
Magic Protocol
Security Audit Report

Final Audit Report: 22 November 2022

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Supplier Job Monitor Uses Basic Authentication

Issue B: Supplier Job Monitor Uses Plaintext Passwords for Authentication

Issue C: Registration of Suppliers Does Not Require Verification

Issue D: Insecure Next.js Configuration Setting

Suggestions

Suggestion 1: Use Conditional Imports

Suggestion 2: Improve Project Documentation

Suggestion 3: Allow Supplier to Unregister from the System

Suggestion 4: Use an es lint Rule for Unused Imports

Suggestion 5: Improve Error Handling

About Least Authority

Our Methodology

Security Audit Report | Magic Protocol 1
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Trust Machines have requested that Least Authority perform a security audit of the Magic Protocol, an
Atomic Swap for the Zest Protocol.

Project Dates
● August 10 - September 28: Code review (Completed)
● September 30: Delivery of Initial Audit Report (Completed)
● November 7: Verification Review (Completed)
● November 22: Delivery of Final Audit Report (Completed)

Review Team
● Alejandro Flores, Security Researcher and Engineer
● Nikos Iliakis, Security Researcher and Engineer
● Xenofon Mitakidis, Security Researcher and Engineer
● Akunne Obinna, Security Researcher and Engineer
● ElHassan Wanas, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of Magic Protocol followed by issue
reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Magic Protocol:

https://github.com/magicstx/bridge
● Supplier Job Monitor:

https://github.com/magicstx/supplier-server

Specifically, we examined the Git revisions for our initial review:

Magic Protocol: 78e8a34eb523ca9ab2cbc51f7e4380a3e8989e63

Supplier Job Monitor: e875416a2f5541f563cf48b32c698d12bc6474e9

For the review, these repositories were cloned for use during the audit and for reference in this report:

Magic Protocol:
https://github.com/LeastAuthority/magic-bridge

Supplier Job Monitor:
https://github.com/LeastAuthority/supplier-server

For the verification, we examined the Git revision:

Magic Protocol: 5b75d8dbe20ebe8ee05aae47a31b9eabbde94f34

Security Audit Report | Magic Protocol 2
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/magicstx/bridge
https://github.com/magicstx/supplier-server
https://github.com/LeastAuthority/magic-bridge
https://github.com/LeastAuthority/supplier-server

Supplier Job Monitor: 9033f1cb8843bbf22fce06fcec6b326a498aa250

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Magic Protocol Audit:
https://blog.coinfabrik.com/smart-contracts/magic-bridge-audit/

● Magic Protocol:
https://magicstx.gitbook.io/magic-protocol/overview/magic-protocol

● Magic Audit Contracts Brief:
https://metroid.notion.site/Magic-audit-contracts-brief-shared-002fd6e495724284afb328611098
7444

● Supplier Job Monitor Audit Brief:
https://metroid.notion.site/Supplier-server-audit-brief-shared-d05fdd7d09b54c29b54ceafcaa74ca
fb

In addition, this audit report references the following link:
● Stealing Chat Session ID with CORS and Execute CSRF Attack:

https://infosecwriteups.com/stealing-chat-session-id-with-cors-and-execute-csrf-attack-f9f7ea22
9db1

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Adversarial actions and other attacks on the bridge;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial of Service attacks and security exploits that would impact or disrupt the execution of the

bridge;
● Vulnerabilities within individual components as well as secure interactions between the

components;
● Exposure of any critical information during interactions with any external libraries;
● Proper management of encryption and signing keys;
● Protection against malicious attacks and other methods of exploitation;
● Data privacy, data leaking, and information integrity;
● Inappropriate permissions and excess authority; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Magic Protocol aims to provide a means for holders of BTC to swap for the Wrapped bitcoin token, xBTC,
on the Stacks blockchain. Our team performed a security review of the design and implementation of the
Magic Protocol and Supplier Job Monitor components. The Magic Protocol governs the swap from BTC to

Security Audit Report | Magic Protocol 3
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://blog.coinfabrik.com/smart-contracts/magic-bridge-audit/
https://magicstx.gitbook.io/magic-protocol/overview/magic-protocol
https://metroid.notion.site/Magic-audit-contracts-brief-shared-002fd6e495724284afb3286110987444
https://metroid.notion.site/Magic-audit-contracts-brief-shared-002fd6e495724284afb3286110987444
https://metroid.notion.site/Supplier-server-audit-brief-shared-d05fdd7d09b54c29b54ceafcaa74cafb
https://metroid.notion.site/Supplier-server-audit-brief-shared-d05fdd7d09b54c29b54ceafcaa74cafb
https://infosecwriteups.com/stealing-chat-session-id-with-cors-and-execute-csrf-attack-f9f7ea229db1
https://infosecwriteups.com/stealing-chat-session-id-with-cors-and-execute-csrf-attack-f9f7ea229db1

xBTC and xBTC to BTC, and the Supplier Job Monitor governs the liquidity providers that fund the system
with xBTC (Suppliers).

