,
since they are polynomials of degree 1 that evaluate to same values on 2 points. Using this, we
get the following set of polynomials

A0(x) = 0 B0(x) = 0 C0(x) = 0
A1(x) = 0 B1(x) = 0 C1(x) = 7x+4
A2(x) = 6x+10 B2(x) = 0 C2(x) = 0
A3(x) = 0 B3(x) = 6x+10 C3(x) = 0
A4(x) = 0 B4(x) = 7x+4 C4(x) = 0
A5(x) = 7x+4 B5(x) = 0 C5(x) = 6x+10

We can invoke Sage to verify our computation. In sage every polynomial ring has a function
lagrange_polynomial that takes the defining points as inputs and the associated Lagrange
polynomial as output.

643sage: F13 = GF(13)
644sage: F13t.<t> = F13[]
645sage: T = F13t((t-5)*(t-7))
646sage: A2 = F13t.lagrange_polynomial([(5,1),(7,0)])
647sage: A5 = F13t.lagrange_polynomial([(5,0),(7,1)])
648sage: T == F13t(t^2 + t + 9)
649True
650sage: A2 == F13t(6*t + 10)
651True
652sage: A5 == F13t(7*t + 4)
653True

Combining this computation with the target polynomial we derived earlier, a Quadratic
Arithmetic Program associated to the Rank-1 Constraint System R3. f ac_zk is given as follows:

QAP(R3. f ac_zk) = {x2 + x+9,
{0,0,6x+10,0,0,7x+4},{0,0,0,6x+10,7x+4,0},{0,7x+4,0,0,0,6x+10}}

Exercise 88. Consider the Rank-1 Constraint System for points on the tiny-jubjub curve from
example 117. Compute an associated QAP for this R1CS and double check your computation
using sage.

QAP Satisfiability One of the major points of Quadratic Arithmetic Programs in proving sys-
tems is that solutions of their associated Rank-1 Constraint Systems are in 1:1 correspondence
with certain polynomials P divisible by the target polynomial T of the QAP. Verifying solutions

154

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

to the R1CS and hence, checking proper circuit execution is then achievable by polynomial
division of P by T .

To be more specific, let R be some Rank-1 Constraint System with associated variables
(< I1, . . . , In >;<W1, . . . ,Wm >) and let QAP(R) be a Quadratic Arithmetic Program of R. Then
the string (< I1, . . . , In >;<W1, . . . ,Wm >) is a solution to the R1CS if and only if the following
polynomial is divisible by the target polynomial T :

P(I;W) =(A0+∑
n
j I j·A j+∑

m
j W j·An+ j)·(B0+∑

n
j I j·B j+∑

m
j W j·Bn+ j)−(C0+∑

n
j I j·C j+∑

m
j W j·Cn+ j) (6.15)

To understand how Quadratic Arithmetic Programs define formal languages, observe that
every QAP over a field F defines a decision function over the alphabet ΣI×ΣW = F×F in the
following way:

RQAP : (F)∗× (F)∗→{true, f alse} ; (I;W) 7→

{
true P(I;W) is divisible by T
f alse else

(6.16)

This means that every QAP defines a formal language LQAP, and, if the QAP is associated
to an R1CS, the language generated by the QAP and the language generated by the R1CS
are equivalent. In the context of languages generated by Quadratic Arithmetic Programs, a
statement is then a membership claim “There is a word (I;W) in LQAP”. A proof to this claim
is therefore given by a polynomial P(I;W), which is verified by dividing P(I;W) by T .

Note the structural similarities and differences in the definition of an R1CS and its associ-
ated language in ??, of circuits and their associated languages in 6.2.2 and of QAPs and their
associated languages as explained in this part. For circuits and their associated Rank-1 Con-
straint Systems, a constructive proof consists of a valid assignment of field elements to the
edges of the circuit, or the variables in the R1CS. However, in the case of QAPs, a valid proof
consists of a polynomial P(I;W).

To compute a constructive proof for a statement in LQAP given some instance I, a prover
first needs to compute a constructive proof W of the associated R1CS, e.g. by executing the
circuit of the R1CS. With (I;W) at hand, the prover can then compute the polynomial P(I;W)

and publish the polynomial as proof.
Verifying a constructive proof in the case of a circuit is achieved by executing the circuit

and then by comparing the result against the given proof. Verifying the same proof in the R1CS
picture means checking if the elements of the proof satisfy the R1CS equations. In contrast,
verifying a proof in the QAP picture is done by polynomial division of the proof P by the target
polynomial T . The proof is verified if and only if P is divisible by T .

Example 128. Consider the Quadratic Arithmetic Program QAP(R3. f ac_zk) from example 127
and its associated R1CS from equation 116. To give an intuition of how proofs in the language
LQAP(R3. f ac_zk) look like, lets consider the instance I1 = 11. As we know from example 122,
(W1,W2,W3,W5) = (2,3,4,6) is a proper witness, since (< I1 >;<W1,W2,W3,W5 >) = (< 11 >
;< 2,3,4,6 >) is a valid circuit assignment and hence, a solution to R3. f ac_zk and a constructive
proof for language LR3. f ac_zk .

In order to transform this constructive proof into a knowledge proof in language LQAP(R3. f ac_zk),
a prover has to use the elements of the constructive proof, to compute the polynomial P(I;W).

In the case of (< I1 >;<W1,W2,W3,W5 >) = (< 11 >;< 2,3,4,6 >), the associated proof

155

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

is computed as follows:

P(I;W) =(A0+∑
n
j I j·A j+∑

m
j W j·An+ j)·(B0+∑

n
j I j·B j+∑

m
j W j·Bn+ j)−(C0+∑

n
j I j·C j+∑

m
j W j·Cn+ j)

=(2(6x+10)+6(7x+4)) · (3(6x+10)+4(7x+4))− (11(7x+4)+6(6x+10))
=((12x+7)+(3x+11)) · ((5x+4)+(2x+3))− ((12x+5)+(10x+8))
=(2x+5) · (7x+7)− (9x)

=(x2 +2 ·7x+5 ·7x+5 ·7)− (9x)

=(x2 + x+9x+9)− (9x)

=x2 + x+9

Given instance I1 = 11 a prover therefore provides the polynomial x2+x+9 as proof. To verify
this proof, any verifier can then look up the target polynomial T from the QAP and divide P(I;W)

by T . In this particular example, P(I;W) is equal to the target polynomial T , and hence, it is
divisible by T with P/T = 1. The verifer therefore verifies the proof.

654sage: F13 = GF(13)
655sage: F13t.<t> = F13[]
656sage: T = F13t(t^2 + t + 9)
657sage: P = F13t((2*(6*t+10)+6*(7*t+4))*(3*(6*t+10)+4*(7*t +4))

-(11*(7*t+4)+6*(6*t+10)))
658sage: P == T
659True
660sage: P % T # remainder
6610

To give an example of a false proof, consider the string (< I1 >;<W1,W2,W3,W4 >) = (<
11 >,< 2,3,4,8 >). Executing the circuit, we can see that this is not a valid assignment and not
a solution to the R1CS, and hence, not a constructive knowledge proof in L3. f ac_zk. However, a
prover might use these values to construct a false proof P(I;W):

P′(I;W) =(A0+∑
n
j I j·A j+∑

m
j W j·An+ j)·(B0+∑

n
j I j·B j+∑

m
j W j·Bn+ j)−(C0+∑

n
j I j·C j+∑

m
j W j·Cn+ j)

=(2(6x+10)+8(7x+4)) · (3(6x+10)+4(7x+4))− (8(6x+10)+11(7x+4))

=8x2 +6

Given instance I1 = 11, a prover therefore provides the polynomial 8x2 +6 as proof. To verify
this proof, any verifier can look up the target polynomial T from the QAP and divide P(I;W) by
T . However, polynomial division has the following remainder:

(8x2 +6)/(x2 + x+9) = 8+
5x+12

x2 + x+9

This implies that P(I;W) is not divisible by T , and hence, the verifier does not verify the proof.
Any verifier can therefore show that the proof is false.

662sage: F13 = GF(13)
663sage: F13t.<t> = F13[]
664sage: T = F13t(t^2 + t + 9)
665sage: P = F13t((2*(6*t+10)+8*(7*t+4))*(3*(6*t+10)+4*(7*t+4))-(

8*(6*t+10)+11*(7*t+4)))

156

CHAPTER 6. STATEMENTS 6.2. STATEMENT REPRESENTATIONS

666sage: P == F13t(8*t^2 + 6)
667True
668sage: P % T # remainder
6695*t + 12

157

Chapter 7

Circuit Compilers

As we have seen in the previous chapter, statements can be formalized as membership or knowl-
edge claims in formal languages, and algebraic circuits as well as Rank-1 Constraint Systems
are two practically important ways to define those languages.

However, both algebraic circuits and Rank-1 Constraint Systems are not ideal from a devel-
opers point of view, because they deviate substantially from common programming paradigms.
Writing real-world applications as circuits and the associated verification in terms of Rank-1
Constraint Systems is at least as troublesome as writing any other low-level language like as-
sembler code. To allow for complex statement design, it is therefore necessary to have some
kind of compiler framework, capable of transforming high-level languages into arithmetic cir-
cuits and associated Rank-1 Constraint Systems.

As we have seen in chapter 6 and in 6.2.1 as well as 6.2.2, both arithmetic circuits and Rank-
1 Constraint Systems have a modularity property 6.2.1 by which it is possible to synthesize
complex circuits from simple ones. A basic approach taken by many circuit/R1CS compilers is
therefore to provide a library of atomic and simple circuits and then define a way to combine
those basic building blocks into arbitrary complex systems.

In this chapter, we provide an introduction to basic concepts of so-called circuit compilers
and derive a toy language which we can “compile” in a pen-and-paper approach into graphical
representations of algebraic circuits and their associated Rank-1 Constraint Systems.

We start with a general introduction to our toy programming language, and then introduce
atomic types like booleans and unsigned integers. Then we define the fundamental control
flow primitives like the if-then-else conditional and the bounded loop. We will look at basic
functionality primitives like elliptic curve cryptography. Primitives like these are often called
gadgets in the literature.

7.1 A Pen-and-Paper Language
To explain basic concepts of circuit compilers and their associated high-level languages, we
derive an informal toy language and associated “brain-compiler” which we name PAPER (Pen-
And-Paper Execution Rules). PAPER allows programmers to define statements in Rust-like
pseudo-code. The language is inspired by zokrates and circom.

7.1.1 The Grammar
In PAPER, any statement is defined as an ordered list of functions, where any function has to be
declared in the list before it is called in another function of that list. The last entry in a statement

158

https://zokrates.github.io/language/index.html
https://github.com/iden3/circom

CHAPTER 7. CIRCUIT COMPILERS 7.1. A PEN-AND-PAPER LANGUAGE

has to be a special function, called main. Functions take a list of typed parameters as inputs
and compute a tuple of typed variables as output, where type_functions are special functions
that define how to transform one type into another type, ultimately transforming any type into
elements of the base field where the circuit is defined over.

Any statement is parameterized over the field that the circuit will be defined on, and has ad-
ditional optional parameters of unsigned type, needed to define the size of arrays or the counter
of bounded loops. The following definition makes the grammar of a statement precise using a
command line language like description:

statement <Name> {F:<Field> [, <N_1: unsigned>,...] } {
[fn <Name>([[pub]<Arg>:<Type>,...]) -> (<Type>,...){
[let [pub] <Var>:<Type> ;...]
[let const <Const>:<Type>=<Value> ;...]
Var<==(fn([<Arg>|<Const>|<Var>,...])|(<Arg>|<Const>|<Var>)) ;
return (<Var>,...) ;

} ;...]
fn main([[pub]<Arg>:<Type>,...]) -> (<Type>,...){
[let [pub] <Var>:<Type> ;...]
[let const <Const>:<Type>=<Value> ;...]
Var<==(fn([<Arg>|<Const>|<Var>,...])|(<Arg>|<Const>|<Var>)) ;
return (<Var>,...) ;

} ;
}

Function arguments and variables are witness variables by default, but can be declared as in-
stance by the pub specifier. Declaring arguments and variables as instances always overwrites
any previous or conflicting witness declarations. Every argument, constant or variable has a
type, and every type is defined as a function that transforms that type into another type. In order
for a PAPER program to compile successfully, all type transformations must be composed in
such a way that the final type is the base field where the circuit is defined over:

type_function <TYPE>(t1 : <TYPE_1>) -> TYPE_2{
let t2: TYPE_2 <== fn(TYPE_1)
return t2

}

Many real-world circuit languages are based on a similar, but of course more sophisticated
approach than PAPER. The purpose of PAPER is to show basic principles of circuit compilers
and their associated high-level languages.

Example 129. To get a better understanding of the grammar of PAPER, the following constitutes
proper high-level code that follows the grammar of the PAPER language, assuming that all types
in that code have been defined elsewhere.

statement MOCK_CODE {F: F_43, N_1 = 1024, N_2 = 8} {
fn foo(in_1 : F, pub in_2 : TYPE_2) -> F {
let const c_1 : F = 0 ;
let const c_2 : TYPE_2 = SOME_VALUE ;
let pub out_1 : F ;
out_1<== c_1 ;
return out_1 ;

} ;

fn bar(pub in_1 : F) -> F {

159

CHAPTER 7. CIRCUIT COMPILERS 7.1. A PEN-AND-PAPER LANGUAGE

let out_1 : F ;
out_1<==foo(in_1);
return out_1 ;

} ;

fn main(in_1 : TYPE_1)->(F, TYPE_2){
let const c_1 : TYPE_1 = SOME_VALUE ;
let const c_2 : F = 2;
let const c_3 : TYPE_2 = SOME_VALUE ;
let pub out_1 : F ;
let out_2 : TYPE_2 ;
c_1 <== in_1 ;
out_1 <== foo(c_2) ;
out_2 <== TYPE_2 ;
return (out_1,out_2) ;

} ;
}

7.1.2 The Execution Phases
In contrast to normal executable programs, programs for circuit compilers have two modes of
execution. The first mode, usually called the setup phase, is executed in order to generate the
circuit and its associated Rank-1 Constraint System, the latter of which is then usually used as
input to some zero-knowledge proof system as explained in 8.

The second mode of execution is usually called the prover phase. In this phase, some
assignment to all instance variables of the circuit is usually given as input and the task of a
prover is to compute a valid assignment to all witness variables of the circuit. Depending on the
use case, this valid assignment is then either directly used as constructive proof for proper circuit
execution or is transferred as input to the proof generation algorithm of some zero-knowledge
proof system, where the full-sized, non hiding constructive proof is processed into a succinct
proof with various levels of zero knowledge.

Modern circuit languages and their associated compilers abstract over those two phases and
provide a unified interphase to the developer, who then writes a single program that can be
used in both phases.

To give the reader a clear, conceptual distinction between the two phases, PAPER keeps
them separated. PAPER-code can be “brain-compiled” during the setup-phase in a pen-and-
paper approach into a graphical circuit representation. Once a circuit is derived, it can be exe-
cuted in a prover phase to generate a valid assignment. The valid assignment is then interpreted
as a constructive proof for a knowledge claim in the associated language.

