o

Least Authority

PRIVACY MATTERS

Lair Keystore
Security Audit Report

Holo Ltd

Final Audit Report: 23 September 2022

This Security Audit Report is intended for internal use and discussion purposes only. We advise against sharing this
report beyond trusted team members and recommend that publication take place only after the verification has been
completed and the Final Audit Report has been delivered.

Table of Contents

Overview
Background
Project Dates
Review Team

Coverage

Target Code and Revision

rting D mentation
Areas of Concern
Findings
General Comments
System Design
Code Qualit

Documentation

Scope
ific | ion
Issue A: TLS Private Key Is Not Zeroized
Suggestions

Suggestion 1: Update and Maintain Dependencies

S ion 2: Do Not Panic in [Impl .
Suggestion 3: Make open_easy_msqg_len Functions Private

About Least Authority

Our Methodology

Security Audit Report | Lair Keystore | Holo Ltd
23 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background

Holo Ltd has requested that Least Authority perform a security audit of the Lair Keystore. The Lair
Keystore is the secure keystore that holds private keys and seed and performs any and all cryptographic
functions, which need to use private keys for the various Holochain subsystems requiring decryption,
encryption, or signing.

Project Dates

July 25 - August 26: Initial Code Review (Completed)
August 31: Delivery of Initial Audit Report (Completed)
September 19: Verification Review (Completed)
September 23: Delivery of Final Audit Report (Completed)

Review Team

Steven Jung, Security Researcher and Engineer

DK, Security Researcher and Engineer

Nishit Majithia, Security Researcher and Engineer
ElHassan Wanas, Security Researcher and Engineer

Coverage

Target Code and Revision

For this audit, we performed research, investigation, and review of the Lair Keystore followed by issue
reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in-scope for the review:
e Sodoken:

https://github.com/holochain/sodoken/tree/v0.0.1/crates/sodoken
e HC Seed Bundle:

https://github.com/holochain/lair/tree/hc_seed_bundle-v0.1.1/crates/hc_seed_bundle
e Lair Keystore API:

https://github.com/holochain/lair/tree/lair_keystore_api-v0.1.2/crates/lair_keystore_api
e Lair Keystore:

https://github.com/holochain/lair/tree/lair_keystore-v0.1.2/crates/lair_keystore

Specifically, we examined the Git revisions for our initial review:
Holochain Lair: A21c49be3a87e46b3fe968ab309f09299454e05¢c
Holochain Sodoken: 47¢3d3cb72d29be5e9dd95565463c99b6f66dde7

For the review, these repositories were cloned for use during the audit and for reference in this report:

Holochain Lair:
https://github.com/LeastAuthority/holochain-lair

Holochain Sodoken:

Security Audit Report | Lair Keystore | Holo Ltd
23 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/holochain/sodoken/tree/v0.0.1/crates/sodoken
https://github.com/holochain/lair/tree/hc_seed_bundle-v0.1.1/crates/hc_seed_bundle
https://github.com/holochain/lair/tree/lair_keystore_api-v0.1.2/crates/lair_keystore_api
https://github.com/holochain/lair/tree/lair_keystore-v0.1.2/crates/lair_keystore
https://github.com/LeastAuthority/holochain-lair

https://github.com/LeastAuthority/holochain-sodoken

For the verification, we examined the Git revisions:

Holochain Lair: 8e565fe9aed1fb238d6f6174dc9fac4d3b1a8808

Holochain Sodoken: 4bf8d4fdf75a77dbb195358c769584d362e307af

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Supporting Documentation

The following documentation was available to the review team:

Sodoken:
https://docs.rs/sodoken/0.0.1/sodoken/index.html

HC Seed Bundle:
https://docs.rs/hc_seed_bundle/0.1.1/hc_seed_bundle/index.html

Lair Keystore API:
https://docs.rs/lair_keystore_api/0.1.2/lair_keystore_api/index.html

Lair Keystore:
https://docs.rs/lair_keystore/0.1.2/lair_keystore_lib/index.html

Holochain Security Review:
https://hackmd.io/rfotleMIT8SXbVwXEFOyyq?view#SCOPE-1-

Holochain Developer Documentation
https://developer.holochain.org/

In addition, this audit report references the following documents:

