
ZKAPs Whitepaper
Published: July 2021

What are ZKAPs?
• Zero-Knowledge Access Passes:
Anonymous authorization tokens

• Utilized as a protocol to enable users
to access services without revealing per-
sonal information

• Amodified version of Brave’s implemen-
tation of Privacy Pass

• Adapted for PrivateStorage, a distributed
and anonymous file storage system

Who is this paper for?
This paper is intended to be accessible to
audiences without any previous knowledge
of cryptography or programming. Neverthe-
less, it provides ample detail and references
for those who are interested in the crypto-
graphic and implementation details of ZKAPs.

Traditional, account-based authorization has privacy
issues: all actions or data of a user can be collated
to form a profile, which is often linked to the user’s
real-life identity as well. ZKAPs provide a way to de-
couple a user’s individual actions and data from each
other and from the user’s identity, thereby increasing
anonymity (section 1).

Section 2 describes the process of issuing and re-
deeming ZKAPs. In the issuance phase, the user’s
client generates a batch of random tokens, blinds them,
and sends them to the issuer. The issuer signs the
blinded tokens without knowing the token numbers or
the user’s identity. In the redemption phase, the user
unblinds the signed tokens and redeems them in ex-
change for some service. Because token numbers are
random, the unblinded signed tokens contain no in-
formation about the user or about other tokens in the
same batch.

ZKAPs are a modified version of Privacy Pass, which
has been developed as way to help users avoid having
to solve too many CAPTCHAs. By solving one chal-
lenge, Privacy Pass users get a batch of anonymous
tokens which they can use to get access to online con-
tent. Brave has developed a Rust implementation of
Privacy Pass, which is the basis of ZKAPs. Instead
of proof of humanness for Content Delivery Networks,
ZKAPs serve as proof of payment to be redeemed for
storage time in Least Authority’s anonymous file stor-
age system, PrivateStorage (section 3).

While ZKAPs provide a privacy-enhancing alternative
to account-based identification, they do not guaran-
tee complete anonymity: users’ privacy can still be
compromised by metadata and the low number of to-
tal users of a service. Some further limitations of the
current implementation of ZKAPs are also discussed
in section 4.

Currently, ZKAPs are used as proof of payment to be
redeemed for file storage in PrivateStorage. However,
they can be used as proof of other attributes, for exam-
ple, as proof of age, copyright or membership in an or-
ganization. Potential use cases for ZKAPs, including
public transportation systems, VPN, direct messaging
and Content Delivery Networks, are described in sec-
tion 5.

ZKAPs Whitepaper 2

https://brave.com
https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/
https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/
https://privacypass.github.io
https://private.storage/

Table of Contents
1 Why do we need ZKAPs? 4

1.1 The problems with user accounts . 5
1.2 An alternative to user-based verification . 6
1.3 Towards anonymous authorization . 6

2 How ZKAPs work 9
2.1 A short summary of the process of using ZKAPs . 10
2.2 Cryptographic basics . 12
2.3 Issuance phase . 14
2.4 Redemption phase . 18

3 The evolution of ZKAPs 21
3.1 Privacy Pass . 22

3.1.1 The problem with CAPTCHAs . 22
3.1.2 One challenge, multiple tokens . 22
3.1.3 The Brave implementation . 23

3.2 Adapting Privacy Pass for PrivateStorage . 23
3.2.1 Anonymous file storage . 23
3.2.2 Redeeming ZKAPs for anonymous file storage . 24
3.2.3 The advantages of PrivateStorage . 24

4 Known problems and limitations 25
4.1 Outside factors influencing privacy . 26

4.1.1 Metadata . 26
4.1.2 The necessity of a crowd . 26

4.2 Limitations of the current implementation . 26
4.2.1 Only one denomination . 26
4.2.2 The issuer and service provider must be the same entity 26
4.2.3 The issuer’s signing key commitment . 27

5 Expanding the use of ZKAPs 28
5.1 The advantages of adopting ZKAPs . 29

5.1.1 Reducing the risks of handling customer data for service providers 29
5.1.2 Payments interoperability: allowing services to integrate without sharing customer data 29
5.1.3 Increasing customer satisfaction . 29

5.2 Potential use cases for ZKAPs . 30
5.2.1 Digital gift cards and invitation systems . 30
5.2.2 Public transport . 30
5.2.3 VPN and direct messaging services . 30
5.2.4 Content escrow . 31

ZKAPs Whitepaper 3

1

Whydoweneed
ZKAPs?
Problems with account-based identification:

• User accounts for online services al-
low the provider to track and connect
that user’s behaviour and their data, cre-
ating user profiles

• Connecting user accounts to real-life
identities (e.g., via payment process-
ing) compromises the privacy of users’
actions and data

Privacy-enhanced identification using ZKAPs:

• Individual user actions and pieces of
data are not linked, so they do not form
a user profile

• Payment data are separate from usage
data, so they do not reveal the real-life
indentity of users to the service provider

ZKAPs Whitepaper 4

1.1 The problems with user accounts
Using an online service requires users to prove that they have authorization to access the service. Most
often, the right to use the service is granted after registration, and users have to identify themselves to gain
access.