The Setup Phase In PAPER, the task of the setup phase is to compile code in the PAPER
language into a visual representation of an algebraic circuit. Deriving the circuit from the code
in a pen-and-paper style is what we call brain-compiling.

Given some statement description that adheres to the correct grammar, we start the graphical
circuit compilation process with an empty circuit, compile the main function first and then
inductively compile all other functions as they are called during the process.

For every function that we currently compile, we draw a box-node for every input argument,
every variable and every constant of that function. If the node represents a variable, we label it
with that variable’s name, and if it represents a constant, we label it with that constant’s value.

160

CHAPTER 7. CIRCUIT COMPILERS 7.1. A PEN-AND-PAPER LANGUAGE

We group arguments into a subgraph labeled “inputs” and return values into a subgraph labeled
“outputs". We then group everything into a subgraph and label that subgraph with the function’s
name.

After this is done, we have to do a consistency and type check for every occurrence of the
assignment operator <==. We have to ensure that the expression on the right side of the operator
is well defined and that the types of both side match.

Then we compile the right side of every occurrence of the assignment operator <==. If
the right side is a constant or variable defined in this function, we draw a dotted line from the
box-node that represents the left side of <== to the box node that represents the right side of
the same operator. If the right side represents an argument of that function we draw a line from
the box-node that represents the left side of <== to the box node that represents the right side
of the same operator.

If the right side of the <== operator is a function, we look into our database, find its associ-
ated circuit and draw it. If no circuit is associated to that function yet, we repeat the compilation
process for that function, drawing edges from the function’s argument to its input nodes and
from the functions output nodes to the nodes on the right side of <==.

During that process, edge labels are drawn according to the defining rules of algebraic cir-
cuits from 6.2.2. If the associated variable represents a witness variable, we use the W label
to indicate a witness, and if it represents a instance variable, we use the I label to indicate an
instance. Variables are witnesses by default and the pub specifier indicates that the variable is
an instance.

Once this is done, we compile all occurring types of all variables in a function, by compiling
the type_function of each type. We do this inductively until we reach the type of the base field.
Circuits have no notion of types, only of field elements; hence, every type needs to be compiled
to the field type in a sequence of compilation steps.

The compilation stops once we have inductively replaced all functions by their circuits. The
result is a circuit that contains many unnecessary box nodes. In a final optimization step, all
box nodes that are directly linked to each other are collapsed into a single node, and all box
nodes that represent the same constants are collapsed into a single node.

Of course, PAPER’s brain-compiler is not properly defined in any formal manner. Its pur-
pose is to highlight important steps that real-world compilers undergo in their setup phases.

Example 130 (A trivial Circuit). To give an intuition of how to write and compile circuits in the
PAPER language, consider the following statement description:

statement trivial_circuit {F:F_13} {
fn main{F}(in1 : F, pub in2 : F) -> (F,F){
let const outc1 : F = 0 ;
let const inc1 : F = 7 ;
let out1 : F ;
let out2 : F ;
out1 <== inc1;
out2 <== in1;
outc1 <== in2;
return (out1, out2) ;

}
}

To brain-compile this statement into an algebraic circuit with PAPER, we start with an empty
circuit and evaluate function main, which is the only function in this statement.

We draw box-nodes for every argument, every constant and every variable of the function

161

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

and label them with their names or values, respectively. Then we do a consistency and type
check for every <== operator in the function. Since the circuit only wires inputs to outputs and
all elements have the same type, the check is valid.

Then we evaluate the right side of the assignment operators. Since, in our case, the right side
of each operator is not a function, we draw edges from the box-nodes on the right side to the
associated box node on the left side. To label those edges, we use the general rules of algebraic
circuits as defined in 6.2.2. According to those rules, every incoming edge of a sink node has a
label and every outgoing edge of a source node has a label, if the node is labeled with a variable.
Since nodes that represent constants are implicitly assumed to be private, and since the public
specifier determines if an edge is labeled with W or I, we get the following circuit:

outputs

inputs

out_1out_2

70

in_1

W_1

in_2 = 0

0

The Prover Phase In PAPER, a so-called prover phase can be executed once the setup phase
has generated a graphic circuit representation from its associated high-level code. This is done
by executing the circuit while assigning proper values to all input nodes of the circuit. However,
in contrast to most real-world compilers, PAPER does not tell the prover how to find proper
input values to a given circuit. Real-world programing languages usually provide this data by
computations that are done outside of the circuit.
Example 131. Consider the circuit from example 123. Valid assignments to this circuit are
constructive proofs that the pair of inputs < I1, I2 > is a point on the tiny-jubjub curve. However,
the circuit does not provide a way to actually compute proper values for I1 and I2. Any real-
world system therefore needs an auxiliary computation that provides those values.

7.2 Common Programing concepts
In this section, we cover concepts that appear in almost every programming language, and see
how they can be implemented in circuit compilers.

7.2.1 Primitive Types
Primitive data types like booleans, (unsigned) integers, or strings are the most basic building
blocks one can expect to find in every general high-level programing language. In order to write
statements as computer programs that compile into circuits, it is therefore necessary to imple-
ment primitive types as constraint systems, and define their associated operations as circuits.

In this section, we look at some common ways to achieve this. After a recapitulation of
the atomic type for the base field where the circuit is defined on, we start with an implemen-
tation of the boolean type and its associated boolean algebra as circuits. After that, we define
unsigned integers based on the boolean type, and leave the implementation of signed integers
as an exercise to the reader.

162

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

The base-field type

Since both algebraic circuits and their associated Rank-1 Constraint Systems are defined over a
finite field, elements from that field are the atomic informational units in those models. In this
sense, field elements x ∈ F are for algebraic circuits what bits are for computers.

In PAPER, we write F for this type and specify the actual instance of the field type in curly
brackets after the name of a given statement. Two functions are associated to this type, which
are induced by the addition and multiplication law in the field F. We write

MUL : F×F→ F ; (x,y) 7→ MUL(x,y) (7.1)

ADD : F×F→ F ; (x,y) 7→ ADD(x,y) (7.2)

Circuit compilers have to compile these functions into arithmetic gates, as explained in 6.2.2.
Every other function has to be expressed in terms of these two atomic functions.

To represent addition and multiplication in the PAPER language, we define the following
two functions:

fn MUL(x : F, y : F) -> F{}

fn ADD(x : F, y : F) -> F{}

The compiler then compiles every occurrence of the MUL or the ADD function into the following
graphical circuit representations:

x

*

W_1

(x*y)

W_3

y

W_2

x

+

W_1

(x+y)

W_3

yW_2

Example 132 (Basic gates). To give an intuition of how a real-world compiler might trans-
form addition and multiplication in algebraic expressions into a circuit, consider the following
PAPER statement:

statement basic_ops {F:F_13} {
fn main(in_1 : F, pub in_2 : F) -> (F, F){
let out_1 : F ;
let out_2 : F ;
out_1 <== MUL(in_1,in_2) ;
out_2 <== ADD(in_1,in_2) ;
return (out_1, out_2) ;

}
}

To compile this into an algebraic circuit, we start with an empty circuit and evaluate the function
main, which is the only function in this statement. We draw an inputs subgraph containing
box-nodes for every argument of the function, and an outputs subgraph containing box-nodes
for every factor in the return value. Since all of these nodes represent variables of the field
type, we don’t have to add any type constraints to the circuit.

163

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

We check the validity of every expression on the right side of every <== operator including
a type check. In our case, every variable is of the field type and hence the types match the
types of the MUL as well as the ADD function and the type of the left sides of <== operators.

We evaluate the expressions on the right side of every <== operator inductively, replacing
every occurrence of a function with a subgraph that represents its associated circuit.

According to PAPER, every occurrence of the instance specifier pub overwrites the asso-
ciate witness default value. Using the appropriate edge labels we get:

inputs

fn MUL

outputs

fn ADD

in_1

x

W_1

x

W_1in_2

y

I_2

y

I_2

*

W_1

(x*y)

W_3

W_2

out_1

W_3

out_2

+ W_1

(x+y)

W_3

W_2

W_4

Any real-world compiler might process its associated high-level language in a similar way,
replacing functions, or gadgets by predefined associated circuits. This process is often followed
by various optimization steps that try to reduce the number of constraints as much as possible.

In PAPER, we optimize this circuit by collapsing all box nodes that are directly connected
to other box nodes, adhering to the rule that a variable’s pub specifier overwrites any witness
specifier. Reindexing edge labels, we get the following circuit as our pen and paper compiler
output:

in_1

*

W_1

+

W_1

out_1

W_3

out_2

 W_4

in_2I_2

I_2

Example 133 (3-factorization). Consider our 3-factorization problem from example 111 and
the associated circuit C3. f ac_zk(F13) we provided in example 121. To understand the process of
replacing high-level functions by their associated circuits inductively, we want define a PAPER
statement that we brain-compile into an algebraic circuit equivalent to C3. f ac_zk(F13):

164

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

statement 3_fac_zk {F:F_13} {
fn main(x_1 : F, x_2 : F, x_3 : F) -> F{
let pub 3_fac_zk : F ;
f_3.fac_zk <== MUL(MUL(x_1 , x_2) , x_3) ;
return 3_fac_zk ;

}
}

Using PAPER, we start with an empty circuit and then add 3 input nodes to the input subgraph as
well as 1 output node to the output subgraph. All these nodes are decorated with the associated
variable names. Since all of these nodes represent variables of the field type, we don’t have
to add any type constraints to the circuit.

We check the validity of every expression on the right side of the single <== operator
including a type check.

We evaluate the expressions on the right side of every <== operator inductively. We have
two nested multiplication functions and we replace them by the associated multiplication cir-
cuits, starting with the most outer function. We get:

fn MUL

fn MUL

inputs

outputs

x

*

W_1

(x*y)

W_3

y
W_2

f_3.fac_zk

I_1

x

*

W_1

(x*y)

W_3

y

W_2

W_4

x_1

W_1

x_2

W_2

x_3

W_3

In a final optimization step, we collaps all box nodes directly connected to other box nodes, ad-
hering to the rule that a variables public specifier overwrites any private specifier. Rein-
dexing edge labels we get the following circuit:

165

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

x_1

*W_1

*

W_4

x_2

W_2
x_3

W_3

f_3.fac_zk

I_1

The Subtraction Constraint System By definition, algebraic circuits only contain addition
and multiplication gates, and it follows that there is no single gate for field subtraction, despite
the fact that subtraction is a native operation in every field.

High-level languages and their associated circuit compilers, therefore, need another way to
deal with subtraction. To see how this can be achieved, recall that subtraction is defined by addi-
tion with the additive inverse, and that the inverse can be computed efficiently by multiplication
with −1. A circuit for field subtraction is therefore given by

x

+S_1

SUB(x,y)

S_3

y

*

S_2 -1

Using the general method from 6.2.2, the circuits associated Rank-1 Constraint System is given
by:

(S1 +(−1) ·S2) ·1 = S3 (7.3)

Any valid assignment < S1,S2,S3 > to this circuit therefore enforces the value S3 to be the
difference S1−S2.

Real-world compilers usually provide a gadget or a function to abstract over this circuit such
that programmers can use subtraction as if it were native to circuits. In PAPER, we define the
following subtraction function that compiles to the previous circuit:

fn SUB(x : F, y : F) -> F{
let rslt : F ;
constant c : F = -1 ;
rslt <== ADD(x , MUL(y , c));
return rslt ;

}

In the setup phase of a statement, we compile every occurrence of the SUB function into an
instance of its associated subtraction circuit, and edge labels are generated according to the
rules from 6.2.2.

166

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

The Inversion Constraint System By definition, algebraic circuits only contain addition and
multiplication gates, and it follows that there is no single gate for field inversion, despite the
fact that inversion is a native operation in every field.

If the underlying field is a prime field, one approach would be to use Fermat’s little theorem
3.3 to compute the multiplicative inverse inside the circuit. To see how this works, let Fp be the
prime field. The multiplicative inverse x−1 of a field element x ∈ F with x ̸= 0 is then given by
x−1 = xp−2, and computing xp−2 in the circuit therefore computes the multiplicative inverse.

Unfortunately, real-world primes p are large and computing xp−2 by repeated multiplication
of x with itself is infeasible. A “square and multiply” approach 5 is faster, as it computes the
power in roughly log2(p) steps, but still adds a lot of constraints to the circuit.

Computing inverses in the circuit makes no use of the fact that inversion is a native operation
in any field. A more constraints friendly approach is therefore to compute the multiplicative
inverse outside of the circuit and then only enforce correctness of the computation in the circuit.

To understand how this can be achieved, observe that a field element y ∈ F is the multiplica-
tive inverse of a field element x ∈ F if and only if x · y = 1 in F. We can use this, and define
a circuit that has two inputs, x and y, and enforces x · y = 1. It is then guaranteed that y is the
multiplicative inverse of x. The price we pay is that we can not compute y by circuit execution,
but auxiliary data is needed to tell any prover which value of y is needed for a valid circuit
assignment. The following circuit defines the constraint

x

*S_1

1

S_3 =1

x^(-1)S_2

Using the general method from 6.2.2, the circuit is transformed into the following Rank-1 Con-
straint System:

S1 ·S2 = 1 (7.4)

Any valid assignment < S1,S2 > to this circuit enforces that S2 is the multiplicative inverse of
S1, and, since there is no field element S2 such that 0 · S2 = 1, it also handles the fact that the
multiplicative inverse of 0 is not defined in any field.

Real-world compilers usually provide a gadget or a function to abstract over this circuit, and
those functions compute the inverse x−1 as part of their witness generation process. Programers
then don’t have to care about providing the inverse as auxiliary data to the circuit. In PAPER,
we define the following inversion function that compiles to the previous circuit:
fn INV(x : F, y : F) -> F {

let x_inv : F ;
constant c : F = 1 ;
c <== MUL(x , y)) ;
x_inv <== y ;
return x_inv ;

}

As we see, this functions takes two inputs, the field value and its inverse. It therefore does not
handle the computation of the inverse by itself. This is to keep PAPER as simple as possible.

In the setup phase, we compile every occurrence of the INV function into an instance of the
inversion circuit 7.2.1, and edge labels are generated according to the rules from 6.2.2.

167

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

The Division Constraint System By definition, algebraic circuits only contain addition and
multiplication gates, and it follows that there is no single gate for field division, despite the fact
that division is a native operation in every field.

Implementing division as a circuit, we use the fact that division is multiplication with the
multiplicative inverse. We therefore define division as a circuit using the inversion circuit and
constraint system from the previous paragraph. Expensive inversion is computed outside of the
circuit and then provided as circuit input. We get

x

*S_1

DIV(x,y)

S_4

y

*

S_2

1

1

y^(-1)S_3 S_3

Using the method from 6.2.2, we transform this circuit into the following Rank-1 Constraint
System:

S2 ·S3 = 1
S1 ·S3 = S4

Any valid assignment < S1,S2,S3,S4 > to this circuit enforces S4 to be the field division of S1
by S2. It handles the fact that division by 0 is not defined, since there is no valid assignment in
case S2 = 0.