In our review, we investigated Magic Protocol’s escrow functionality and did not identify any attacks that
would result in the loss of funds from Suppliers or users Swapping BTC or xBTC.

We attempted to circumvent the swap expiration mechanisms so we could transfer funds but did not
identify any vulnerabilities or issues. We reviewed the register-supplier function for susceptibility to
sending an invalid amount of funds and could not identify any vulnerabilities.

Although Magic Protocol and Supplier Job Monitor are generally well designed, implemented, and tested,
we identified some issues and suggestions to improve the security of the design and the quality of the
implementation. Additionally, we recommend that the project documentation and code comments be
improved.

System Design
Our team found that the Magic Protocol team has taken security into consideration in the design of the
Magic Protocol, as demonstrated by the implementation of Hashed Timelock Contract (HTLC) scripts.
The use of the HTLC script ensures each component functions as intended and removes unnecessary
layers of trust, especially in the Supplier. Our team also identified areas in which the Magic Protocol team
can improve the security of the system design. We found that the Supplier Job Monitor uses basic
authentication, which is insufficiently secure, as it could result in an attacker compromising private
Supplier data. We recommend that a more secure authentication process be performed (Issue A).

We also found that the Supplier provides a user-selected password that is stored in plaintext, which could
be extracted easily in case the system is compromised. We recommend using a memory-hard hash
function and that only the hash of user-selected passwords be saved, in accordance with best practice
(Issue B).

We found that the registry process for Suppliers does not include a verification that the public key
registered is owned by the entity performing the registration. As a result, a user can register a public key
that does not belong to them. We recommend that a key ownership verification step be performed in the
Supplier registration process (Issue C). In addition, we recommend that Suppliers be enabled to off-board
from the system by removing their public key (Suggestion 3).

Code Quality
Our team performed a manual code review of the Magic Protocol and Supplier Job Monitor codebases
and found that the code is well organized and generally adheres to best practice. We identified areas of
improvement, including instances where type checks can be improved (Suggestion 1).

We found that the use of ERR_PANIC in the implementation does not adhere to best practices.
ERR_PANIC is used widely despite the Magic Protocol team’s documentation recommending that it not
be thrown. We recommend improving error handling and avoiding the use of ERR_PANIC (Suggestion 5).

We recommend using an es lint rule for unused imports and variables in the build, as unused imports
may introduce security vulnerabilities (Suggestion 4).

Tests

Sufficient test coverage is implemented that tests for the correctness of the implementation and that the
implementation functions as intended.

Security Audit Report | Magic Protocol 4
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Documentation
The documentation provided insufficiently describes the Magic Protocol and Supplier Job Monitor, as it
lacks technical details and descriptive diagrams. The documentation only gives a high level description of
the code structure and functionality. The lack of developer documentation made it difficult for our team to
assess in-scope components and understand the expected behavior of the Magic Protocol and Supplier
Job Monitor. We recommend that the project documentation be improved (Suggestion 2).

Code Comments

The code comments in the codebase describe the inputs and outputs of functions rather than their
intended behavior. Although some functions and components have sufficient code comments, we
recommend that code comments be improved to include more detailed explanations of the intended
behavior of each function and component (Suggestion 2).

Scope
The scope of this security review was sufficient and included all security-critical components.

Dependencies

Our team performed automated scans for vulnerable dependencies and identified several instances
where these are implemented. We recommend that vulnerable dependencies be checked and that
alternatives to unsafe libraries be used.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Supplier Job Monitor Uses Basic Authentication Unresolved

Issue B: Supplier Job Monitor Uses Plaintext Passwords for Authentication Unresolved

Issue C: Registration of Suppliers Does Not Require Verification Unresolved

Issue D: Insecure Next.js Configuration Setting Resolved

Suggestion 1: Use Conditional Imports Resolved

Suggestion 2: Improve Project Documentation Unresolved

Suggestion 3: Allow Supplier to Unregister from the System Unresolved

Suggestion 4: Use an es lint Rule for Unused Imports Resolved

Suggestion 5: Improve Error Handling Unresolved

Security Audit Report | Magic Protocol 5
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue A: Supplier Job Monitor Basic Authentication

Location

supplier-server/src/index.ts#L17

Synopsis

The Supplier Job Monitor uses basic authentication, which is known to be insufficiently secure.