For paid services, each user account is typically connected to the payment processor in order to verify if
they have paid the fees required to access the digital asset.

Such an account is a “durable identifier”, meaning that the same email address or username is connected
to all instances of the user interacting with the service.

In order to process payments, service providers collect users’ per-
sonal data:

• Name
• Email address
• Location (for VAT)
• Transaction data
• Credit/Debit card number

These data are stored by the service providers, and can be used in ways the user did not consent to and
not necessary to operate the service: providers can construct profiles of users’ purchases, and use these
for targeted advertisement, individualized pricing, or forward/sell it to third parties.

On the other side, handling personal data creates a lot of extra work for service providers because of the
complicated and geographically different data handling regulations. Not all providers can manage this task
in a sufficiently secure way, and if the account becomes compromised by someone stealing or guessing the
password, the attacker has full control of the account and knowledge of the user’s past actions and personal
data. Apart from negatively affecting users, such scenarios pose serious risks to service providers as well,
as discussed in section 5.

ZKAPs Whitepaper 5

1.2 An alternative to user-based verification
Most service providers do not need personal data to provide the service, they only need it to process the
payment ("accounting").

ZKAPs provide a way to keep payment data separate from personal data. Rather than linking the payment
database to the service database, users are given ZKAPs in exchange for proving that they have permission
to use the service. This can be a proof of payment, proof of age, proof of membership in an organization, etc.
Users can then redeem these tokens to anonymously prove they have permission to use a certain service.
With this model, the service provider knows if the user is authorized to use the service, but not who the user
is.

In other words, ZKAPs are used as an anonymous proof of payment.

1.3 Towards anonymous authorization

Authorization based on user accounts is similar to a guest list
for a party: to gain access, guests need to present proof of their
identity, like an ID card or driver’s license. The person at the door
checks the name on the guest’s ID to see if that name is on the
guest list, and they also check their picture to see if the ID really
belongs to the person trying to gain access.
Similarly, to access a service with account-based identification,
the service provider checks if a user’s account has permission to
access the service, and users also need to provide their unique
user name and password to verify their identity.

Conversely, an anonymous authorization protocol does not require users to reveal their identity to access
the service; they are only required to prove that they have permission to use the service.

ZKAPs Whitepaper 6

A rudimentary form of anonymous authorization is a ticket roll:
customers buy tickets containing numbered labels, and then use
them to access services or buy items. The numbers on the ticket
help merchants verify the validity of the tickets. For example,
they can look at whether the number on the ticket falls within
some particular, expected range and grant or deny access to the
customer based on that.

Each ticket has a corresponding coupon (as seen here on the
bottom of the ticket roll), which has the same number as the ticket.
The customer keeps the coupon, which helps with record-keeping
and serves as a means of dispute-resolution. For example, if a
merchant doubts the authenticity of a given ticket, the customer
can prove it by presenting the corresponding coupon.

Let’s see how this works in practice. Our protagonist, Aditi, has heard that a carnival has come to town and
decides to check it out.

At the carnival, Aditi purchases a roll of tickets
to be exchanged for rides, games, shows food,
and so on.

Then she gets some more popcorn and catches
the circus act at the big tent.

She goes for a spin on the merry-go-round, has
some popcorn, and takes a ride on the ferris
wheel.

After a day of fun, Aditi finally goes home satis-
fied.

ZKAPs Whitepaper 7

In some respects, the ticket system appears to be a privacy-improvement: Aditi didn’t have to show her ID
at each ride and authenticate herself: showing the ticket is proof enough that she paid and is allowed to go
on the rides and get snacks.

Nevertheless, this ticket system
is not completely private: the
properties of the tickets them-
selves can easily be exploited
for privacy violations. Imagine
a situation in which a malicious
ticket-booth operator – Mallory –
wants to figure out what Aditi did
while at the carnival.

Tickets that are collected after
the fact – and, more specifically,
the range and order of numbers
on those tickets – can be used
to deduce certain patterns of be-
havior – for example, that the
same person bought some pop-
corn, rode the ferris wheel, took
a spin on the merry-go-round,
ate some more popcorn, saw a
show in the big tent and went
home.

Furthermore, the existence of the coupon reel retained byMallory at the ticket booth can be used to determine
which person purchased which range of numbered tickets; she could easily staple Aditi’s tickets to her
merchant copy of Aditi’s receipt.

Taken together, the basic proper-
ties of the authorization protocol
itself can thus be used to deter-
mine what Aditi did at the carni-
val – and, in this case, that she
really loves popcorn.
Maybe Mallory could sell this in-
formation to popcorn vendors –
or use the information to lure
Aditi into other behaviors.

So, while tickets (as a broad authorization system) might represent a privacy improvement over user ac-
counts (an authentication system), a sufficiently-equipped attacker can still use the information leaked by
them to monitor, track, or surveil who use it – and in certain respects, this is precisely the point.