In PAPER, we define the following division function that compiles to the previous circuit:

fn DIV(x : F, y : F, y_inv : F) -> F {
let DIV : F ;
DIV <== MUL(x , INV(y, y_inv)));
return DIV

}

In the setup phase, we compile every occurrence of the binary DIV operator into an instance of
the inversion circuit.

Exercise 89. Let F be the field F5 of modular 5 arithmetics from example 14. Brain-compile
the following PAPER statement into an algebraic circuit:

statement STUPID_CIRC {F: F_5} {
fn foo(in_1 : F, in_2 : F)->(out_1 : F, out_2 : F,){
constant c_1 : F = 3 ;
out_1<== ADD(MUL(c_1 , in_1) , in_1) ;
out_2<== INV(c_1 , in_2) ;

} ;

fn main(in_1 : F, in_2 ; F)->(out_1 : F, out_2 : TYPE_2){
constant (c_1,c_2) : (F,F) = (3,2) ;
(out_1,out_2) <== foo(in_1, in_2) ;

} ;
}

168

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

Exercise 90. Consider the tiny-jubjub curve from example 69 and its associated circuit 120.
Write a statement in PAPER that brain-compiles the statement into a circuit equivalent to the
one derived in 120, assuming that curve point is the instance and every other assignment is a
witness.

Exercise 91. Let F= F13 be the modular 13 prime field and x ∈ F some field element. Define a
statement in PAPER such that given instance x a field element y∈ F is a witness for the statement
if and only if y is the square root of x.

Brain-compile the statement into a circuit and derive its associated Rank-1 Constraint Sys-
tem. Consider the instance x = 9 and compute a constructive proof for the statement.

The boolean Type

Booleans are a classical primitive type, implemented by virtually every higher programing lan-
guage. It is therefore important to implement booleans in circuits. One of the most common
ways to do this is by interpreting the additive and multiplicative neutral element {0,1} ⊂ F as
the two boolean values such that 0 represents f alse and 1 represents true. Boolean operators
like and, or, or xor are then expressible as algebraic circuits over F.

Representing booleans this way is convenient, because the elements 0 and 1 are defined in
any field. The representation is therefore independent of the actual field in consideration.

To fix boolean algebra notation, we write 0 to represent f alse and 1 to represent true, and
we write ∧ to represent the boolean AND as well as ∨ to represent the boolean OR operator.
The boolean NOT operator is written as ¬.

The boolean Constraint System To represent booleans by the additive and multiplicative
neutral elements of a field, a constraint is required to actually enforce variables of boolean type
to be either 1 or 0. In fact, many of the following circuits that represent boolean functions are
only correct under the assumption that their input variables are constrained to be either 0 or 1.
Not constraining boolean variables is a common problem in circuit design.

In order to constrain an arbitrary field element x ∈ F to be 1 or 0, the key observation is that
the equation x · (1− x) = 0 has only the two solutions 0 and 1 in any field. Implementing this
equation as a circuit therefore generates the correct constraint:

x

*

S_1

*

S_1

+

0

0

1

-1

Using the method from 6.2.2, we transform this circuit into the following Rank-1 Constraint
System:

S1 · (1−S1) = 0

169

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

Any valid assignment < S1 > to label of this circuit therefore enforces S1 to be either the field
element 0 or 1.

Some real-world circuit compilers (like ZOKRATES or BELLMAN) are typed, while others
(like circom) are not. However, all of them have their way of dealing with the binary con-
straint. In PAPER, we define the boolean type by its type_function that compiles to the previous
circuit:
type_function BOOL(b : BOOL) -> F {

let x : F ;
let const c1 : F = 0 ;
let const c2 : F = 1 ;
tet const c3 : F = -1 ;
c1 <== MUL(b , ADD(c2 , MUL(b , c3))));
x <== b ;
return x ;

}

In the setup phase of a statement, we compile every occurrence of a variable of boolean type
into an instance of its associated boolean circuit.

The AND operator constraint system Given two field elements b1 and b2 from F that are
constrained to represent boolean variables, we want to find a circuit that computes the logical
and operator AND(b1,b2) as well as its associated R1CS that enforces b1, b2, AND(b1,b2) to
satisfy the constraint system if and only if b1 ∧ b2 = AND(b1,b2) holds true.

The key insight here is that, given three boolean constraint variables b1, b2 and b3, the
equation b1 · b2 = b3 is satisfied in F if and only if the equation b1 ∧ b2 = b3 is satisfied in
boolean algebra. The logical operator ∧ is therefore implementable in F by field multiplication
of its arguments and the following circuit computes the ∧ operator in F, assuming all inputs are
restricted to be 0 or 1:

b_1

*S_1

AND(b_1,b_2)

S_3

b_2S_2

The associated Rank-1 Constraint System can be deduced from the general process 6.2.2 and
consists of the following constraint:

S1 ·S2 = S3 (7.5)

Common circuit languages typically provide a gadget or a function to abstract over this circuit
such that programers can use the ∧ operator without caring about the associated circuit. In
PAPER, we define the following function that compiles to the ∧-operator’s circuit:
fn AND(b_1 : BOOL, b_2 : BOOL) -> BOOL{

let AND : BOOL ;
AND <== MUL(b_1 , b_2) ;
return AND ;

}

In the setup phase of a statement, we compile every occurrence of the AND function into an
instance of its associated ∧-operator’s circuit.

170

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

The OR operator constraint system Given two field elements b1 and b2 from F that are
constrained to represent boolean variables, we want to find a circuit that computes the logical
or operator OR(b1,b2) as well as its associated R1CS that enforces b1, b2, OR(b1,b2) to satisfy
the constraint system if and only if b1 ∨ b2 = OR(b1,b2) holds true.

Assuming that three variables b1, b2 and b3 are boolean constraint, the equation b1+b2−b1 ·
b2 = b3 is satisfied in F if and only if the equation b1 ∨ b2 = b3 is satisfied in boolean algebra.
The logical operator ∨ is therefore implementable in F by the following circuit, assuming all
inputs are restricted to be 0 or 1:

b_1

*
S_1

+

S_1

*

 S_3

+

b_2
S_2

S_2

-1

OR(b_1,b_2)

S_4

The associated Rank-1 Constraint System can be deduced from the general process 6.2.2 and
consists of the following constraints:

S1 ·S2 = S3

(S1 +S2−S3) ·1 = S4

Common circuit languages typically provide a gadget or a function to abstract over this circuit
such that programers can use the ∨ operator without caring about the associated circuit. In
PAPER, we define the following function that compiles to the ∨-operator’s circuit:

fn OR(b_1 : BOOL, b_2 : BOOL) -> BOOL {
let OR : BOOL ;
let const c1 : F = -1 ;
OR <== ADD(ADD(b_1,b_2),MUL(c1,MUL(b_1,b_2))) ;
return OR ;

}

In the setup phase of a statement, we compile every occurrence of the OR function into an
instance of its associated ∨-operator’s circuit.

Exercise 92. Let F be a finite field and let b1 as well as b2 two boolean constrained variables
from F. Show that the equation OR(b1,b2) = 1− (1−b1) · (1−b2) holds true.

Use this equation to derive an algebraic circuit with ingoing variables b1 and b2 and outgoing
variable OR(b1,b2) such that b1 and b2 are boolean constrained and the circuit has a valid
assignment, if and only if OR(b1,b2) = b1∨b2.

Use the technique from 6.2.2 to transform this circuit into a Rank-1 Constraint System and
find its full solution set. Define a PAPER function that brain-compiles into the circuit.

The NOT operator constraint system Given a field element b from F that is constrained to
represent a boolean variable, we want to find a circuit that computes the logical NOT operator

171

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

NOT (b) as well as its associated R1CS that enforces b, NOT (b) to satisfy the constraint system
if and only if ¬b = NOT (b) holds true.

Assuming that two variables b1 and b2 are boolean constrained, the equation (1−b1) = b2
is satisfied in F if and only if the equation ¬b1 = b2 is satisfied in boolean algebra. The logical
operator ¬ is therefore implementable in F by the following circuit, assuming all inputs are
restricted to be 0 or 1:

b

*S_1

+

NOT(b)

S_2

-1

1

The associated Rank-1 Constraint System can be deduced from the general process 6.2.2 and
consists of the following constraints

(1−S1) ·1 = S2

Common circuit languages typically provide a gadget or a function to abstract over this circuit
such that programers can use the ¬ operator without caring about the associated circuit. In
PAPER, we define the following function that compiles to the ¬-operator’s circuit:

fn NOT(b : BOOL -> BOOL{
let NOT : BOOL ;
let const c1 = 1 ;
let const c2 = -1 ;
NOT <== ADD(c1 , MUL(c2 , b)) ;
return NOT ;

}

In the setup phase of a statement, we compile every occurrence of the NOT function into an
instance of its associated ¬-operator’s circuit.

Exercise 93. Let F be a finite field. Derive algebraic circuits and associated Rank-1 Constraint
Systems for the following operators: NOR, XOR, NAND, EQU.

Modularity As we have seen in chapter 6, both algebraic circuits and R1CS have a modularity
property, and as we have seen in this section, all basic boolean functions are expressible in
circuits. Combining those two properties shows that it is possible to express arbitrary boolean
functions as algebraic circuits.

The expressiveness of algebraic circuits and therefore Rank-1 Constraint Systems is as gen-
eral as the expressiveness of boolean circuits. An important implication is that the languages
LR1CS−SAT and LCircuit−SAT as defined in 6 and 6.2.2, are as general as the famous language
L3−SAT , which is known to be NP-complete.

Example 134. To give an example of how a compiler might construct complex boolean ex-
pressions in algebraic circuits from simple ones and how we derive their associated Rank-1
Constraint Systems, let’s look at the following PAPER statement:

172

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

statement BOOLEAN_STAT {F: F_p} {
fn main(b_1:BOOL,b_2:BOOL,b_3:BOOL,b_4:BOOL)-> BOOL {
let pub b_5 : BOOL ;
b_5 <== AND(OR(b_1 , b_2) , AND(b_3 , NOT(b_4))) ;
return b_5 ;

} ;
}

The code describes a circuit that takes four witness input variables b1, b2, b3 and b4 of boolean
type and computes an instance variable output b5 such that the following boolean expression
holds true:

(b1∨b2)∧ (b3∧¬b4) = b5

During a setup-phase, a circuit compiler transforms this high-level language statement into a
circuit and associated Rank-1 Constraint Systems and hence defines a language LBOOLEAN_STAT .

To see how this might be achieved, we use PAPER as an example to execute the setup-phase
and compile BOOLEAN_STAT into a circuit. Taking the definition of the boolean constraint
7.2.1 as well as the definitions of the appropriate boolean operators into account, we get the
following circuit:

inputs

outputs

b4 : BOOL b1 : BOOLb2 : BOOLb3 : BOOL

fn OR

fn AND

fn NOT

fn AND

b_1

b

W_1b_2

b
W_2

b_3

b

W_3

b_4

b

W_4

AND(OR(b1 , b2) , AND(b3 , NOT(b4))

*

S_1

*

S_1

b

+

0

W_8=0

1

-1

*

S_1

*

S_1

b_1

+

0

w_5=0

1

-1

*

S_1

*

S_1

b_2

+

0

W_6=0

1

-1

*

S_1

*

S_1

b_1

+

0

W_7=0

1

-1

*

S_1

+

S_1

*

 S_3

+

S_2

S_2

-1

OR(b_1,b_2)

S_4

b_1

* S_1

AND(b_1 , b_2)

S_3

b_2

b_2

S_2

*

S_1

+

NOT(b)

S_2

-1

1

*

S_1

AND(b_1 , b_2)

S_3

I_1

S_2

Simple optimization then collapses all box-nodes that are directly linked and all box nodes that
represent the same constants. After relabeling the edges, the following circuit represents the
circuit associated to the BOOLEAN_STAT statement:

173

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

1

+ + ++ +

* * ** *

0W_5

-1

* * **

*

*

+

W_6

W_7W_8

*

*

W_9

+

AND(OR(b1 , b2) , AND(b3 , NOT(b4))

I_1

W_10

b1

W_1

W_1

 W_1
W_1

b2

 W_2

 W_2

 W_2

b3

 W_3

 W_3

b4

 W_4 W_4

W_4

Given some instance variable I1 from F13, a valid assignment to this circuit consists of witness
variables W1, W2, W3, W4 from F13 such that the equation I1 = (W1∨W2)∧ (W3 ∧¬W4) holds
true. In addition, a valid assignment also has to contain witness variables W5, W6, W7, W8, W9
and W10, which can be derived from circuit execution. The variables W5, . . ., W8 ensure that the
first four witnesses are constrained to be either 0 or 1 but not any other field element, and the
others enforce the boolean operations in the expression.

To compute the associated R1CS, we can use the general method from 6.2.2 and look at
every labeled outgoing edge not coming from a source node in the optimized circuit. We declare
the edge going to the single output node as instance, and every other edge as witness. In this
case we get:

W5 : W1 · (1−W1) = 0 boolean constraints
W6 : W2 · (1−W2) = 0
W7 : W3 · (1−W3) = 0
W8 : W4 · (1−w4) = 0
W9 : W1 ·W2 =W9 first OR-operator constraint

W10 : W3 · (1−W4) =W10 AND(.,NOT(.))-operator constraints
I1 : (W1 +W2−W9) ·W10 = I1 AND-operator constraints

The reason why this R1CS only contains a single constraint for the multiplication gate in the
OR-circuit, while the general definition 7.2.1 requires two constraints, is that the second con-
straint in ?? only appears because the final addition gate is connected to an output node. In this
case, however, the final addition gate from the OR-circuit is enforced in the left factor of the I1
constraint. Something similar holds true for the negation circuit.

During a prover-phase, some public instance I5 must be given. To compute a constructive
proof for the statement of the associated languages with respect to instance I5, a prover has to
find four boolean values W1, W2, W3 and W4 such that

(W1∨W2)∧ (W3∧¬W4) = I5

174

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

holds true. In our case neither the circuit nor the PAPER statement specifies how to find those
values, and it is a problem that any prover has to solve outside of the circuit. This might or
might not be true for other problems, too. In any case, once the prover found those values, they
can execute the circuit to find a valid assignment.

To give a concrete example, let I1 = 1 and assume W1 = 1, W2 = 0, W3 = 1 and W4 = 0.
Since (1∨0)∧ (1∧¬0) = 1, those values satisfy the problem and we can use them to execute
the circuit. We get

W5 =W1 · (1−W1) = 0
W6 =W2 · (1−W2) = 0
W7 =W3 · (1−W3) = 0
W8 =W4 · (1−W4) = 0
W9 =W1 ·W2 = 0

W10 =W3 · (1−W4) = 1
I1 = (W1 +W2−W9) ·W10 = 1

A constructive proof of knowledge of a witness, for instance, I1 = 1, is therefore given by the
string π =<W5,W6,W7,W8,W9,W10 >=< 0,0,0,0,0,1 >.

Arrays

The array type represents a fixed-size collection of elements of equal type, each selectable by
one or more indices that can be computed at run time during program execution.