Libsodium Audit Results
https://www.privateinternetaccess.com/blog/libsodium-audit-results/

Areas of Concern

Our investigation focused on the following areas:

Correctness of the implementation and adherence to best practices;

Proper management of encryption and storage of private keys, including the key derivation
process;

Exposure of any critical information during user interactions with external libraries, including
authentication mechanisms;

Adversarial actions and other attacks, such as the manipulation of data;

Vulnerabilities in the code as well as secure interaction between the related components;
Inappropriate permissions and excess authority;

Data privacy, data leaking, and information integrity; and

Anything else as identified during the initial analysis phase.

Security Audit Report | Lair Keystore | Holo Ltd
23 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/holochain-sodoken
https://docs.rs/sodoken/0.0.1/sodoken/index.html
https://docs.rs/hc_seed_bundle/0.1.1/hc_seed_bundle/index.html
https://docs.rs/lair_keystore_api/0.1.2/lair_keystore_api/index.html
https://docs.rs/lair_keystore/0.1.2/lair_keystore_lib/index.html
https://hackmd.io/rfotIeMlT8SXbVwxEFOyyg?view#SCOPE-1-
https://developer.holochain.org/
https://www.privateinternetaccess.com/blog/libsodium-audit-results/

Findings

General Comments

Holochain is an open source network that enables users to create distributed applications. For this review,
our team reviewed the Holo Lair Keystore, which is implemented in Rust and performs all cryptographic
functions that need to use private keys, including providing a secure keystore for private keys. The Lair
Keystore is composed of three main components: the lair_keystore is a library for creating and
interacting with a Lair keystore, which includes the 1air_keystore_api that enables client
implementations of the keystore. The hc_seed_bundle implementation performs key generation and
parsing functionality for the Lair Keystore. The Sodoken component creates secure memory (Buffer) that
can be used for storing Lair keystore private keys securely.

Our team examined the design and implementation of the Holo Lair Keystore and found that from a
security perspective, it is well designed and is implemented in adherence with best practice
recommendations. Our team identified an issue and some suggestions that, if resolved, will improve the
overall quality and security of the implementation.

System Design

Our team found that security has been taken into consideration in the design of the Holo Lair Keystore, as
demonstrated by the implementation of secure memory in a Sodoken buffer, which mitigates the
compromise of secret data as a result of disk swapping. The cryptographic implementation uses Blake2b
and Argon2id (which are considered to be sufficiently secure hash functions), as well as the libsodium
encryption library. Our team reviewed the cryptographic design and implementation and did not identify
any vulnerabilities.

Code Quality

We found the code to be well organized and easy to read, generally adhering to Rust development best
practices. Additionally, the codebase is structured in a way that demonstrates a clear separation of
concerns. However, we identified several instances where a function was improperly defined as public.
We recommend that functions be appropriately defined (Suggestion 3). We also found that panics are
used in the drop trait, which does not adhere to Rust best practices. We recommend adherence to best
practice to improve the quality and security of the implementation (Suggestion 2).

Tests

We found that sufficient test coverage has been implemented, which tests for success, failure, and edge
case scenarios. This helps identify implementation errors and verify that the implementation functions as
intended.

Documentation

Our team found the documentation provided by the Holo team to be generally sufficient and helpful in
describing the intended functionality of the different components.

Scope

For this review, our team examined components that function within the Holochain system. We found the
scope of this review to be sufficient for examining these components. Our team assumed that these
components interact with the Holochain system as expected.

Security Audit Report | Lair Keystore | Holo Ltd 4
23 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.privateinternetaccess.com/blog/libsodium-audit-results/
https://www.privateinternetaccess.com/blog/libsodium-audit-results/

Dependencies

Our team identified the use of several outdated dependencies, which are known to contain security
vulnerabilities. We recommend that the Holo team utilize well-maintained and audited dependencies and
that dependencies be updated to the latest release to avoid bugs and issues (Suggestion 1).