Of course, this does not mean that we should do away with authorization protocols entirely and have only,
say, “permissionless” carnivals – a carnival operator who operates a “permissionless” carnival, after all,
would surely go out of business fast! But the question still remains: how can we accept legacy payments
with built in tracking mechanisms (such as credit cards) without jeopardizing the privacy of users?

ZKAPs Whitepaper 8

2

How ZKAPs work
There are two phases of using ZKAPs:

1. Issuance phase

A customer pays for some passes, gener-
ates a batch of randomly numbered tokens,
blinds them, and sends them to the issuer
along with the proof of payment. The issuer
signs the blinded tokens without knowing the
customer’s identity or the token numbers, and
sends these back to the customer.

2. Redemption phase

To "spend" the tokens, the customer unblinds
them, and sends them to a provider in ex-
change for some service. The service provider
checks the signature and the token number
for validity, but they do not know which to-
kens belong to which customer, nor which
tokens belong to the same batch.

ZKAPs Whitepaper 9

ZKAPs attempt to solve the problem of privacy-conscious authorization: they can be used to authorize
individual actions without identifying individual users.

At a higher level, ZKAPs are like carnival tickets without consecutive numbering or any other tracking infor-
mation – the customer spends or uses them like a currency, while denying the service provider who accepts
them the ability to stitch together a behavioral profile about the customer after the fact.

This approach to ZKAPs is called Privacy by Design: the service provider cannot uncover the user’s identity
even if they want to. This is in contrast with Privacy by Policy, where the service provider has access to
users’ data, which is only limited by laws or policies.

Privacy by Policy
• Service provider has access to users’
personal data

• Can connect a specific user’s actions,
data and/or behaviour to the user’s
real world identity

• Only laws/policies in the way of misus-
ing data

• Possibility of data breach via hack-
ing or force (e.g. governments, intel-
ligence agencies)

Privacy by Design
• Service provider does not have ac-
cess to users’ personal data

• Cannot connect a specific user’s ac-
tions, data and/or behaviour to the
user’s real world identity

• Personal information cannot be leaked
or stolen – the service provider does
not have it

• A specific user’s actions/data/be-
haviour cannot be handed over to
third parties (including government
agencies) – the service provider does
not have these

It is important to note that Privacy by Design is not an absolute, and it does not apply equally to all properties
of a given system. Some caveats of the privacy properties of ZKAPs are discussed in 4.

2.1 A short summary of the process of using ZKAPs
ZKAPs are created by the interaction of two parties:

1. the user: the customer purchasing the ZKAPs, typically by using an app or an extension on their
device.

2. the issuer: the entity issuing ZKAPs, which is also the entity providing some service (e.g. data storage
or content) in exchange for ZKAPs.

Authorization with ZKAPs happens in 2 phases: the issuance phase and the redemption phase. These are
briefly summarized below. A detailed description of both phases is found in the remainder of this section.

First, in the issuance phase, the customer acquires some tokens in exchange for payment. This phase
consists of the following steps:

1. The user generates some random tokens.

2. The user blinds the tokens and sends the blinded tokens to the issuer for signing, along with a proof
of payment.

3. The issuer returns signatures of the blinded tokens (equivalent to blinded signatures of the tokens) to
the user. The blinding prevents the issuer from seeing the original tokens.

ZKAPs Whitepaper 10

4. The user unblinds the signatures to reveal signatures of the original tokens. These are now ready to
be exchanged for a service. No one apart from the user has ever seen these tokens, so they cannot
be linked to the user’s identity.

In the second step, the redemption phase, the user "spends" the tokens; that is, receives some service in
exchange for the tokens. The following steps make up the redemption phase:

1. The user sends the original token and the unblinded signature to the service provider.

2. The service provider checks the validity of the signature.

3. The service provider also checks the token number to make sure it has not been "spent" yet. The
token numbers are random, so they do not provide any information about the customer.

4. If everything is in order, the service provider provides the requested service to the user and records
token as spent so that it cannot be used again.

In the remainder of this section, we review the issuance and redemption of ZKAPs in detail, providing the
cryptographic details for each step. ZKAPs are based on Brave’s implementation of Privacy Pass; we de-
scribe the evolution of the protocol and the differences between various implementations in section 3.

ZKAPs Whitepaper 11

https://brave.com

2.2 Cryptographic basics

Notation used in this chapter

Symbol Meaning of Symbol Example Explanation
: explanation of a variable T : random token T is used to signify the random token

== equivalence P : Q == X : Y the relationship between P and Q is the
same as between X and Y

:= assigning a value to a variable x := 2y x is calculated by multiplying y by 2
= equals P k = T rk P k and T rk have the same value
$←− choose uniformly at random k

$←− Zq k is chosen uniformly at random from Zq

The Cryptography of Zero-Knowledge Proofs

A zero-knowledge proof allows one entity (the prover) to prove the knowledge of a statement to another
entity (the verifier) without revealing any information on the statement. In recent years, it has also become
possible to do so in a non-interactive manner. In this use case, zero-knowledge proof cryptography allows
the issuer of ZKAPs to prove that it signs blinded tokens correctly without revealing its secret key.