Arrays are a classical type, implemented by many higher programing languages that compile
to circuits or Rank-1 Constraint Systems. However, most high-level circuit languages support
static arrays, i.e., arrays whose length is known at compile time only.

The most common way to compile arrays to circuits is to transform any array of a given type
t and size N into N circuit variables of type t. Arrays are therefore syntactic sugar, with the
purpose to make code easier for humans to read, and write. In PAPER, we define the following
array type_function:
type_function <Name>: <Type>[N : unsigned] -> (Type,...) {

return (<Name>[0],...)
}

In the setup phase of a statement, we compile every occurrence of an array of size N that contains
elements of type Type into N variables of type Type.
Example 135. To give an intuition of how a real-world compiler might transform arrays into
circuit variables, consider the following PAPER statement:
statement ARRAY_TYPE {F: F_5} {

fn main(x: F[2])-> F {
let constant c: F[2] = [2,4] ;
let out : F <== MUL(ADD(x[1],c[0]),ADD(x[0],c[1])) ;
return out ;

} ;
}

During a setup phase, a circuit compiler might then replace any occurrence of the array type by
a tuple of variables of the underlying type, and then use those variables in the circuit synthesis
process instead. To see how this can be achieved, we use PAPER as an example. Abstracting
over the sub-circuit of the computation, we get the following circuit:

175

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

inputs

x[]c[]

fn MUL

outputs

x[0]

MUL(ADD,ADD) Wx0

x[1]

Wx1

c[0]

Wc0

c[1]

Wc1

out

Wout

The Unsigned Integer Type

Unsigned integers of size N, where N is usually a power of two, represent non-negative integers
in the range 0 . . .2N−1. They have a notion of addition, subtraction and multiplication, defined
by modular 2N arithmetics. If some N is given, we write uN for the associated type.

The uN Constraint System Many high-level circuit languages define the various uN types as
arrays of size N, where each element is of boolean type. This parallels their representation on
common computer hardware and allows for efficient and straightforward definition of common
operators, like the various shift operators, or the logical operators.

Assuming that some unsigned integer N is known at compile time in PAPER, we define
the following uN type_function, which casts a an unsigned integer into an array of boolean
variables:

type_function uN -> BOOL[N] {
let base2 : BOOL[N] ;
base2[0] <== uN[0] ;
base2[1] <== uN[1] ;
...
base2[N] <== uN[N] ;
return base2 ;

}

To enfore an N-tuple of field elements < b0, . . . ,bN−1 > to represent an element of type uN we
therefore need N boolean constraints

S0 · (1−S0) = 0
S1 · (1−S1) = 0

· · ·
SN−1 · (1−SN−1) = 0

Remark 8. Representing the uN type as boolean arrays is conceptually clean and works over
generic base fields. However, representing unsigned integers in this way requires a lot of space
as every bit is represented as a field element and if the base field is large, those field elements
require considerable space in hardware.

176

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

It should be noted that, in some cases, there is another, more space- and Constraint System
efficient approach for representing unsigned integers that can be used whenever the underlying
base field is sufficiently large. To understand this, recall that addition and multiplication in a
prime field Fp is equal to addition and multiplication of integers, as long as the sum or the
product does exceed neither the modulus p of the base field nor the modulus 2N of the unsigned
integer type. Under those limitations it is possible to represent the uN type inside the base-field
type whenever N is small enough. This however is not safe and care has to be taken to never
overflow any of those moduli, or underflow 0.

Example 136. To give an intuition of how a real-world compiler might transform unsigned
integers into circuit variables, consider the following PAPER statement, which implement the
classical ring-shift operator on the u4 type as a circuit:

statement RING_SHIFT{F: F_p, N=4} {
fn main(x: uN)-> uN {
let y : uN ;
y <== [x[1],x[2],x[3],x[0]] ;
return y ;

} ;
}

During the setup-phase, a circuit compiler might then replace any occurrence of the uN type
by N variables of boolean type. Using the definition of booleans, each of these variables is
then transformed into the field type and a boolean constraint system. To see how this can be
achieved, we use PAPER as an example and get the following circuit:

u4

BOOL[4]

x4 : BOOL

x4 : BOOL

x3 : BOOL

x3 : BOOL

x2 : BOOL

x2 : BOOL

x1 : BOOL

x1 : BOOL

u4

BOOL[4]

x_0

b:BOOL

x_1

b:BOOL

x_2

b:BOOL

x_3

b:BOOL

x:F

y_0

0

*

S_1

*

S_1

+

S_2=0

1

-1

x:F

y_3

0

*

S_1

*

S_1

+

S_2=0

1

-1

x:F

y_2

0

*

S_1

*

S_1

+

S_2=0

1

-1

x:F

y_1

0

*

S_1

*

S_1

+

S_2=0

1

-1

During the prover phase, the function main is called with an actual input of u4 type, say
x=14. The Prover then has to transform the decimal value 14 into its 4-bit binary representation
Bits(14)2 =< 0,1,1,1 > outside of the circuit. Then the array of field values x[4] = [0,1,1,1]
is used as an input to the circuit. Since all 4 field elements are either 0 or 1, the four boolean
constraints are satisfied and the output is a ring shift of the input array of the four field elements
given by [1,1,1,0], which represents the u4 element 7.

The Unigned Integer Operators Since elements of uN type are represented as boolean ar-
rays, shift operators are implemented in circuits simply by rewiring the boolean input variables
to the output variables accordingly.

177

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

Logical operators, like AND, OR, or NOT are defined on the uN type by invoking the appro-
priate boolean operators bitwise to every bit in the boolean array that represents the uN element.

Addition and multiplication can be represented similarly to how machines represent those
operations. Addition can be implemented by first defining the full adder circuit and then com-
bining N of these circuits into a circuit that adds two elements from the uN type.

Exercise 94. Let F=F13 and N=4 be fixed and let x be of uN type. Define circuits and associated
R1CS for the left and right bit-shift operators x << 2 as well as x >> 2. Execute the associated
circuit for x : u4 = 11 and generate a constructive proof for R1CS satisfyability.

Exercise 95. Let F= F13 and N=2 be fixed. Define a circuit and associated R1CS for the
addition operator ADD : uN×uN→ uN. Execute the associated circuit to compute ADD(2,7) for
2,7 ∈ uN.

Exercise 96. Execute the setup phase for the following PAPER code (That is brain compile the
code into a circuit and derive the associated R1CS).

statement MASK_MERGE {F:F_5, N=4} {
fn main(pub a : uN, pub b : uN) -> uN {
let constant mask : uN = 10 ;
let r : uN ;
r <== XOR(a,AND(XOR(a,b),mask)) ;
return r ;

}
}

Let Lmask_merge be the language defined by the circuit. Provide a constructive knowledge proof
in Lmask_merge for the instance I = (Ia, Ib) = (14,7).

7.2.2 Control Flow
Most programming languages of the imperative of functional style have some notion of basic
control structures to direct the order in which instructions are evaluated. Contemporary circuit
compilers usually provide a single thread of execution and provide basic flow constructs that
implement control flow in circuits. In this part we look at some basic control flow constructions
and their implementation in circuits.

The Conditional Assignment

Writing high-level code that compiles to circuits, it is often necessary to have a way for con-
ditional assignment of values or computational output to variables. One way to realize this in
many programming languages is in terms of the conditional ternary assignment operator ? : that
branches the control flow of a program according to some condition and then assigns the output
of the computed branch to some variable:

variable = condition ? value_if_true : value_if_false

In this description, condition is a boolean expression and value_if_true as well as
value_if_false are expressions that evaluate to the same type as variable.

In programming languages like Rust, another way to write the conditional assignment oper-
ator that is more familiar to many programmers is given by

variable = if condition then {
value_if_true

178

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

} else {
value_if_false

}

In most programing languages, it is a key property of the ternary assignment operator that
the expression value_if_true is only evaluated if condition evaluates to true and the
expression value_if_false is only evaluated if condition evaluates to false. In fact,
computer programs would turn out to be very inefficient if the ternary operator would evaluate
both expressions regardless of the value of condition.

A simple way to implement conditional assignment operator as a circuit can be achieved
if the requirement that only one branch of the conditional operator is executed is dropped. To
see that, let b, c and d be field elements such that b is boolean constrained. In this case, the
following equation enforces a field element x to be the result of the conditional assignment
operator:

x = b · c+(1−b) ·d (7.6)

Expressing this equation in terms of the addition and multiplication operators from 7.2.1, we
can flatten 7.6 into the following algebraic circuit:

b

*

S_1

*

S_1

+

S_3

+

c

S_2

d

* S_4S_5

b ? c : d

-1

1

S_6

Note that, in order to compute a valid assignment to this circuit, both S2 as well as S4 are
necessary. If the inputs to the nodes c and d are circuits themself, both circuits need valid
assignments and therefore have to be executed. As a consequence, this implementation of
the conditional assignment operator has to execute all branches of all circuits, which is very
different from the execution of common computer programs and contributes to the increased
computational effort any prover has to invest, in contrast to the execution in other programing
models.

We can use the general technique from 6.2.2 to derive the associated Rank-1 Constraint
System of the conditional assignment operator. We get the following:

S1 ·S2 = S3

(1−S1) ·S4 = S5

(S3 +S5) ·1 = S6

Example 137. To give an intuition of how a real-world circuit compiler might transform any
high-level description of the conditional assignment operator into a circuit, consider the follow-
ing PAPER code:

179

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

statement CONDITIONAL_OP {F:F_p} {
fn main(x : F, y : F, b : BOOL) -> F {
let z : F
z <== if b then {

ADD(x,y)
} else {

MUL(x,y)
} ;
return z ;

}
}

Brain-compiling this code into a circuit, we first draw box nodes for all input and output vari-
ables, and then transform the boolean type into the field type together with its associated con-
straint. Then we evaluate the assignments to the output variables. Since the conditional assign-
ment operator is the top level function, we draw its circuit and then draw the circuits for both
conditional expressions. We get the following:

x1 : BOOL

x1 : BOOL

b ? c : d

MUL

input

ADD

output

x:F

b

0

b:BOOL

*

S_1

*

S_1

+

S_2=0

1

-1

*

S_1

*

S_1

+

S_3 +

c

S_2

d

*S_4

S_5

b ? c : d

z

-1

1

S_6

x

+

MUL(x,y)

y

x:F

x

y:F

y

b:BOOL

+

ADD(x,y)

180

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

Loops

In many programming languages, various loop control structures are defined that allow devel-
opers to execute expressions with a specified number of repetitions. In particular, it is often
possible to implement unbounded loops like the loop structure give below:

while true do { }

In addition it is often possible to implement loop structures, where the number of execution steps
in the loop depends on execution inputs or intermediate computational steps and is therefore
unknown at compile time:

x = 0.5
while x != 0 do {
x = 4*x*(1-x)

}

In contrast to this, algebraic circuits and Rank-1 Constraint Systems are not general enough
to express arbitrary computation, but bounded computation only. As a consequence, it is not
possible to implement unbounded loops, or loops with bounds that are unknown at compile
time in those models. This can be easily seen since circuits are acyclic by definition, and
implementing an unbounded loop as an acyclic graph requires a circuits of unbounded size.
However, circuits are general enough to express bounded loops, where the upper bound on its
execution is known at compile time. Those loop can be implemented in circuits by enrolling
the loop.

As a consequence, any programing language that compiles to algebraic circuits can only
provide loop structures where the bound is a constant known at compile time. This implies that
loops cannot depend on execution inputs, but on compile time parameters only.

Example 138. To give an intuition of how a real-world circuit compiler might transform any
high-level description of a bounded for loop into a circuit, consider the following PAPER
code:

statement FOR_LOOP {F:F_p, N: unsigned = 4} {
fn main(fac : F[N]) -> F {
let prod[N] : F ;
prod[0] <== fac[0] ;
for unsigned i in 1..N do [{

prod[i] <== MUL(fac[i], prod[i-1]) ;
}
return prod[N] ;

}
}

Note that, in a program like this, the loop counter i has no expression in the derived circuit. It
is a high level parameter that tells the compiler how to unroll the loop.

Brain-compiling this code into a circuit, we first draw box nodes for all input and output
variables, noting that the loop counter is not represented in the circuit. Since all variables are of
field type, we don’t have to compile any type constraints. Then we evaluate the assignments
to the output variables by unrolling the loop into 3 individual assignment operators. We get:

181

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

input

output

MUL

MUL

MUL

fac[0] prod[0]

fac[1] x

fac[2] x

fac[3] x

prod[3]* MUL(x,y)

y* MUL(x,y)

y

prod[2]

* MUL(x,y)

y

prod[1]

7.2.3 Binary Field Representations
In applications, it is often necessary to enforce a binary representation of elements from the
field type. To derive an appropriate circuit over a prime field Fp, let m = |p|2 be the smallest
number of bits necessary to represent the prime modulus p. Then a bitstring < b0, . . . ,bm−1 >∈
{0,1}m is a binary representation of a field element x ∈ Fp, if and only if

x = b0 ·20 +b1 ·21 + . . .+bm ·2m−1 (7.7)

In this expression, addition and exponentiation is considered to be executed in Fp, which is well
defined since all terms 2 j for 0 ≤ j < m are elements of Fp. Note, however, that in contrast to
the binary representation of unsigned integers n∈N, this representation is not unique in general,
since the modular p equivalence class might contain more than one binary representative.

Considering that the underlying prime field is fixed and the most significant bit of the prime
modulus is m, the following circuit flattens equation 7.7, assuming all inputs b1, . . ., bm are of
boolean type.

b_2

*

S_2

+

2^2

b_0

*

S_0

+

2^0

...

+

b_1

* S_1

2^1

b_(m-1)

*

S_(m-1)

+

2^(m-1)

x

* S_m

+

-1

0

W_1=0

Applying the general transformation rule 6.2.2 to compute the associated Rank-1 Constraint
Systems, we see that we actually only need a single constraint to enforce some binary represen-
tation of any field element. We get

(S0 ·20 +S1 ·21 + . . .+Sm−1 ·2m−1−Sm) ·1 = 0

Given an array BOOL[N] of N boolean constrained field elements and another field element x,
the circuit enforces BOOL[N] to be one of the binary representations of x. If BOOL[N] is not
a binary representation of x, no valid assignment and hence no solution to the associated R1CS
can exists.

182

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

Example 139. Consider the prime field F13. To compute binary representations of elements
from that field, we start with the binary representation of the prime modulus 13, which is
Bits(13) =< 1,0,1,1 > since 13 = 1 · 20 + 0 · 21 + 1 · 22 + 1 · 23. So m = 4 and we need up
to 4 bits to represent any element x ∈ F13.

To see that binary representations are not unique in general, consider the element 2 ∈ F13.
It has the following two 4-bit, binary representations Bits(2) =< 0,1,0,0 > and Bits(2) =<
1,1,1,1 >, since in F13 we have

2 =

{
0 ·20 +1 ·21 +0 ·22 +0 ·23

1 ·20 +1 ·21 +1 ·22 +1 ·23

This is because the unsigned integers 2 and 15 are both in the modular 13 remainder class of 2
and hence are both representatives of 2 in F13.