Impact

Each Supplier who runs this Server is at risk of suffering a successful brute-force attack via the
BasicAuth login. Even without being connected through a web3 extension or having any access to the
private key of the Supplier Job Monitor owner, this could still give an attacker access to the dashboard,
which could contain private information.

Feasibility

Performing a brute-force attack against a Basic HTTP Authentication is trivial.

Mitigation

We suggest changing the authentication type to deter the risk of these attacks.

Remediation

We recommend upgrading the codebase from BasicAuth to a JWT or OAuth based authentication via a
secure channel, such as HTTPS.

Status

The Magic Protocol team acknowledged that a more secure authentication for the Supplier Job Monitor is
ideal, but did not consider it to be critical. As such, the issue remains unresolved at the time of
verification.

Verification

Unresolved.

Issue B: Supplier Job Monitor Uses Plaintext Passwords for Authentication

Location

src/index.ts

Synopsis

The Supplier Job Monitor compares against plaintext passwords for authentication. This allows other
processes to view the password either by checking the command used for starting the Server or
accessing the environment file where the password is stored. Additionally, it is easier to mount a
brute-force attack in the absence of a slow hashing algorithm used for every attempt.

Impact

The attacker could gain unauthorized access to the Supplier’s private information in the dashboard,
including any pending operations that are not yet finalized.

Security Audit Report | Magic Protocol 6
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/supplier-server/blob/main/src/index.ts#L17
https://github.com/LeastAuthority/supplier-server/blob/main/src/index.ts#L9

Feasibility

An attack is possible if a malicious process has read access to the environment file. Furthermore, remote
brute-force attacks are trivial due to the lack of a slow hashing algorithm.

Remediation

We recommend storing the password in hashed form using a slow hashing algorithm, such as Argon2.
Additionally, adding another factor during authentication will help protect against stolen credentials.

Status

The Magic Protocol team acknowledged that a more secure authentication for the Supplier Job Monitor is
ideal, but did not consider it to be critical. As such, the issue remains unresolved at the time of
verification.

Verification

Unresolved.

Issue C: Registration of Suppliers Does Not Require Verification

Location

contracts/bridge.clar#L121

Synopsis

A controller may arbitrarily register any valid public key as a Supplier without verifying the ownership of
the public key being registered.

Impact

Arbitrarily registering any number of public keys as Suppliers would hinder the performance and prevent
users from registering themselves, thus restricting users from being able to use the system as intended.

Remediation

We recommend verifying the ownership of public keys during the Supplier registration process. This could
be achieved by requiring a signed message during the Supplier registration or by alternative means.

Status

The Magic Protocol team agreed that the proposed remediation would help ensure that suppliers are
configured correctly. Once implemented, this would be classified as “include in any text version” instead of
as a critical hotfix. However, at the time of verification, the issue remains unresolved.

Verification

Unresolved.

Issue D: Insecure Next.js Configuration Setting

Location

/magic-bridge/main/next.config.js#L25

Synopsis

The function headers uses an insecure configuration that allows all HTTP methods from any origin and
credentials (cookies) to pass through.

Security Audit Report | Magic Protocol 7
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/magic-bridge/blob/main/contracts/bridge.clar#L121
https://github.com/LeastAuthority/magic-bridge/blob/main/next.config.js#L25

Impact

This type of configuration can allow an attacker to perform Cross-Site Request Forgery (CSRF) attacks by
tricking a user to access a malicious URL. If the user has sessions/cookies enabled, this triggers a call to
any API route in the Magic Protocol Next.js server, which could lead to unauthorized modifications or
actions on behalf of real users, without their knowledge.

Feasibility

This attack requires some user interaction. However, a simple request to the Next.js server running this
configuration would show these response headers, which an attacker could easily exploit to craft a CSRF
attack.

Technical Details

This blog post explains a similar scenario involving this type of insecure configuration in which an
attacker is able to steal the session ID with a CSRF attack.

Remediation

We recommend implementing the following configuration:

● Header Access-Control-Allow-Credentials should be set to false
● Header Access-Control-Allow-Origin could have a specific set of domains that are

allowed to do requests if there is no need for any external domain to perform a request on behalf
of the API

● Header Access-Control-Allow-Methods should have a defined set of HTTP methods that
will be used, preferably to be specific by path, e.g.:

○ /api/delete can have a DELETE method
○ /api/user can have a GET and POST method

Status

The Magic Protocol team implemented the recommended configuration.

Verification

Resolved.

Suggestions

Suggestion 1: Use Conditional Imports

Location

main/src/wallet.ts#L139

main/src/store.ts#L25

main/src/utils.ts#L54

main/src/events.ts#L94

main/src/stacks-api.ts#L75

Synopsis

In some instances, the check typeof x === ‘undefined’ is used.