The ZKAPs implementation is based on Verifiable Oblivious Pseudorandom Functions (VOPRFs) using a
Batched Discrete Log Equivalence proof (DLEQ). A DLEQ is a non-interactive zero-knowledge proof of
knowlegde requiring that two pairs of values have the same discrete log relation:

DLEQ(P : Q == X : Y)

In other words, this proof confirms that for two pairs of values (P,Q) and (X,Y), if Q = P k1 and Y = Xk2

are both true, then k1 = k2.

It is possible to batch such DLEQ proofs together to get a Batched DLEQ proof we call N -DLEQ. This
increases efficiency, since only one DLEQ proof has to be generated for a whole batch of tokens, instead of
a separate proof for every equivalence relation.

For the instantiation for ZKAPs, the Ristretto group is used.

Throughout this description of the protocol, we abstract the used group and use the following notation:

G : group in multiplicative notation of prime order q and generator g
q : order of group G
g : generator of group G

Additionally, three hash functions are used. The three used hash functions are defined as follows:

H1 : Zq → G∗, used in the issuance phase to create blinded tokens
H2 : Zq ×G→ {0, 1}κ, used in the redemption phase to create verification keys
H3 : G6 → Zq, used for the calculation of the batch DLEQ proof

ZKAPs Whitepaper 12

https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://ristretto.group/ristretto.html
https://en.wikipedia.org/wiki/Group_(mathematics)

Let us see how ZKAPs work in detail, going back to the carnival scenario. The cryptographic details for each
step are shown in the purple boxes.

For a more detailed description of the protocol and the security guarantees, see the references in section 3.

First, the setting: a carnival is in town and publicly advertising
itself. The poster bears the signature of Joe Clown, famous for
organizing the best carnivals.
Everyone in town can see the advertisement. The audience can
compare what they see over time and talk to each other about
what they saw. They can tell they are in for a great time, be-
cause Joe Clown has a strong reputation, and his signature is a
guarantee for quality.

k : secret key
Y : public key
g : generator of group
q : order of group

k
$←− Zq

Y := gk

The server generates a keypair
consisting of a secret key k and
the public key Y .

The secret key k is a random
scalar that is only known to the
server.

The generator g and order q of
the group, as well as the public
key Y , are known to all parties.
The public key Y is the com-
mitment by the issuer to a par-
ticular signing key. Customers
can check that the public key re-
mains unchanged over time, and
does not vary between transac-
tions. This guarantees that all
ZKAPs are issued in the same
manner, and that the issuance
process will not introduce any
identifiable information into the
resulting ZKAPs.

ZKAPs Whitepaper 13

https://doc.dalek.rs/curve25519_dalek/scalar/index.html
https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/voprf/struct.PublicKey.html

2.3 Issuance phase

Seeing the advertisement, Aditi
decides to get some tickets.

The customer purchases some ZKAPs using their preferred
financial instrument. This could be any payment system – credit
card, bank transfer, check – or it could be a different system
entirely, for example, something like Zcash.

Not all of these systems provide anonymity, but this does not nec-
essarily break the properties of ZKAPs, as we will see later.

Having paid, Aditi receives a
proof of payment.

This can take different forms with different payment systems. Of-
ten, it is a printed or electronic invoice.

Next, Aditi prints out a group of
her own random carnival tick-
ets.
They don’t contain identifying
information related to Aditi or to
other tickets in the group. She
doesn’t show these to anyone.

t : random bitstring/nonce
H1 : hash function
T : random token
r : blinding factor
λ : security parameter
q : order of group

t
$←− {0, 1}λ

r
$←− Zq

T := H1(t)

The user’s client (e.g. an application or an extension) creates pairs of random nonces t and random blinding
factors r. Both values t and r are chosen uniformly at random, t from bitstrings of length of the security
parameter λ and r from Zq. Nonces in cryptography are arbitrary numbers, used only once. The random
value t is called a TokenPreimage in this implementation.

Tokens T are derived from the random nonces t using the hash function H.

ZKAPs Whitepaper 14

https://en.wikipedia.org/wiki/Zcash
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/voprf/struct.TokenPreimage.html

Please note that the tokens are generated in a batch. This means that not only one token is sampled at
random and not only one blinding factor is generated, rather, these values are sampled in a batch. A batch
consists of N tokens, so N random bitstrings/nonces and N blinding factors are sampled.

More concretely, they are calculated for all random nonces and random tokens:

t1, . . . , tN
$←− {0, 1}λ

r1, . . . , rN
$←− Zq

for i ∈ {1, . . . , N} : Ti := H1(ti)

. . .

For simplicity, we follow the path of one token T in the batch, but keep in mind that all tokens are processed
together as a batch for the DLEQ proof.