To see how circuit the associated circuit works, we want to enforce the binary represen-
tation of 7 ∈ F13. Since m = 4 we have to enforce a 4-bit representation for 7, which is
< 1,1,1,0 >, since 7 = 1 · 20 + 1 · 21 + 1 · 22 + 0 · 23. A valid circuit assignment is therefore
given by < S0,S1,S2,S3,S4 >=< 1,1,1,0,7> and, indeed, the assignment satisfies the required
5 constraints including the 4 boolean constraints for S0, . . ., S3:

1 · (1−1) = 0 // boolean constraints
1 · (1−1) = 0
1 · (1−1) = 0
0 · (1−0) = 0

(1+2+4+0−7) ·1 = 0 // binary rep. constraint

7.2.4 Cryptographic Primitives
In applications, it is often required to do cryptography in a circuit. To do this, basic crypto-
graphic primitives like hash functions or elliptic curve cryptography needs to be implemented
as circuits. In this section, we give a few basic examples of how to implement such primitives.

Twisted Edwards curves

Implementing elliptic curve cryptography in circuits means to implement the defining curve
equations as well as the algebraic operations, like the group law or the scalar multiplication as
circuits. To do this efficiently, the curve must be defined over the same base field as the field
that is used in the circuit.

For efficiency reasons, it is advantageous to choose an elliptic curve such that that all re-
quired constraints and operations can be implement with as few gates as possible. Twisted
Edwards curves are particularly useful for that matter, since their group law is particularly sim-
ple and the same calculation can be used for all curve points including the point at infinity. This
simplifies the circuit a lot.

Twisted Edwards curve constraints As we have seen in 5.3, a twisted Edwards curve over a
finite field F is defined as the set of all pairs of points (x,y) ∈ F×F such that x and y satisfy the
equation a · x2 + y2 = 1+ d · x2y2 and as we have seen in example 121, we can transform this
equation into the following circuit:

183

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

x

*

S_1

*

S_3

*

S_3

+

+

S_5

y

*

S_2

*

S_4

*
S_4

+

-ad

0

 S_6=0

-1

1

The circuit enforces the two inputs of field type to satisfy the twisted Edwards curve equation
and, as we know from example 126, the associated Rank-1 Constraint System is given by:

S1 ·S1 = S3

S2 ·S2 = S4

(S4 ·d) ·S3 = S5

(−1 ·S4 +S5−a ·S3 +1) ·1 = 0

Exercise 97. Write the circuit and associated Rank-1 Constraint System for a Weierstrass curve
of a given field F.

Twisted Edwards curve addition As we have seen in 5.3.1, a major advantage of twisted
Edwards curves is the existence of an addition law that contains no branching and is valid for
all curve points. Moreover, the neutral element is not given by any auxiliary symbol but the
curve point (0,1). In fact, given two points (x1,y1) and (x2,y2) on a twisted Edwards curve,
their sum is defined as

(x3,y3) =

(
x1y2 + y1x2

1+d · x1x2y1y2
,

y1y2−a · x1x2

1−d · x1x2y1y2

)
We can use the division circuit from 7.2.1 to flatten this equation into an algebraic circuit.
Inputs to the circuit are then not only the two curve points (x1,y1) and (x2,y2), but also the
multiplicative inverses of the two denominators inv1 = (1+ d · x1x2y1y2)

−1 as well as inv2 =
(1−d · x1x2y1y2)

−1, which any prover needs to compute outside of the circuit. We get

184

CHAPTER 7. CIRCUIT COMPILERS 7.2. COMMON PROGRAMING CONCEPTS

x_1

* S_1 *

S_1

x_2

S_2

*

S_2

y_1

 S_3
*

S_3

y_2

S_4

 S_4

inv_1

*

S_5

*

S_5

inv_2

*

S_6

*

S_6

x_3 y_3

+
 S_7

*

S_8

*

S_8S_9

 S_10

+

S_10

1

S_12=1

S_14

S_13=1

S_15

a

*

d

*

+*

1

+

-1

S_11

Using the general technique from 6.2.2 to derive the associated Rank-1 Constraint System, we
get the following result:

S1 ·S4 = S7

S1 ·S2 = S8

S2 ·S3 = S9

S3 ·S4 = S10

S8 ·S10 = S11

S5 · (1+d ·S11) = 1
S6 · (1−d ·S11) = 1

S5 · (S9 +S7) = S14

S6 · (S10−a ·S8) = S15

Exercise 98. Let F be a field. Define a circuit that enforces field inversion for a point of a
twisted Edwards curve over F.

Exercise 99. Write the circuit and associated Rank-1 Constraint System for a Weierstrass addi-
tion law of a given field F.

185

Chapter 8

Zero Knowledge Protocols

A so-called zero-knowledge protocol is a set of mathematical rules by which one party, usually
called the prover, can convince another party, usually called the verifier, that given some
instance, the prover knows some witness for that instance, without revealing any information
about the witness.

As we have seen in chapter 6, given some language L and instance I, the knowledge claim
“there is a witness W such that (I;W) is a word in L” is constructively provable by providing
the witness W to the verifier. The verifier can then use the grammar of the language to verify the
proof. In contrast, it’s the challenge of any zero-knowledge protocol to enable a prover to prove
knowledge of a witness to any verifier, without revealing any information about the witness
beyond its existence.

In this chapter, we look at various systems that exist to solve this task. We start with an
introduction to the basic concepts and terminology in zero-knowledge proving systems and
then introduce the so-called Groth_16 protocol as one of the most efficient systems. We will
update this chapter with other zero-knowledge proof systems in future versions of this book.

8.1 Proof Systems
From an abstract point of view, a proof system is a set of rules which models the generation
and exchange of messages between two parties, usually called the prover and the verifier. The
purpose of a proof system is to ascertain whether a given string belongs to a formal language or
not.

Proof systems are often classified by certain trust assumptions and the computational ca-
pabilities of the prover and the verifier. In its most general form, the prover usually possesses
unlimited computational resources but cannot be trusted, while the verifier has bounded com-
putational power but is assumed to be honest.

Proving membership or knowledge claims of a statement for some string as explained in
chapter 6 is executed by the generation of certain messages that are sent between prover and
verifier, until the verifier is convinced that the string is a word in the language in consideration.

To be more specific, let Σ be an alphabet, and let L be a formal language defined over Σ.
Then a proof system for language L is a pair of probabilistic interactive algorithms (P,V),
where P is called the prover and V is called the verifier.

Both algorithms are able to send messages to one another, each algorithm has its own state,
some shared initial state and access to the messages. The verifier is bounded to a number of
steps which is polynomial in the size of the shared initial state, after which it stops and outputs
either accept or reject indicating that it accepts or rejects a given string to be a word in

186

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.1. PROOF SYSTEMS

L or not. In contrast, in the most general form of a proof system, there are no bounds on the
computational power of the prover.

When the execution of the verifier algorithm stops the following conditions are required to
hold:

• (Completeness) If the string x ∈ Σ∗ is a word in language L and both prover and verifier
follow the protocol, the verifier outputs accept.

• (Soundness) If the string x ∈ Σ∗ is not a word in language L and the verifier follows the
protocol, the verifier outputs reject, except with some small probability.

In addition, a proof system is called zero-knowledge if the verifier learns nothing about x other
than x ∈ L.

The previous definition of proof systems is very general, and many subclasses of proof sys-
tems are known in the field. For example, some proof systems restrict the computational power
of the prover, while some proof systems assume that the verifier has access to randomness. In
addition, proof systems are classified by the number of messages that can be exchanged. If the
system only requires to send a single message from the prover to the verifier, the proof system is
called non-interactive, because no interaction other then sending the actual proof is required.
In contrast, any other proof system is called interactive.

A proof system is usually called succinct if the size of the proof is shorter than the witness
necessary to generate the proof. Moreover, a proof system is called computationally sound if
soundness only holds under the assumption that the computational capabilities of the prover are
polynomial bound. To distinguish general proofs from computationally sound proofs, the latter
are often called arguments.

Since the term zk-SNARKs is an abbreviation for "Zero-knowledge, succinct, non-interac-
tive argument of knowledge", proof system able to generate zk-SNARKS therefore have the
zero-knowledge property, are able to generate proofs that require less space then the original
witness and require no interaction between prover and verifier, other then transmitting the zk-
SNARK itself. However those systems are only sound under the assumption that the prover’s
computational capabilities are polynomial bound.

Example 140 (Constructive Proofs for Algebraic Circuits). We have seen in 6.2.2 how algebraic
circuit give rise to formal languages and constructive proofs for knowledge claims.

To reformulate this notion of constructive proofs for algebraic circuits into a proof system,
let F be a finite field, and let C(F) be an algebraic circuit over F with associated language LC(F).
A non-interactive proof system for LC(F) is given by the following two algorithms:

Prover Algorithm: The prover P is defined by circuit execution. Given some instance I the
prover executes circuit C(F) to compute a witness W such that the pair (I;W) is a valid assign-
ment to C(F) whenever the circuit is satisfiable for I. The prover then sends the constructive
proof (I;W) to the verifier.

Verifier Algorithm: On receiving a message (I;W), the verifier algorithm V inserts (I;W)
into the associated R1CS of the circuit. If (I;W) is a solution to the R1CS, the verifier returns
accepts, if not, it returns reject.

To see that this proof system is complete and sound, let C(F) be a circuit of the field F, and
let I be an instance. The circuit may or may not have a witness W such that (I;W) is a valid
assignment to C(F).

If no W exists, I is not part of any word in LC(F), and there is no way for P to generate a
valid assignment. It follows that the verifier will not accept any claimed proof sent by P, since
the associated R1CS has no solutions for instance I. This implies that the system is sound.

187

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

If, on the other hand, W exists and P is honest, P can use its unlimited computational power
to compute W and send (I;W) to V , which V will accept, since it is a solution to the associated
R1CS. This implies that the system is complete.

The system is non-interactive because the prover only sends a single message to the verifier,
which contains the proof itself. However the proof system is not succinct, since the proof is
the witness. The proof system is also not zero knowledge, since the verifier has access to the
witness and hence learns everything about the witness.

8.2 The “Groth16” Protocol
In chapter 6, we have introduced algebraic circuits, their associated Rank-1 Constraint Systems
and their induced Quadratic Arithmetic Programs. These models define formal languages, and
associated memberships and knowledge claims can be constructively proofed by executing the
circuit to compute a solution to its associated R1CS. As we have seen in 6.2.3 the proof can then
be transformed into a polynomial such that the polynomial is divisible by another polynomial if
and only if the proof is correct.

In Groth [2016], Jens Groth provides a method, capable to transform constructive proofs
into zero-knowledge succinct non-interactive arguments of knowledge. Assuming that there are
groups G1, G2 and G3 and an efficiently computable pairing map 4.6

e(·, ·) : G1×G2→G3

Then the zk-SNArK in Groth’s protocol is of constant size and consist of 2 elements from
G1 and a single element from G2, regardless of the size of the witness. Verification is non-
interactive and the verifier needs to compute a number of exponentiations proportional to the
size of the instance, together with 3 group pairings in order to verify a single proof.

The generated zk-SNARK is zero-knowledge, has completeness and soundness in the generic
bilinear group model, assuming the existence of a trusted third party that executes a preprocess-
ing phase to generate a Common Reference String and a simulation trapdoor. This party
must be trusted to delete the simulation trapdoor, since everyone in possession of it can simu-
late proofs.

To be more precise, let R be a Rank-1 Constraint System defined over some finite field Fr.
Then Groth_16 parameters for R are given by the following set:

Groth_16−Param(R) = (r,G1,G2,e(·, ·),g1,g2) (8.1)

Here, G1 and G2 are finite cyclic groups of order r, g1 is a generator of G1, g2 is a generator
of G2 and e : G1×G2→ GT is an efficiently computable, non-degenerate, bilinear pairing for
some target group GT . In real-world applications, the parameter set is usually agreed on in
advance.

Given some Groth_16 parameters, a Groth_16 protocol is then a quadruple of probabilistic
polynomial algorithms (SETUP,PROVE,VFY,SIM) such that the following conditions hold:

• (Setup-Phase): (CRS,τ)← SETUP(R): Algorithm SETUP takes the R1CS R as input and
computes a Common Reference String CRS and a simulation trapdoor τ .

• (Prover-Phase): π← PROVE(R,CRS, I,W): Given a constructive proof (I;W) for R, algo-
rithm PROVE takes the R1CS R, the Common Reference String CRS and the constructive
proof (I,W) as input and computes an zk-SNARK π .

188

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

• Verify: {accept,reject} ← VFY(R,CRS, I,π): Algorithm VFY takes the R1CS R, the
Common Reference String CRS, the instance I and the zk-SNARK π as input and returns
reject or accept.

• π← SIM(R,τ,CRS, I): Algorithm SIM takes the R1CS R, the Common Reference String
CRS, the simulation trapdoor τ and the instance I as input and returns a zk-SNARK π .

We will explain these algorithms together with detailed examples in the remainder of this sec-
tion.

Assuming a trusted third party for the setup, the protocol is able to compute a zk-SNARK
from a constructive proof for R, provided that the group order r is sufficiently large, and, in
particular, larger than the number of constraints in the associated R1CS.

Example 141 (The 3-Factorization Problem). Consider the 3-factorization problem from 111
and its associated algebraic circuit 120 as well the Rank-1 Constraint System from 116. In
this example, we want to agree on a parameter set (r,G1,G2,e(·, ·),g1,g2) in order to use the
Groth_16 protocol for our 3-factorization problem.

To find proper parameters, first observe that the circuit 120, as well as its associated R1CS
R3. f ac_zk 116 and the derived QAP 127, are defined over the field F13. We therefore have to
choose pairing groups G1 and G2 of order 13.

We know from 5.6.1 that the moon-math curve BLS6_6 has two subgroups G1[13] and
G2[13], which are both of order 13. The associated Weil pairing e(·, ·) 5.51 is efficiently com-
putable, bilinear as well as non-degenerate. We therefore choose those groups and the Weil
pairing together with the generators g1 = (13,15) and g2 = (7v2,16v3) of G1[13] and G2[13],
as a parameter set:

Groth_16−Param(R3. f ac_zk) = (13,G1[13],G2[13],e(·, ·),(13,15),(7v2,16v3))

It should be noted that our choice is not unique. Every pair of finite cyclic groups of order 13
that has an efficiently computable, non-degenerate, bilinear pairing qualifies as a Groth_16 pa-
rameter set. The situation is similar to real-world applications, where SNARKs with equivalent
behavior are defined over different curves, used in different applications.

The Setup Phase To generate zk-SNARKs from constructive knowledge proofs in the Groth16
protocol, a preprocessing phase is required. This has to be executed a single time for every
Rank-1 Constraint System and any associated Quadratic Arithmetic Program. The outcome
of this phase is a Common Reference String that prover and verifier need in order to generate
and verify the zk-SNARK. In addition, a simulation trapdoor is produced that can be used to
simulate proofs.