Specific Issues & Suggestions

We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

Issue A: TLS Private Key Is Not Zeroized Resolved
Suggestion 1: Update and Maintain Dependencies Resolved
Suggestion 2: Do Not Panic in Drop Implementation Resolved
Suggestion 3: Make open easy msg len Functions Private Resolved

Issue A: TLS Private Key Is Not Zeroized

Severity
Medium

Location
src/internal/tls.rs#L107

crates/lair_keystore_api/Carqgo.toml#L23

Synopsis
An attacker that is able to access memory (e.g., accessing core dump and exploiting vulnerabilities such
as Heartbleed) may be able to retrieve non-zeroized TLS private keys. This is possible due to two reasons:

e rcgen is used without the zeroize feature; and
e Sodoken’s buffer is created without new_mem_locked.

Impact
The leakage of cryptographic keys could result in the loss of security properties, such as confidentiality
and privacy.

Preconditions
An attacker must be able to read memory regions that contain sensitive data.

Mitigation
We recommend enabling the zeroize feature for the rcgen crate and using new_mem_locked when
creating Sodoken'’s buffers.

Security Audit Report | Lair Keystore | Holo Ltd 5
23 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/holochain-lair/blob/a21c49be3a87e46b3fe968ab309f99299454e05c/crates/lair_keystore_api/src/internal/tls.rs#L107
https://github.com/LeastAuthority/holochain-lair/blob/a21c49be3a87e46b3fe968ab309f99299454e05c/crates/lair_keystore_api/Cargo.toml#L23

Status
The Holochain team has implemented suggestions to zeroize the TLS private key.

Verification

Resolved.

Suggestions

Suggestion 1: Update and Maintain Dependencies

Synopsis

chrono, tempdir, rusqlite, serde_cbor, ansi_term, tokio, thread_local, regex, 1ru and
several other dependencies are outdated or have known vulnerabilities. A robust development process
includes the regular maintenance and updates of dependencies in order to minimize the risk of exploiting
known vulnerabilities from the codebase. To get the full list of the outdated or vulnerable dependencies,
we suggest running the cargo outdated and cardo audit tools.

Mitigation

We recommend updating or replacing the reported dependencies. We also recommend updating the
relevant upstream package in the event that a dependency is used by an upstream dependency. In
addition, we recommend regularly running the cargo audit and cargo outdated tools.

Status
The Holochain team has updated the dependencies, as suggested.

Verification

Resolved.

Suggestion 2: Do Not Panic in Drop Implementation

Location

lair_keystore/src/store_sqlite.rs#L56

Synopsis
According to best practices, in a secure Rust development, the implementation of the std: :ops: :Drop
trait must not panic.

Mitigation
We recommend avoiding the use of panic in the Drop trait.

Status
The Holochain team has removed the panic.

Verification
Resolved.

Security Audit Report | Lair Keystore | Holo Ltd 6
23 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/holochain-lair/blob/a21c49be3a87e46b3fe968ab309f99299454e05c/crates/lair_keystore/src/store_sqlite.rs#L56

Suggestion 3: Make open_easy_msg_len Functions Private

Location

src/secretbox/xchacha28poly1305. rs#L49

src/secretbox/xsalsa20poly1305. rs#L49

src/crypto_box/curve25519xsalsa20poly1305.rs#L.108

Synopsis

Open_easy_msg_1len functions are declared public and can be called from outside the crate. At the
same time, these functions are used in tests. Using these functions beyond specific tests can lead to the
improper calculation of the length of messages and potential integer overflow.

Mitigation
We recommend making the functions listed above private.

Status
The Holochain team has removed the target functions.

Verification

Resolved.

Security Audit Report | Lair Keystore | Holo Ltd
23 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/holochain-sodoken/blob/main/crates/sodoken/src/secretbox/xchacha20poly1305.rs#L49
https://github.com/LeastAuthority/holochain-sodoken/blob/main/crates/sodoken/src/secretbox/xsalsa20poly1305.rs#L49
https://github.com/LeastAuthority/holochain-sodoken/blob/main/crates/sodoken/src/crypto_box/curve25519xsalsa20poly1305.rs#L108

About Least Authority

We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts, and
zero-knowledge protocols. Additionally, the team can utilize various tools to scan code and networks and
build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis

Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Lair Keystore | Holo Ltd 8
23 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results

We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions

We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing

Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Lair Keystore | Holo Ltd 9
23 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