Then Aditi “blinds” the tickets
she has printed:
She seals them inside a blank
envelope beneath a piece of
carbon paper.

T : random token
r : blinding factor
P : blinded token

P := T r

Tokens are blinded to ensure that the issuer does not know which
tokens they are signing. The blinded token is constructed us-
ing the random token T and the random blinding scalar r. The
blinded tokens are denoted by P .

Now Aditi sends the sealed,
blank envelopes and the proof
of payment to the carnival’s
ticket master.

The user’s client sends the blinded tokens and the proof of pay-
ment to the issuer’s server.

ZKAPs Whitepaper 15

https://doc.dalek.rs/curve25519_dalek/scalar/index.html

The ticket master confers with
the bank to validate the proof of
payment.

The issuer of ZKAPs checks the validity of the proof of payment
with the payment processor. The payment processor only has
to refer to its transaction register to find the transaction identifier
from the proof of payment.

The payment processor then tells the ticket master if the payment
is real or not, but does not provide any identifying information
about the customer.

Since the payment really was
made, Joe Clown, the ticket
master, proceeds to sign the
blank envelopes.
The ticket master must sign the
envelopes in a way that con-
vinces Aditi that no tracking
information has been added.
We’ll come back to this when
Aditi is checking the signature.

Q : blinded signed token
P : blinded token
k : secret key
T : random token
r : blinding factor
N -DLEQ : DLEQ-Proof for a batch of N + 1 values

Q := P k = T rk

p := N -DLEQ(g, Y, {Pi}i, {Qi}i)

The server signs each blinded token P with its secret key k. The
secret key, also called SigningKey, is never revealed to the client.
The result is a SignedToken Q.

Please note that all earlier steps were conducted for multiple tokens T , resulting in multiple blinded tokens
P and multiple blinded signed tokens Q. The server now also creates a proof (BatchDLEQProof) p showing
that all blinded tokens were signed by the same secret key:

DLEQ(Pi : Qi == Pj : Qj)

That is, for all pairs of blinded tokens Pi and signed tokens Qi for i ∈ {1, . . . , N}, and for all pairs of blinded
tokens Pj and signed tokens Qj for j ∈ {1, . . . , N} if Qi = P kii and Qj = P

kj
j are both true, then ki = kj

must also be true.

In this batching step, the third hash function H3 is used.

ZKAPs Whitepaper 16

https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/voprf/struct.SigningKey.html
https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/voprf/struct.SignedToken.html
https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/voprf/struct.BatchDLEQProof.html

Now the ticket master returns the signed, sealed envelopes to
Aditi.

The user receives the signed to-
kens Q, along with the N -DLEQ
proof p.

Next, Aditi inspects the signature. She makes sure it contains
no extra information that might be used to track her.
She also compares the publicly visible signature on the poster
to the signature she has received on the envelopes.
If Aditi thinks the signature on the envelopes deviates from the
signature on the public poster, she shouldn’t trust the tickets.

The public key that the issuer of
ZKAPs uses must be visible to
customers at all times. This en-
sures that the key is not changed
from transaction to transaction,
but all verifications use the same
public key.

ZKAPs Whitepaper 17

But let’s suppose the signa-
tures are good.
In this case, Aditi opens the en-
velopes and takes out the orig-
inal tickets.
The carbon paper has copied
the carnival signatures from the
envelopes to the ticket each
contained.
Aditi now holds tickets which
no one else has ever seen, but
which are signed in a way that
only the carnival’s ticket master
could sign them.

W : unblinded signed point
Q : blinded signed token
r : blinding factor
k : secret key
T : random token
t : random bitstring/nonce

W := Q1/r = T k

store (t,W)

The user unblinds the signatures using the random scalar r. This
results in the unblinded signed point W , which, paired with the
random preimage bitstring t, forms the unblinded token (t,W).

The tokens are now ready to be redeemed for some service or
item.

2.4 Redemption phase

At last, Aditi makes her way to
the fortune teller’s booth.
She presents the signed tickets
to the fortune teller.

t: random preimage bitstring
W : unblinded signed point
K: shared verification key
R: request
MACK : Message Authentication Code for shared key
K
H2 : hash function

K := H2(t,W)
MACK(R): Verification signature
(t, R,MACK(R)): Access Pass

When the user wants to redeem the tokens, their client derives the shared verification key K from the un-
blinded token (t,W) using the second hash function H2.

Using the verification key K and some request R (which could be a query to a web app or a piece of data
to be stored), the user’s client constructs the verification signature MACK(R).

Finally, the ZKAP is composed of the random preimage bitstring t, the requestR and the verification signature
MACK(R). The ZKAP is then sent to the server.

Note that the verification key K is not sent along with the ZKAP.