To be more precise, let L be a language defined by some Rank-1 Constraint System R such
that a constructive proof of knowledge for an instance < I1, . . . , In > in L consists of a witness
<W1, . . . ,Wm >. Let QAP(R) =

{
T ∈ F[x],

{
A j,B j,C j ∈ F[x]

}n+m
j=0

}
be a Quadratic Arithmetic

Program associated to R, and let {G1,G2,e(·, ·),g1,g2,Fr} be a set of Groth_16 parameters.
The setup phase then samples 5 random, invertible elements α , β ,γ , δ and s from the scalar

field Fr of the protocol and outputs the simulation trapdoor τ:

τ = (α,β ,γ,δ ,s) (8.2)

In addition, the setup phase uses those 5 random elements together with the two generators
g1 and g2 and the Quadratic Arithmetic Program to generate a Common Reference String

189

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

CRSQAP = (CRSG1,CRSG2) of language L:

CRSG1 =


gα

1 ,g
β

1 ,g
δ
1 ,
(

gs j

1 , . . .
)deg(T)−1

j=0
,

(
g

β ·A j(s)+α·B j(s)+Cj(s)
γ

1 , . . .

)n

j=0(
g

β ·A j+n(s)+α·B j+n(s)+C j+n(s)
δ

1 , . . .

)m

j=1

,

(
g

s j ·T (s)
δ

1 , . . .

)deg(T)−2

j=0


CRSG2 =

{
gβ

2 ,g
γ

2,g
δ
2 ,
(

gs j

2 , . . .
)deg(T)−1

j=0

}
Common reference strings depend on the simulation trapdoor, and are therefore not unique to
the problem. Any language can have more than one Common Reference String. The size of a
Common Reference String is linear in the size of the instance and the size of the witness.

If a simulation trapdoor τ = (α,β ,γ,δ ,s) is given, we call the element s a secret evaluation
point of the protocol, because if Fr is the scalar field of the finite cyclic groups G1 and G2, then
a key feature of any Common Reference String is that it provides data to compute the evaluation
of any polynomial P ∈ Fr[x] of degree deg(P) < deg(T) at the point s in the exponent of the
generator g1 or g2, without knowing s.

To be more precise, let s be the secret evaluation point and let P(x) = a0 ·x0+a1 ·x1+ . . .ak ·
xk be a polynomial of degree k < deg(T) with coefficients in Fr. Then we can compute gP(s)

1
without knowing what the actual value of s is:

gP(s)
1 = ga0·s0+a1·s1+...ak·sk

1

= ga0·s0

1 ·g1a1 · s1 · . . . ·gak·sk

1

=
(

gs0

1

)a0
·
(

gs1

1

)a1
· . . . ·

(
gsk

1

)ak
(8.3)

(8.4)

In this expression, all group points gs j

1 are part of the Common Reference String, hence, they
can be used to compute the result. The same holds true for the evaluation of gP(s)

2 , since the G2

part of the Common Reference String contains the points gs j

2 .
In real-world applications, the simulation trapdoor is often called the toxic waste of the

setup-phase. As we will see in 8.2, a simulation trapdoor can be used to generate fraud proofs,
which are verifiable zk-SNAKS that can be constructed without knowledge of any witness. The
Common Reference String is also-called a pair of prover and verifier key.

In order to make the protocol secure, the setup needs to be executed in a way that guarantees
that the simulation trapdoor is deleted. The most simple approach to achieving deletion of
the toxic waste is by a so-called trusted third party, where the trust assumption is that the
party generates the Common Reference String precisely as defined and deletes the simulation
trapdoor afterwards.

However, as trusted third parties are not easy to find, more sophisticated protocols for the
setup phase exist in real-world applications. They execute the setup phase as a multi party
computation, where the proper execution can be publicly verified and the simulation trapdoor
is deleted if at least one participant deletes their individual contribution. Each participant only
possesses a fraction of the simulation trapdoor, so it can only be recovered if all participants
collude and share their fraction.

190

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

Example 142 (The 3-factorization Problem). To see how the setup phase of a Groth_16 zk-
SNARK can be computed, consider the 3-factorization problem from 111 and the Groth_16
parameters from example 141. As we have seen in 127, an associated Quadratic Arithmetic
Program is given by the following set:

QAP(R3. f ac_zk) = {x2 + x+9,
{0,0,6x+10,0,0,7x+4},{0,0,0,6x+10,7x+4,0},{0,7x+4,0,0,0,6x+10}}

To transform this QAP into a Common Reference String, we choose the field elements α = 6,
β = 5, γ = 4, δ = 3, s = 2 from F13. In real-world applications, it is important to sample those
values randomly from the scalar field, but in our approach, we choose those non-random values
to make them more memorizable, which helps in pen-and-paper computations. Our simulation
trapdoor is then given as follows:

τ = (6,5,4,3,2)

We keep this secret in order to simulate proofs later on, but we are careful to hide τ from
anyone who hasn’t read this book. Then we instantiate the Common Reference String 8.3from
those values. Since our groups are subgroups of the BLS6_6 elliptic curve, we use scalar
product notation instead of exponentiation.

To compute the G1 part of the Common Reference String, we use the logarithmic order
of the group G1 5.46, the generator g1 = (13,15), as well as the values from the simulation
trapdoor. Since deg(T) = 2, we get the following:

[α]g1 = [6](13,15) = (27,34)
[β]g1 = [5](13,15) = (26,34)
[δ]g1 = [3](13,15) = (38,15)

To compute the rest of the G1 part of the Common Reference String, we expand the indexed tu-
ples and insert the secret random elements from the simulation backdoor. We get the following:(

[s j]g1, . . .
)1

j=0
=
(
[20](13,15), [21](13,15)

)
=
(
(13,15),(33,34)

)
(
[
βA j(s)+αB j(s)+C j(s)

γ
]g1, . . .

)1

j=0
=
(
[
5A0(2)+6B0(2)+C0(2)

4
](13,15),

[
5A1(2)+6B1(2)+C1(2)

4
](13,15)

)
(
[
βA j+n(s)+αB j+n(s)+C j+n(s)

δ
]g1, . . .

)4

j=1
=
(
[
5A2(2)+6B2(2)+C2(2)

3
](13,15),

[
5A3(2)+6B3(2)+C3(2)

3
](13,15),

[
5A4(2)+6B4(2)+C4(2)

3
](13,15),

[
5A5(2)+6B5(2)+C5(2)

3
](13,15)

)
(
[
s j ·T (s)

δ
)]g1

)0

j=0
=
(
[
20 ·T (2)

3
](13,15)

)

191

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

To compute the curve points on the right side of these expressions, we need the polynomials
from the associated Quadratic Arithmetic Program and evaluate them on the secret point s = 2.
Since 4−1 = 10 and 3−1 = 9 in F13, we get the following:

[
5A0(2)+6B0(2)+C0(2)

4
](13,15) =[(5 ·0+6 ·0+0) ·10](13,15) = [0](13,14)

O

[
5A1(2)+6B1(2)+C1(2)

4
](13,15) =[(5 ·0+6 ·0+(7 ·2+4)) ·10](13,15) = [11](13,15) =

(33,9)

[
5A2(2)+6B2(2)+C2(2)

3
](13,15) =[(5 · (6 ·2+10)+6 ·0+0) ·9](13,15) = [2](13,15) =

(33,34)

[
5A3(2)+6B3(2)+C3(2)

3
](13,15) =[(5 ·0+6 · (6 ·2+10)+0) ·9](13,15) = [5](13,15) =

(26,34)

[
5A4(2)+6B4(2)+C4(2)

3
](13,15) =[(5 ·0+6 · (7 ·2+4)+0) ·9](13,15) = [10](13,15) =

(38,28)

[
5A5(2)+6B5(2)+C5(2)

3
](13,15) =[(5 · (7 ·2+4)+6 ·0+6 ·2+10) ·9](13,15) = [7](13,15) =

(27,9)

[
20 ·T (2)

3
](13,15) =[1 · (22 +2+9) ·9](13,15) = [5](13,15) =

(26,34)

Putting all those values together, we see that the G1 part of the Common Reference String is
given by the following set of 12 points from the BLS6_6 13-torsion group G1:

CRSG1 =

 (27,34),(26,34),(38,15),
(
(13,15),(33,34)

)
,
(
O,(33,9)

)(
(33,34),(26,34),(38,28),(27,9)

)
,
(
(26,34)

)  (8.5)

To compute the G2 part of the Common Reference String, we use the logarithmic order of
the group G2 5.49, the generator g2 = (7v2,16v3), as well as the values from the simulation
trapdoor. Since deg(T) = 2, we get the following:

[β]g2 = [5](7v2,16v3) = (16v2,28v3)

[γ]g2 = [4](7v2,16v3) = (37v2,27v3)

[δ]g2 = [3](7v2,16v3) = (42v2,16v3)

To compute the rest of the G2 part of the Common Reference String, we expand the indexed
tuple and insert the secret random elements from the simulation trapdoor. We get the following:(

[s j]g2, . . .
)1

j=0
=
(
[20](7v2,16v3), [21](7v2,16v3)

)
=
(
(7v2,16v3),(10v2,28v3)

)
192

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

Putting all these values together, we see that the G2 part of the Common Reference String is
given by the following set of 5 points from the BLS6_6 13-torsion group G2:

CRSG2 =
{
(16v2,28v3),(37v2,27v3),(42v2,16v3),

(
7v2,16v3),(10v2,28v3)

)}
Given the simluation trapdoor τ and the Quadratic Arithmetic Program 127, the associated
Common Reference String of the 3-factorization problem is as follows:

CRSG1 =

 (27,34),(26,34),(38,15),
(
(13,15),(33,34)

)
,
(
O,(33,9)

)(
(33,34),(26,34),(38,28),(35,28)

)
,
(
(26,34)

) 
CRSG2 =

{
(16v2,28v3),(37v2,27v3),(42v2,16v3),

(
7v2,16v3),(10v2,28v3)

)}
We then publish this data to everyone who wants to participate in the generation of a zk-SNARK
or its verification in the 3-factorization problem.

To understand how this Common Reference String can be used to evaluate polynomials at
the secret evaluation point in the exponent of a generator, let’s assume that we have deleted
the simulation trapdoor. In that case, assuming that the discrete logarithm problem is hard in
our groups, we have no way to know the secret evaluation point anymore, hence, we cannot
evaluate polynomials at that point. However, we can evaluate polynomials of smaller degree
than the degree of the target polynomial in the exponent of both generators at that point.

To see that, consider e.g. the polynomials A2(x) = 6x+10 and A5(x) = 7x+4 from the QAP
of this problem. To evaluate these polynomials in the exponent of g1 and g2 at the secret point
s without knowing the value of s (which is 2), we can use the Common Reference String and
equation 8.2. Using the scalar product notation instead of exponentiation, we get the following:

[A2(s)]g1 = [6 · s1 +10 · s0]g1

= [6](33,34)+ [10](13,15) # [s0]g1 = (13,15), [s1]g1 = (33,34)
= [6 ·2](13,15)+ [10](13,15) = [9](13,15) # logarithmic order on G1

= (35,15)

[A5(s)]g1 = [7 · s1 +4 · s0]g1

= [7](33,34)+ [4](13,15)
= [7 ·2](13,15)+ [4](13,15) = [5](13,15)
= (26,34)

Indeed, we are able to evaluate the polynomials in the exponent at a secret evaluation point,
because that point is encrypted in the curve point (33,34) and its secrecy is protected by the
discrete logarithm assumption. Of course, in our computation, we recovered the secret point
s = 2, but that was only possible because we know the logarithmic order of our groups with
respect to the generators. Such an order is infeasible in cryptographically secure curves. We

193

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

can do the same computation on G2 and get the following:

[A2(s)]g2 = [6 · s1 +10 · s0]g2

= [6](10v2,28v3)+ [10](7v2,16v3)

= [6 ·2](7v2,16v3)+ [10](7v2,16v3) = [9](7v2,16v3)

= (37v2,16v3)

[A5(s)]g2 = [7 · s1 +4 · s0]g1

= [7](10v2,28v3)+ [4](7v2,16v3)

= [7 ·2](7v2,16v3)+ [4](7v2,16v3) = [5](7v2,16v3)

= (16v2,28v3)

Apart from the target polynomial T , all other polynomials of the Quadratic Arithmetic Pro-
gram can be evaluated in the exponent this way.

The Prover Phase Given some Rank-1 Constraint System R and instance I =< I1, . . . , In >,
the task of the prover phase is to convince any verifier that a prover knows a witness W to
instance I such that (I;W) is a word in the language LR of the system, without revealing anything
about W .

To achieve this in the Groth_16 protocol, we assume that any prover has access to the Rank-
1 Constraint System of the problem, in addition to some algorithm that tells the prover how
to compute constructive proofs for the R1CS. In addition, the prover has access to a Common
Reference String and its associated Quadratic Arithmetic Program.

In order to generate a zk-SNARK for this instance, the prover first computes a valid con-
structive proof as explained in 6.2.1, that is, the prover generates a proper witness W =<
W1, . . . ,Wm > such that (< I1, . . . , In >;<W1, . . . ,Wm >) is a solution to the Rank-1 Constraint
System R.

The prover then uses the Quadratic Arithmetic Program and computes the polynomial P(I;W),
as explained in 6.15. They then divide P(I;W) by the target polynomial T of the Quadratic
Arithmetic Program. Since P(I;W) is constructed from a valid solution to the R1CS, we know
from 6.15 that it is divisible by T . This implies that polynomial division of P by T generates
another polynomial H := P/T , with deg(H)< deg(T).

The prover then evaluates the polynomial (H ·T)/δ in the exponent of the generator g1 at
the secret point s, as explained in 8.2. To see how this can be achieved, let H(x) be the quotient
polynomial P/T :

H(x) = H0 · x0 +H1 · x1 + . . .+Hk · xk (8.6)

To evaluate (H ·T)/δ at s in the exponent of g1, the prover uses the Common Reference
String and computes as follows:

g
H(s)·T (s)

δ

1 =
(

g
s0·T (s)

δ

1

)H0
·
(

g
s1·T (s)

δ

1

)H1
· · ·
(

g
sk ·T (s)

δ

1

)Hk

After this has been done, the prover samples two random field elements r, t ∈ Fr, and uses
the Common Reference String, the instance variables I1, . . ., In and the witness variables W1,

194

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

. . ., Wm to compute the following curve points:

gW
1 =

(
g

β ·A1+n(s)+α·B1+n(s)+C1+n(s)
δ

1

)W1
· · ·
(

g
β ·Am+n(s)+α·Bm+n(s)+Cm+n(s)

δ

1

)Wm

gA
1 = gα

1 ·g
A0(s)
1 ·

(
gA1(s)

1

)I1
· · ·
(

gAn(s)
1

)In
·
(

gAn+1(s)
1

)W1
· · ·
(

gAn+m(s)
1

)Wm
·
(

gδ
1

)r

gB
1 = gβ

1 ·g
B0(s)
1 ·

(
gB1(s)

1

)I1
· · ·
(

gBn(s)
1

)In
·
(

gBn+1(s)
1

)W1
· · ·
(

gBn+m(s)
1

)Wm
·
(

gδ
1

)t

gB
2 = gβ

2 ·g
B0(s)
2 ·

(
gB1(s)

2

)I1
· · ·
(

gBn(s)
2

)In
·
(

gBn+1(s)
2

)W1
· · ·
(

gBn+m(s)
2

)Wm
·
(

gδ
2

)t

gC
1 = gW

1 ·g
H(s)·T (s)

δ

1 ·
(

gA
1

)t
·
(

gB
1

)r
·
(

gδ
1

)−r·t

In this computation, the group elements gA j(s)
1 , gB j(s)

1 and gB j(s)
2 can be derived from the

Common Reference String and the Quadratic Arithmetic Program of the problem, as we have
seen in 8.2. In fact, those points only have to be computed once, and can be published and
reused for multiple proof generations because they are the same for all instances and witnesses.
All other group elements are part of the Common Reference String.