Security Audit Report | Magic Protocol 8
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://infosecwriteups.com/stealing-chat-session-id-with-cors-and-execute-csrf-attack-f9f7ea229db1
https://github.com/LeastAuthority/supplier-server/blob/main/src/wallet.ts#L139
https://github.com/LeastAuthority/supplier-server/blob/main/src/store.ts#L25
https://github.com/LeastAuthority/supplier-server/blob/main/src/utils.ts#L54
https://github.com/LeastAuthority/supplier-server/blob/main/src/events.ts#L94
https://github.com/LeastAuthority/supplier-server/blob/main/src/stacks-api.ts#L75

Mitigation

We recommend using == instead of === so the type would be casted and catch both ‘undefined’ and
‘null’:

Status

The Magic Protocol team stated that they prefer not to use ==, as it has other side effects and created
helper functions to check for "nullish."

Verification

Resolved.

Suggestion 2: Improve Project Documentation

Synopsis

Although the general documentation provides a high-level description of the system, the documentation
and code comments insufficiently describe the code structure and functionality in detail. For example,
there are no mentions of controls in the documentation, but they are implemented in the code.
Documentation on how components of the system function serves as a critical reference point that can
be compared against what has been implemented in the codebase.

Mitigation

We recommend improving the documentation to include:

● Design specifications that provide detailed and concise information about the system design and
requirements. A design specification allows security auditors to check whether the code has been
implemented correctly and adheres to the specification, and avoids incorrect assumptions about
the expected behavior of the system, which may lead to missed security vulnerabilities;

● Architectural diagrams describing components of the system and their interaction;
● User documentation that ensures users and Suppliers interact with the system correctly and as

intended and;
● Code comments that thoroughly describe the intended behavior of each function and

components within the Magic Protocol and Supplier Job Monitor.

Status

The Magic Protocol team acknowledged that there are specific areas in which the documentation
could be improved and will update it as applicable.

Verification

Unresolved.

Suggestion 3: Allow Supplier to Unregister from the System

Location

contracts/bridge.clar#L232

Synopsis

The Supplier can only update their key but cannot delete it. This makes proper maintenance of the system
impossible, as even obsolete keys will be kept.

Security Audit Report | Magic Protocol 9
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/magic-bridge/blob/main/contracts/bridge.clar#L232

Mitigation

We recommend allowing Suppliers to be unregistered from the system.

Status

The Magic Protocol team stated that they will consider implementing the proposed mitigation in future
versions of contracts. As such, the issue remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 4: Use an es lint Rule for Unused Imports

Location

magic-bridge/blob/main/tsconfig.json

supplier-server/blob/main/tsconfig.json

Synopsis

Imports should only be used for development builds (_app.tsx). Unused imports may introduce
vulnerabilities or increase the size of the production build.

Mitigation

We recommend using an es lint rule for unused imports and variables in tsconfig.

Status

The Magic Protocol team implemented an es lint rule for unused imports and variables.

Verification

Resolved.

Suggestion 5: Improve Error Handling

Location

Examples (Non-exhaustive):

contracts/bridge.clar#L141-L143

contracts/bridge.clar#L235-L236

Synopsis

Error handling in the implementation is excessively defensive, with many instances of unnecessary
assertions identified by our team that result in an ERR_PANIC as a response. In general, error panics
should not be used, but if they are used, it should be in cases where the behavior is possible but
unexpected.

There are locations in the codebase where assertions and ERR_PANIC are raised, although the assertion
will always be true. Such assertions add more cost to execution for no gain in reliability.

Security Audit Report | Magic Protocol 10
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/magic-bridge/blob/main/tsconfig.json
https://github.com/LeastAuthority/supplier-server/blob/main/tsconfig.json
https://github.com/LeastAuthority/magic-bridge/blob/78e8a34eb523ca9ab2cbc51f7e4380a3e8989e63/contracts/bridge.clar#L141-L143
https://github.com/Lea%20stAuthority/magic-bridge/blob/main/contracts/bridge.clar#L235-L236

Mitigation

We recommend avoiding the use of ERR_PANIC and implementing more detailed errors for specific
scenarios that are possible and that provide useful information on the cause of the error.

Status

The Magic Protocol team stated that if this error is ever thrown, ERR_PANIC is used to clearly identify a
logic bug in the Magic Protocol, and in future cases where there are new developed versions of the Magic
Protocol contracts, unwrap-panic will be implemented. As such, the issue remains unresolved at the time
of verification.

Verification

Unresolved.

Security Audit Report | Magic Protocol 11
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts, and
zero-knowledge protocols. Additionally, the team can utilize various tools to scan code and networks and
build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Magic Protocol 12
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Magic Protocol 13
22 November 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