ZKAPs Whitepaper 18

https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/voprf/struct.UnblindedToken.html
https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/voprf/struct.VerificationKey.html
https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/voprf/struct.VerificationSignature.html

The fortune teller checks the
tickets. Is the signature on the
tickets really the ticket master’s
signature?

t: random preimage bitstring
R: request
k : secret key
MACK : Message Authentication Code for shared key
K
H1 : hash function
H2 : hash function
T ′,W ′,K ′: recomputed random token, unblinded
signed point, shared verification key

T ′ := H1(t)
W ′ := (T ′)k

K ′ := H2(t,W
′)

MACK′(R): Verification signature
Check MACK(R)

?
= MACK′(R)

Upon receiving the ZKAP, the server derives the token T ′ from the token preimage t (contained in the ZKAP)
and the hash functionH1. It then calculates the unblinded tokenW ′ using the token T ′ and the secret key k.
Finally, it derives the signing key K ′ with the help of the second hash function H2 and the unblinded token
(t,W ′) it constructed.

Using the signing key K ′ derived above, the server can now construct a verification signature MACK′(R),
and compares it with the verification signature MACK(R) it received as part of the ZKAP.

Finding the signatures to be
valid, the fortune teller tosses
the tickets in the trash so that
Aditi can’t use them again.

If the two verification signatures match, the server "knows" the
ZKAP is valid. Now it checks whether the token has already been
"spent" by checking the token preimage t against its list of past
transactions.
If t has not yet been spent, the redemption succeeds and the
server adds the token preimage t to the list of those already spent,
so it cannot be redeemed twice.

ZKAPs Whitepaper 19

And finally the fortune teller is happy to give Aditi her fortune.
Luckily it is good news! With hard work and perseverance, Aditi’s
dream of being the first astronaut on Mars will come true.

The user is granted the request
they paid for: access to some
content, or storage of their data
for a certain amount of time.

Here’s a brief afterward to this story.
Aditi received quite a distinctive fortune and the fortune teller
can’t keep it to herself. She decides to tell the ticket master
about it. The ticket master is really curious, so he’ll try to find
out who the first astronaut on Mars will be.

But when the fortune teller gives the ticket master the tickets
associated with the fortune, there’s nothing the ticket master
can learn from them. The ticket master only remembers signing
blank envelope after blank envelope, and has no idea which
envelope contained these tickets.

And, since the ticket master always signs envelopes the same
way, the signature on the ticket reveals no further clues.

The random blinding scalar r
is not revealed to the issuer’s
server, so it cannot compute
the unblinded token T from the
blinded token P or the verifica-
tion key K.
Even though the server receives
the preimage bitstring t, it cannot
connect this to a particular user
or another preimage bitstring t′,
because t is a unique but ran-
dom number.
This means that the issuer
of ZKAPs cannot deduce the
user’s identity from the prop-
erties of the token, even if they
have the intention to.

ZKAPs Whitepaper 20

3

The evolution of
ZKAPs
ZKAPs are based on Privacy Pass, an anony-
mous user-authenticationmechanism that al-
lows users to gain multiple tokens by solving
a single CAPTCHA.

Brave developed a Rust implementation of
the Privacy Pass protocol, which forms the
basis of our implementation of ZKAPs.

ZKAPs use a slightly modified version of the
Brave implementation to provide anonymous
proof of payment for PrivateStorage, a privacy-
preserving file storage system.

ZKAPs Whitepaper 21

https://privacypass.github.io
https://brave.com
https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/
https://private.storage/

3.1 Privacy Pass
Privacy Pass (Davidson et al., 2018) is an anonymous whitelisting solution with a browser-based implemen-
tation that interacts with Cloudflare’s server to store and "spend" tokens. It was developed to remedy the
problem of certain groups of users having to solve too many CAPTCHAs when interacting with Cloudflare.

3.1.1 The problem with CAPTCHAs
Cloudflare, like many other Content Delivery Networks, filters
IP addresses to prevent malicious attacks from the web (e.g.
comment spam or SQL attacks). They do this by IP reputation
assessment: trying to distinguish trustworthy IP addresses
from malicious ones, which are often used by bots. The most
common way to distinguish human users from bots is to make
“suspicious" users solve a CAPTCHA .

Users of the Tor browser or VPN services were often mistaken
for bots by Cloudflare. The reason for this is that Tor and VPN
services do not show the provider the user’s actual IP address,
but they use one of their own IP addresses instead. Since this
is a relatively small pool of IP addresses shared by many users,
Cloudflare’s security system often flagged these as suspicious.

As a result, Tor and VPN users were asked solve a CAPTCHA
17 times more often than other users (Davidson et al. 2018, p.
165), which impacted their user experience negatively.

3.1.2 One challenge, multiple tokens
The basic solution concept of Privacy Pass is that one action results in a batch of tokens: users only need
to prove their humanness once, and get several tokens to use for several actions. In addition, Privacy Pass
tokens do not compromise anonymity, as discussed in section 2.

Privacy Pass builds on Ecash by Chaum (1982, 1983), which provides a protocol for unlinkable token is-
suance and redemption using blinded tokens and blind signatures.