After all these computations have been done, a valid zero-knowledge succinct non-interactive
argument of knowledge π in the Groth_16 protocol is given by the following three curve points:

π = (gA
1 ,g

C
1 ,g

B
2) (8.7)

As we can see, a Groth_16 zk-SNARK consists of 3 curve points, two points from G1 and 1
point from G2. The argument is specifically designed this way because, in typical applications,
G1 is a torsion group of an elliptic curve over some prime field, while G2 is a subgroup of the
full torsion group over an extension field as explained in 5.4. Elements from G1 therefore need
less space to be stored, and computations in G1 are typically faster then in G2.

Since the witness is encoded in the exponent of a generator of a cryptographically secure
elliptic curve, it is hidden from anyone but the prover. Moreover, since any proof is randomized
by the occurrence of the random field elements r and t, proofs are not unique to any given
witness.
Example 143 (The 3-factorization Problem). To see how a prover might compute a zk-SNARK,
consider the 3-factorization problem from 111, our protocol parameters from 141 as well as the
Common Reference String from 8.5.

Our task is to compute a zk-SNARK for the instance I1 =< 11 > and its constructive proof
< W1,W2,W3,W4 >=< 2,3,4,6 > as computed in 118. As we know from 127 the associated
polynomial P(I;W) of the Quadratic Arithmetic Program from 127 is given as follows:

P(I;W) = x2 + x+9

Since P(I;W) is identical to the target polynomial T (x) = x2 + x+ 9 in this example, we know
from example 127 that the quotient polynomial H = P/T is the constant degree 0 polynomial:

H(x) = H0 · x0 = 1 · x0

We therefore use [s0·T (s)
δ

]g1 =(26,34) from our Common Reference String 8.5 of the 3-factorization
problem and compute as follows:

[
H(s) ·T (s)

δ
]g1 = [H0](26,34) = [1](26,34)

= (26,34)

195

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

In the next step, we have to compute all group elements required for a proper Groth16 zk-
SNARK 8.7. We start with gW

1 . Using scalar products instead of the exponential notation, and
⊕ for the group law on the BLS6_6 curve, we have to compute the point [W]g1:

[W]g1 = [W1]g
β ·A2(s)+α·B2(s)+C2(s)

δ

1 ⊕ [W2]g
β ·A3(s)+α·B3(s)+C3(s)

δ

1 ⊕ [W3]g
β ·A4(s)+α·B4(s)+C4(s)

δ

1

⊕ [W4]g
β ·A5(s)+α·B5(s)+C5(s)

δ

1

To compute this point, we have to remember that a prover should not be in possession of
the simulation trapdoor, hence, they should not know what α , β , δ and s are. In order to
compute this group element, the prover therefore needs the Common Reference String. Using
the logarithmic order from 5.46 and the witness, we get the following:

[W]g1 = [2](33,34)⊕ [3](26,34)⊕ [4](38,28)⊕ [6](27,9)
= [2 ·2](13,15)⊕ [3 ·5](13,15)⊕ [4 ·10](13,15)⊕ [6 ·7](13,15)
= [2 ·2+3 ·5+4 ·10+6 ·7](13,15) = [10](13,15)
= (38,28)

In a next step, we compute gA
1 . We sample the random point r = 11 from F13, using scalar

products instead of the exponential notation, and ⊕ for the group law on the BLS6_6 curve.
We then have to compute the following expression:

[A]g1 = [α]g1⊕ [A0(s)]g1⊕ [I1][A1(s)]g1⊕ [W1][A2(s)]g1⊕ [W2][A3(s)]g1

⊕ [W3][A4(s)]g1⊕ [W4][A5(s)]g1⊕ [r][δ]g1

Since we don’t know what α , δ and s are, we look up [α]g1 and [δ]g1 from the Common
Reference String. According to example 8.5, we have [A2(s)]g1 = (35,15), [A5(s)]g1 = (26,34)
and [A j(s)]g1 =O for all other indices 0≤ j ≤ 5. Since O is the neutral element on G1, we get
the following:

[A]g1 = (27,34)⊕O⊕ [11]O⊕ [2](35,15)⊕ [3]O⊕ [4]O⊕ [6](26,34)⊕ [11](38,15)
= (27,34)⊕ [2](35,15)⊕ [6](26,34)⊕ [11](38,15)
= [6](13,15)⊕ [2 ·9](13,15)⊕ [6 ·5](13,15)⊕ [11 ·3](13,15)
= [6+2 ·9+6 ·5+11 ·3](13,15) = [9](13,15)
= (35,15)

In order to compute the two curve points [B]g1 and [B]g2, we sample another random element
t = 4 from F13. Using the scalar product instead of the exponential notation, and⊕ for the group
law on the BLS6_6 curve, we have to compute the following expressions:

[B]g1 = [β]g1⊕ [B0(s)]g1⊕ [I1][B1(s)]g1⊕ [W1][B2(s)]g1⊕ [W2][B3(s)]g1

⊕ [W3][B4(s)]g1⊕ [W4][B5(s)]g1⊕ [t][δ]g1

[B]g2 = [β]g2⊕ [B0(s)]g2⊕ [I1][B1(s)]g2⊕ [W1][B2(s)]g2⊕ [W2][B3(s)]g2

⊕ [W3][B4(s)]g2⊕ [W4][B5(s)]g2⊕ [t][δ]g2

196

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

Since we don’t know what β , δ and s are, we look up the associated group elements from the
Common Reference String. Recall from 8.5 that we can evaluate [B j(s)]g1 without knowing the
secret evaluation point s. Since B3 = A2 and B4 = A5, we have [B3(s)]g1 = (35,15), [B4(s)]g1 =
(26,34) according to the computation in 8.5, and [B j(s)]g1 =O for all other indices 0≤ j ≤ 5.
Since O is the neutral element on G1, we get the following:

[B]g1 = (26,34)⊕O⊕ [11]O⊕ [2]O⊕ [3](35,15)⊕ [4](26,34)⊕ [6]O⊕ [4](38,15)
= (26,34)⊕ [3](35,15)⊕ [4](26,34)⊕ [4](38,15)
= [5](13,15)⊕ [3 ·9](13,15)⊕ [4 ·5](13,15)⊕ [4 ·3](13,15)
= [5+3 ·9+4 ·5+4 ·3](13,15) = [12](13,15)
= (13,28)

[B]g2 = (16v2,28v3)⊕O⊕ [11]O⊕ [2]O⊕ [3](37v2,16v3)⊕ [4](16v2,28v3)⊕ [6]O⊕ [4](42v2,16v3)

= (16v2,28v3)⊕ [3](37v2,16v3)⊕ [4](16v2,28v3)⊕ [4](42v2,16v3)

= [5](7v2,16v3)⊕ [3 ·9](7v2,16v3)⊕ [4 ·5](7v2,16v3)⊕ [4 ·3](7v2,16v3)

= [5+3 ·9+4 ·5+4 ·3](7v2,16v3) = [12](7v2 +16v3)

= (7v2,27v3)

In a last step, we combine the previous computations to compute the point [C]g1 in the group
G1 as follows:

[C]g1 = [W]g1⊕ [
H(s) ·T (s)

δ
]g1⊕ [t][A]g1⊕ [r][B]g1⊕ [−r · t][δ]g1

= (38,28)⊕ (26,34)⊕ [4](35,15)⊕ [11](13,28)⊕ [−11 ·4](38,15)
= [10](13,15)⊕ [5](13,15)⊕ [4 ·9](13,15)⊕ [11 ·12](13,15)⊕ [−11 ·4 ·3](13,15)
= [10+5+4 ·9+11 ·12−11 ·4 ·3](13,15) = [12](13,15)
= (13,28)

Given the instance I1 =< 11 >, we can now combine these computations and see that the
following 3 curve points are a zk-SNARK for the witness <W1,W2,W3,W4 >=< 2,3,4,6 >:

π = ((35,15),(13,28),(7v2,27v3)) (8.8)

We can now publish this zk-SNARK, or send it to a designated verifier. Note that, if we
had sampled different values for r and t, we would have computed a different zk-SNARK for
the same witness. The zk-SNARK, therefore, hides the witness perfectly, which means that it
is impossible to reconstruct the witness from the zk-SNARK.

The Verification Phase Given some Rank-1 Constraint System R, instance I =< I1, . . . , In >
and Groth_16 zk-SNARK π 8.7, the task of the verification phase is to check that π is indeed
an argument for a constructive proof. Assuming that the simulation trapdoor does not exists
anymore and the verification checks the proof, the verifier is then convinced that someone knows
a witness W =<W1, . . . ,Wm > such that (I;W) is a word in the language of R.

To achieve this in the Groth_16 protocol, we assume that any verifier is able to compute the
pairing map e(·, ·) efficiently, and has access to the Common Reference String used to produce

197

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

the zk-SNARK π . In order to verify the zk-SNARK with respect to the instance < I1, . . . , In >,
the verifier computes the following curve point:

gI
1 =

(
g

β ·A0(s)+α·B0(s)+C0(s)
γ

1

)
·
(

g
β ·A1(s)+α·B1(s)+C1(s)

γ

1

)I1
· · ·
(

g
β ·An(s)+α·Bn(s)+Cn(s)

γ

1

)In

With this group element, the verifier is able to verify the zk-SNARK π = (gA
1 ,g

C
1 ,g

B
2) by check-

ing the following equation using the pairing map:

e(gA
1 ,e

B
2) = e(gα

1 ,g
β

2) · e(g
I
1,g

γ

2) · e(g
C
1 ,g

δ
2) (8.9)

If the equation holds true, the verifier outputs accept andf the equation does not hold, the
verifier outputs reject.

Remark 9. We know from 5.4 that computing pairings in cryptographically secure pairing
groups is computationally expensive. As we can see, in the Groth_16 protocol, 3 pairings
are required to verify the zk-SNARK, because the pairing e(gα

1 ,g
β

2) is independent of the proof,
meaning that it can be computed once and then stored as an amendment to the verifier key.

In Groth [2016], the author showed that 2 is the minimal amount of pairings that any pro-
tocol with similar properties has to use. This protocol is therefore close to the theoretical mini-
mum. In the same paper, the author outlined an adaptation that only uses 2 pairings. However,
that reduction comes with the price of much more overhead computation. Having 3 pairings is
therefore a compromise that gives the overall best performance. To date, the Groth16 protocol
is the most efficient in its class.

Example 144 (The 3-factorization Problem). To see how a verifier might verify a zk-SNARK
for some given instance I, consider the 3-factorization problem from 111, our protocol pa-
rameters from 141, the Common Reference String from 8.5 as well as the zk-SNARK π =
((35,15),(27,9),(7v2,27v3)) from example 8.8, which claims to be an argument of knowledge
for a witness for the instance I1 =< 11 >.

In order to verify the zk-SNARK for that instance, we first compute the curve point gI
1. Us-

ing scalar products instead of the exponential notation, and⊕ for the group law on the BLS6_6
curve, we have to compute the point [I]g1 as follows:

[I]g1 =[
β ·A0(s)+α ·B0(s)+C0(s)

γ
]g1⊕ [I1][

β ·A1(s)+α ·B1(s)+C1(s)
γ

]g1

To compute this point, we have to remember that a verifier should not be in possession of the
simulation trapdoor, which means that they should not know what α , β , γ and s are. In order to
compute this group element, the verifier therefore needs the Common Reference String. Using
the logarithmic order from 5.46 and instance I1, we get the following:

[I]g1 = [
β ·A0(s)+α ·B0(s)+C0(s)

γ
]g1⊕ [I1][

β ·A1(s)+α ·B1(s)+C1(s)
γ

]g1

=O⊕ [11](33,9)
= [11 ·11](13,15) = [4](13,15)
= (35,28)

198

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

In the next step, we have to compute all the pairings involved in equation 8.9. Using the
logarithmic order on G1 5.46 and G2 5.49 as well as the bilinearity of the pairing map we get
the following:

e([A]g1, [B]g2) = e((35,15),(7v2,27v3)) = e([9](13,15), [12](7v2,16v3))

= e((13,15),(7v2,16v3))9·12

= e((13,15),(7v2,16v3))108

e([α]g1, [β]g2) = e((27,34),(16v2,28v3)) = e([6](13,15), [5](7v2,16v3))

= e((13,15),(7v2,16v3))6·5

= e((13,15),(7v2,16v3))30

e([I]g1, [γ]g2) = e((35,28),(37v2,27v3)) = e([4](13,15), [4](7v2,16v3))

= e((13,15),(7v2,16v3))4·4

= e((13,15),(7v2,16v3))16

e([C]g1, [δ]g2) = e((13,28),(42v2,16v3)) = e([12](13,15), [3](7v2,16v3))

= e((13,15),(7v2,16v3))12·3

= e((13,15),(7v2,16v3))36

In order to check equation 8.9, observe that the target group GT of the Weil pairing is a
finite cyclic group of order 13. Exponentiation is therefore done in modular 13 arithmetic.
Accordingly, since 108 mod 13 = 4, we evaluate the left side of equation 8.9 as follows:

e([A]g1, [B]g2) = e((13,15),(7v2,16v3))108 = e((13,15),(7v2,16v3))4

Similarly, we evaluate the right side of equation 8.9 using modular 13 arithmetic and the
exponential law ax ·ay = ax+y:

e([α]g1, [β]g2) · e([I]g1, [γ]g2) · e([C]g1, [δ]g2) =

e((13,15),(7v2,16v3))30 · e((13,15),(7v2,16v3))16 · e((13,15),(7v2,16v3))36 =

e((13,15),(7v2,16v3))4 · e((13,15),(7v2,16v3))3 · e((13,15),(7v2,16v3))10 =

e((13,15),(7v2,16v3))4+3+10 =

e((13,15),(7v2,16v3))4

As we can see, both the left and the right side of equation 8.9 are identical, which implies
that the verification process accepts the zk-SNARK and the verifier outputs accept.

Proof Simulation During the execution of a setup phase, a Common Reference String is
generated, along with a simulation trapdoor 8.2, the latter of which must be deleted at the end
of the setup-phase. In this paragraph, we will show why knowledge of the simulation trapdoor
is problematic, and how it can be used to generate zk-SNARKs for a given instance without any
knowledge of an associated witness.

To be more precise, let I be an instance for some R1CS language LR. We call a zk-SNARK
for LR forged or simulated if it passes a verification but its generation does not require the
existence of a witness W such that (I;W) is a word in LR.