Privacy Pass uses an adaptation of the Oblivious Pseudorandom Function Protocol (OPRF) (Jarecki et al.,
2014, 2016). This protocol allows users to ask for PRF evaluations from the provider holding the PRF key
on inputs that are hidden from the provider. The OPRF protocol outputs a 1-RTT protocol for both signing
and redemption.

Privacy Pass modifies Jarecki et al.’s non-interactive zero-knowledge proof of Discrete Log Equivalence
(DLEQ), and uses a batch DLEQ proof for increased efficiency. This enables users to sign all their tokens
with the same private key, and, in turn, prevents the provider from using different key pairs for different users
and compromising their anonymity.

ZKAPs Whitepaper 22

https://en.wikipedia.org/wiki/CAPTCHA
https://www.torproject.org/download/

3.1.3 The Brave implementation
Brave has developed a Rust implementation of Privacy Pass using the Ristretto group. For implementation,
Brave used the Merlin project.

3.2 Adapting Privacy Pass for PrivateStorage

ZKAPs
• Used as proof of payment
• Integrated with Tahoe-LAFS
• Tokens (ZKAPs) redeemed for storage
time

• Developed as a standalone app

Privacy Pass
• Used as proof of humanness
• Integrated with Cloudflare
• Personal information cannot be leaked
or stolen – the service provider does
not have it

• Developed as a browser extension

ZKAPs were created by adapting Privacy Pass for a new use case: to provide an anonymous proof of
payment for using them with PrivateStorage, a privacy-preserving file storage solution based on the Tahoe-
LAFS storage system.

An open source, distributed
secure storage solution.

Hosted and managed version of
Tahoe-LAFS.

3.2.1 Anonymous file storage
PrivateStorage offers a private, secure and end-to-end encrypted solution that aims tominimize the collection
of any data related to its users. Developed by Least Authority, it is based on the Tahoe-LAFS secure storage
system.

ZKAPs are generated and signed in batches, just like the tokens in Privacy Pass. However, instead of solving
a CAPTCHA to prove one’s humanness, ZKAPs require proof of payment to be validated.

PrivateStorage has a standalone app as the user’s client. The ZKAPs are stored in the app, and redeemed
when the user sends the data to the server to be stored.

Currently, 1 ZKAP is redeemed for 1 month’s worth of storage of 1 megabyte of data in PrivateStorage.

ZKAPs Whitepaper 23

https://brave.com
https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/
https://ristretto.group/ristretto.html
https://merlin.cool/
https://private.storage/
https://tahoe-lafs.org/trac/tahoe-lafs
https://tahoe-lafs.org/trac/tahoe-lafs
https://tahoe-lafs.org/trac/tahoe-lafs
https://privatestorage.io/
https://tahoe-lafs.org/trac/tahoe-lafs

3.2.2 Redeeming ZKAPs for anonymous file storage
Encrypted data becomes cipher-
text, which is then divided into
smaller parts called "shares".
Shares of ciphertext get dis-
tributed on servers in a “grid”
(collection of servers designated
to store these data). The Tahoe-
LAFS protocol does not require
money for this to happen.
No user accountsmeans a differ-
ent approach to pay-for-storage:
we need a way to ensure that
each share being received is
paid for. The Tahoe-LAFS pro-
tocol includes leases on shares.

The PrivateStorage servers re-
quire ZKAPs to accept data
for storing. The leases for
shares are set based on the
ZKAPs. Without ZKAPs, the
storage servers will not allow the
shares to be stored: if there is no
proof of payment, the system will
not provide the service (storing
the data).

3.2.3 The advantages of PrivateStorage
ZKAPs can be used to authorize individual actions without identifying individual users, without the need for
user accounts or access control lists. As demonstrated in section 2, tokens cannot be linked to token-holders
or to each other.

This means that the service provider cannot create user "profiles" based on payment data or user accounts.
So not only can providers not connect individual actions/data pieces to a user, they cannot even connect
individual actions/data pieces to other actions/data pieces in the way they are able to do with account-based
authentication – barring the caveats discussed in section 4.

Files and directories are encrypted on the client side (locally) using the encryption key held by the user. The
provider does not have this key, so they don’t even know what the data they are storing is. This provides an
extra dimension of privacy: not only is the personal information of the user hidden from the service provider,
but the content of the files they are storing as well.

PrivateStorage also protects the integrity of the data stored on its servers: the provider cannot alter the
data in any way. If the user’s client detects any modifications of the data coming from the server, it will not
download the modified data.

The distribution of data as ciphertext shares provides improved availability. Any given piece of information is
stored on more than one server. As a result, even if an entire server is unavailable (as a result of accidental
damage or an attack), the data can still be recovered from other servers.

ZKAPs Whitepaper 24

4

Knownproblems
and limitations
Outside factors compromising privacy:

• Service providers can collect themeta-
data of users (such as IP addresses or
in-browser activity) to create profiles

• The less users a service has, the eas-
ier it is to connect in-app activity to a
particular user

Limitations of the current implementation:

• There is only one denomination of ZKAPs

• The issuer and the service provider needs
to be the same entity

• The issuer’s signing key commitment
needs to be strengthened

ZKAPs Whitepaper 25

4.1 Outside factors influencing privacy
4.1.1 Metadata

Although ZKAPs do not reveal Aditi’s identity, other metadata
might: for example, facial recognition at the payment processor
and throughout the carnival could easily identify her and track
her actions.