199

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

To see how simulated zk-SNARKs can be computed, assume that a forger has knowledge
of proper Groth_16 parameters, a Quadratic Arithmetic Program of the problem, a Common
Reference String and its associated simulation trapdoor τ:

τ = (α,β ,γ,δ ,s) (8.10)

Given some instance I, the forger’s task is to generate a zk-SNARK for this instance that
passes the verification process, without having access to any other zk-SNARKs for this instance
and without knowledge of a valid witness W .

To achieve this in the Groth_16 protocol, the forger can use the simulation trapdoor in
combination with the QAP and two arbitrary field elements A and B from the scalar field Fr of
the pairing groups to compute gC

1 for the instance < I1, . . . , In > as follows:

gC
1 = g

A·B
δ

1 ·g
−α·β

δ

1 ·g−
βA0(s)+αB0(s)+C0(s)

δ

1 ·
(

g
− βA1(s)+αB1(s)+C1(s)

δ

1

)I1
· · ·
(

g
− βAn(s)+αBn(s)+Cn(s)

δ

1

)In

The forger then publishes the zk-SNARK π f orged = (gA
1 ,g

C
1 ,g

B
2), which will pass the verifi-

cation process and is computable without the existence of a witness <W1, . . . ,Wm >.
To see that the simulation trapdoor is necessary and sufficient to compute the simulated

proof π f orged , first observe that both generators g1 and g2 are known to the forger, as they are
part of the Common Reference String, encoded as gs0

1 and gs0

2 . The forger is therefore able to
compute gA·B

1 . Moreover, since the forger knows α , β , δ and s from the trapdoor, they are able
to compute all factors in the computation of gC

1 .
If, on the other hand, the simulation trapdoor is unknown, it is not possible to compute gC

1 ,
since, for example, the computational Diffie-Hellman assumption makes the derivation of gα·β

1

from gα
1 and gβ

1 infeasible.

Example 145 (The 3-factorization Problem). To see how a forger might simulate a zk-SNARK
for some given instance I, consider the 3-factorization problem from 111, our protocol pa-
rameters from 141, the Common Reference String from 8.5 and the simulation trapdoor τ =
(6,5,4,3,2) of that CRS.

In order to forge a zk-SNARK for instance I1 =< 11 >, we don’t need a constructive proof
for the associated Rank-1 Constraint System, which implies that we don’t have to execute the
circuit C3. f ac(F13) from example 120. Instead, we have to choose 2 arbitrary elements A and B
from F13, and compute gA

1 , gB
2 and gC

1 as defined in 8.2. We choose A = 9 and B = 3, and, since
δ−1 = 3, we compute as follows:

[A]g1 =[9](13,15) = (35,15)

[B]g2 =[3](7v2,16v3) = (42v2,16v3)

[C]g1 =[
A ·B

δ
]g1⊕ [−α ·β

δ
]g1⊕ [−βA0(s)+αB0(s)+C0(s)

δ
]g1⊕

[I1][−
βA1(s)+αB1(s)+C1(s)

δ
]g1

=[(9 ·3) ·9](13,15)⊕ [−(6 ·5) ·9](13,15)⊕ [0](13,15)⊕ [11][−(7 ·2+4) ·9](13,15)
=[9](13,15)⊕ [3](13,15)⊕ [12](13,15) = [11](13,15)
=(33,9)

200

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

This is all we need to generate our forged proof for the 3-factorization problem. We publish
the simulated zk-SNARK:

π f ake = ((35,15),(33,9),(42v2,16v3))

Despite the fact that this zk-SNARK was generated without knowledge of a proper witness,
it is indistinguishable from a zk-SNARK that proves knowledge of a proper witness.

To see that, we show that our forged SNARK passes the verification process. In order to
verify π f ake, we proceed as in 8.2 and compute the curve point gI

1 for the instance I1 =< 11 >.
Since the instance is the same as in example 8.8, we can parallel the computation from that
example:

[I]g1 = [
β ·A0(s)+α ·B0(s)+C0(s)

γ
]g1⊕ [I1][

β ·A1(s)+α ·B1(s)+C1(s)
γ

]g1

= (35,28)

In a next step we have to compute all the pairings involved in equation 8.9. Using the logarith-
mic order on G1 5.46 and G2 5.49 as well as the bilinearity of the pairing map we get

e([A]g1, [B]g2) = e((35,15),(42v2,16v3)) = e([9](13,15), [3](7v2,16v3))

= e((13,15),(7v2,16v3))9·3

= e((13,15),(7v2,16v3))27

e([α]g1, [β]g2) = e((27,34),(16v2,28v3)) = e([6](13,15), [5](7v2,16v3))

= e((13,15),(7v2,16v3))6·5

= e((13,15),(7v2,16v3))30

e([I]g1, [γ]g2) = e((35,28),(37v2,27v3)) = e([4](13,15), [4](7v2,16v3))

= e((13,15),(7v2,16v3))4·4

= e((13,15),(7v2,16v3))16

e([C]g1, [δ]g2) = e((33,9),(42v2,16v3)) = e([11](13,15), [3](7v2,16v3))

= e((13,15),(7v2,16v3))11·3

= e((13,15),(7v2,16v3))33

In order to check equation 8.9, observe that the target group GT of the Weil pairing is a finite
cyclic group of order 13. Exponentiation is therefore done in modular 13 arithmetics. Using
this, we evaluate the left side of the verifier equation as follows:

e([A]g1, [B]g2) = e((13,15),(7v2,16v3))27 = e((13,15),(7v2,16v3))1

since 27 mod 13 = 1. Similarly, we evaluate the right side of the verification equation using
modular 13 arithmetics and the exponential law ax ·ay = ax+y. We get

e([α]g1, [β]g2) · e([I]g1, [γ]g2) · e([C]g1, [δ]g2) =

e((13,15),(7v2,16v3))30 · e((13,15),(7v2,16v3))16 · e((13,15),(7v2,16v3))33 =

e((13,15),(7v2,16v3))4 · e((13,15),(7v2,16v3))3 · e((13,15),(7v2,16v3))7 =

e((13,15),(7v2,16v3))4+3+7 =

e((13,15),(7v2,16v3))1

201

CHAPTER 8. ZERO KNOWLEDGE PROTOCOLS 8.2. THE “GROTH16” PROTOCOL

As we can see, both the left and the right side of the verifier equation are identical, which
implies that the verification process accepts the simulated proof. π f ake therefore convinces the
verifier that a witness to the 3-factorization problem exists. However, no such witness was really
necessary to generate the proof.

202

Bibliography

Jens Groth. On the size of pairing-based non-interactive arguments. IACR Cryptol. ePrint Arch.,
2016:260, 2016. URL http://eprint.iacr.org/2016/260.

Hongxi Wu. Understanding numbers in elementary school mathematics. American Mathemat-
ical Society, Providence, RI, 2011. ISBN 9780821852606.

Maurice Mignotte. Mathematics for Computer Algebra. 01 1992. ISBN 978-3-540-97675-2.
doi: 10.1007/978-1-4613-9171-5.

P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceed-
ings 35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994.
doi: 10.1109/SFCS.1994.365700.

G.H. Hardy, E.M. Wright, D.R. Heath-Brown, R. Heath-Brown, J. Silverman, and A. Wiles.
An Introduction to the Theory of Numbers. Oxford mathematics. OUP Oxford, 2008. ISBN
9780199219865. URL https://books.google.de/books?id=P6uTBqOa3T4C.

B. Fine and G. Rosenberger. Number Theory: An Introduction via the Density of Primes.
Springer International Publishing, 2016. ISBN 9783319438733. URL https://books.
google.de/books?id=-UaWDAEACAAJ.

Henri Cohen. A Course in Computational Algebraic Number Theory. Springer Publishing
Company, Incorporated, 2010. ISBN 3642081428.

Rudolf. Lidl and Harald Niederreiter. Introduction to finite fields and their applications / Rudolf
Lidl, Harald Niederreiter. Cambridge University Press Cambridge [Cambridgeshire] ; New
York, 1986. ISBN 0521307066.

László Fuchs. Abelian groups. Springer Monogr. Math. Cham: Springer, 2015. ISBN 978-3-
319-19421-9; 978-3-319-19422-6. doi: 10.1007/978-3-319-19422-6.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and Hal-
l/CRC Press, 2007. ISBN 978-1-58488-551-1.

Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 129–140,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg. ISBN 978-3-540-46766-3. URL
https://fmouhart.epheme.re/Crypto-1617/TD08.pdf.

G. Ellis and L.D.M.G. Ellis. Rings and Fields. Oxford science publications. Clarendon
Press, 1992. ISBN 9780198534556. URL https://books.google.de/books?id=
gDaKGfDMA1wC.

203

http://eprint.iacr.org/2016/260
https://books.google.de/books?id=P6uTBqOa3T4C
https://books.google.de/books?id=-UaWDAEACAAJ
https://books.google.de/books?id=-UaWDAEACAAJ
https://fmouhart.epheme.re/Crypto-1617/TD08.pdf
https://books.google.de/books?id=gDaKGfDMA1wC
https://books.google.de/books?id=gDaKGfDMA1wC

BIBLIOGRAPHY BIBLIOGRAPHY

J.H. Silverman and J.T. Tate. Rational Points on Elliptic Curves. Undergraduate Texts in
Mathematics. Springer New York, 1994. ISBN 9780387978253. URL https://books.
google.de/books?id=mAJei2-JcE4C.

J. Hoffstein, J. Pipher, and J.H. Silverman. An Introduction to Mathematical Cryptography.
Undergraduate Texts in Mathematics. Springer New York, 2008. ISBN 9780387779942.
URL https://books.google.de/books?id=z2SBIhmqMBMC.

E. A. Grechnikov. Method for constructing elliptic curves using complex multiplication and
its optimizations. 2012. doi: 10.48550/ARXIV.1207.6983. URL https://arxiv.org/
abs/1207.6983.

David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic
curves. J. Cryptol., 23(2):224–280, 2010. URL http://dblp.uni-trier.de/db/
journals/joc/joc23.html#FreemanST10.

R.N. Moll, J. Pustejovsky, M.A. Arbib, and A.J. Kfoury. An Introduction to Formal Lan-
guage Theory. Monographs in Computer Science. Springer New York, 2012. ISBN
9781461395959. URL https://books.google.de/books?id=tprhBwAAQBAJ.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks
for c: Verifying program executions succinctly and in zero knowledge. Cryptology ePrint
Archive, Paper 2013/507, 2013. URL https://eprint.iacr.org/2013/507.
https://eprint.iacr.org/2013/507.

204

https://books.google.de/books?id=mAJei2-JcE4C
https://books.google.de/books?id=mAJei2-JcE4C
https://books.google.de/books?id=z2SBIhmqMBMC
https://arxiv.org/abs/1207.6983
https://arxiv.org/abs/1207.6983
http://dblp.uni-trier.de/db/journals/joc/joc23.html#FreemanST10
http://dblp.uni-trier.de/db/journals/joc/joc23.html#FreemanST10
https://books.google.de/books?id=tprhBwAAQBAJ
https://eprint.iacr.org/2013/507
https://eprint.iacr.org/2013/507

About us

Least Authority is committed to building and supporting the development of usable technology
solutions and ethical business practices to advance digital security and preserve privacy as a
fundamental human right.

We focus our work on three main areas: Security Consulting, Product Development, and
Community-Contribution Projects. We pursue these areas knowing they are complementary
and offer various ways for us to contribute to our mission: enabling more people to use secure
and privacy-respecting technology.

Least Authority was founded in 2011 and we moved our headquarters to Berlin, Germany,
in 2016, although we remain a global, remote-first team.

Learn more: https://leastauthority.com/about-us/

205

https://leastauthority.com/about-us/

	Introduction
	Target audience
	Preface and Acknowledgements
	Purpose of the book

	Preliminaries
	Software Used in This Book
	Sagemath

	Arithmetic
	Introduction
	Integer arithmetic
	Euclidean Division
	The Extended Euclidean Algorithm
	Coprime Integers

	Modular arithmetic
	Congruence
	Computational Rules
	The Chinese Remainder Theorem
	Remainder Class Representation
	Modular Inverses

	Polynomial arithmetic
	Polynomial arithmetic
	Euklidean Division
	Prime Factors
	Lagrange interpolation

	Algebra
	Commutative Groups
	Finite groups
	Generators
	The exponential map
	Factor Groups
	Pairings

	Cryptographic Groups
	The discrete logarithm assumption
	The decisional Diffie–Hellman assumption
	The computational Diffie–Hellman assumption

	Hashing to Groups
	Hash functions
	Hashing to cyclic groups
	Pedersen Hashes
	Pseudorandom Function Families in DDH-secure groups

	Commutative Rings
	Hashing into Modular Arithmetic

	Fields
	Prime fields
	Square Roots
	Hashing into prime fields

	Prime Field Extensions

	Projective Planes

	Elliptic Curves
	Short Weierstrass Curves
	Affine Short Weierstrass form
	Isomorphic affine short Weierstrass curves
	Affine compressed representation

	Affine Group Law
	Scalar multiplication
	Logarithmic Ordering

	Projective short Weierstrass form
	Projective Group law
	Coordinate Transformations

	Montgomery Curves
	Affine Montgomery coordinate transformation
	Montgomery group law

	Twisted Edwards Curves
	Twisted Edwards group law

	Elliptic Curve Pairings
	Embedding Degrees
	Elliptic Curves over extension fields
	Full torsion groups
	Pairing groups
	The Weil pairing

	Hashing to Curves
	Try-and-increment hash functions

	Constructing elliptic curves
	The Trace of Frobenius
	The j-invariant
	The Complex Multiplication Method

	The BLS6_6 pen-and-paper curve
	Hashing to pairing groups

	Statements
	Formal Languages
	Decision Functions
	Instance and Witness
	Modularity

	Statement Representations
	Rank-1 Quadratic Constraint Systems
	R1CS representation
	R1CS Satisfiability
	Modularity

	Algebraic Circuits
	Algebraic circuit representation
	Circuit Execution
	Circuit Satisfiability
	Associated Constraint Systems

	Quadratic Arithmetic Programs
	QAP representation
	QAP Satisfiability

	Circuit Compilers
	A Pen-and-Paper Language
	The Grammar
	The Execution Phases
	The Setup Phase
	The Prover Phase

	Common Programing concepts
	Primitive Types
	The base-field type
	The Subtraction Constraint System
	The Inversion Constraint System
	The Division Constraint System

	The boolean Type
	The boolean Constraint System
	The AND operator constraint system
	The OR operator constraint system
	The NOT operator constraint system
	Modularity

	Arrays
	The Unsigned Integer Type
	The uN Constraint System
	The Unigned Integer Operators

	Control Flow
	The Conditional Assignment
	Loops

	Binary Field Representations
	Cryptographic Primitives
	Twisted Edwards curves
	Twisted Edwards curve constraints
	Twisted Edwards curve addition

	Zero Knowledge Protocols
	Proof Systems
	The ``Groth16'' Protocol
	The Setup Phase
	The Prover Phase
	The Verification Phase
	Proof Simulation