On the internet, her IP address might be tracked from the pay-
ment processor to the point of service, and a profile could be
created on the basis of her activity.

4.1.2 The necessity of a crowd
If Aditi is the only person at the carnival, no one needs to see her
tickets to link her activities together. Aditi can disguise herself all
she wants, but the carnival will still know it only issued one group
of tickets in exchange for one payment. Other participants are
necessary to provide deniability for any particular interaction.

In real life, running a service with only one user is bound to be unprofitable and unlikely to last; however,
coupled with other information such as location or language settings, users can easily find themselves in a
group of one, compromising their anonymity.

4.2 Limitations of the current implementation
4.2.1 Only one denomination
At the moment, all ZKAPs have the same value: they can pay for storing 1 megabyte of data for 1 month in
PrivateStorage. As opposed to currencies like dollars or euros, where there are different denominations of
bank notes ($1, $10, $100, etc.), there are no smaller "notes" for ZKAPs.

This means that tokens cannot be "divided" into smaller parts. If storing a megabyte for a month costs one
token, there is no way to pay less than one token for storing a megabyte for a day or a week.

This encourages small-value tokens to avoid wasted value. However, the handling costs in the system scale
at least linearly with the number of tokens issued and spent, so the value of the tokens cannot be too small
– that would make the system uneconomical.

4.2.2 The issuer and service provider must be the same entity
When redeeming ZKAPs (see section 2.4), the verification of signatures requires the signing key. This means
that any entity that can provide services in exchange for ZKAPs is also able to issue them. Consequently,
the current protocol does not allow an intermediate level of privilege for entities that can "accept" ZKAPs but
not issue them.

ZKAPs Whitepaper 26

https://private.storage/

4.2.3 The issuer’s signing key commitment
Anonymity in the system is provided by allowing users to hide in a crowd. All ZKAPs issued with the same
signing key, which contributes to making the crowd larger. If the issuer uses multiple signing keys, then the
crowd does not grow as large as it could. In the extreme, the issue could use a new signing key for each
issuance and create many crowds, each containing one user, and defeat the anonymity properties of the
system.

The issuer should make a public commitment to use a particular key, so that users know the issuer is not
abusing the system in this way. By making the commitment in public, no individual user can be singled out
to be placed in a smaller crowd. All users who see the public commitment will be members of the same
cloud.

There are many possible ways to make such a public commitment. The PrivateStorage client will initially use
a very simple mechanism in which one or more public keys are distributed with the client software. Potential
users all receive the same client software, either directly from PrivateStorage’s website or via sharing it with
each other. Users can also check the cryptographic signature of the client, which is also available from the
PrivateStorage website. By virtue of receiving the same software, users also receive the same keys.

In the future we hope to extend this to a system which allows convenient, anonymity-preserving key rotation
over time.

ZKAPs Whitepaper 27

5

Expanding the use
of ZKAPs
The advantages of using ZKAPs:

• Reducing the risk and overhead related
to handling personal data by compa-
nies

• Integrating services without sharing cus-
tomer data

• Attracting privacy-conscious customers

Potential use cases:

• Digital invitation systems

• Public transport payments

• VPN and messaging services

• Content escrow using 2 types of ZKAPs

ZKAPs Whitepaper 28

Althoughwe created ZKAPs to better address the access-control issue in Tahoe-LAFS for the development of
PrivateStorage, we see many possibilities for the use of ZKAPs to help protect user privacy in other services
that need to accept online payments or perform authorization based on other criteria (e.g. volunteer groups,
educational institutions). We discuss some of these potential use cases in this section.

5.1 The advantages of adopting ZKAPs
The use of ZKAPs can help facilitate an online exchange of value while disconnecting the payment and
service data that is gathered on customers. This is very helpful in use cases where mixing these data
points is not in the best interest of the company offering the service. While collecting personal data can be
incredibly valuable to some services (“data is the new oil”) it can just as often be a liability to others (“data
is toxic waste”).

5.1.1 Reducing the risks of handling customer data for service providers
Two of the biggest risks in connection with collecting data are privacy regulations and data breaches. Under
GDPR (General Data Protection Regulation), the fines alone can amount to to €20 million, or 4% of a com-
pany’s annual global turnover. Data breaches, on the other hand, cause serious damage to the reputation of
companies. Since 2014, there have been 7 security incidents at major companies that resulted in the Chief
Information Security Officers losing their jobs – Equifax, Facebook and Uber, to name a few.

Decoupling payment from service data greatly reduces the data breaches and compliance challenges.

5.1.2 Payments interoperability: allowing services to integrate without sharing customer data
Different payment processors may find it unattractive to share their customer data with other payment pro-
cessors in order to interoperate, so they are not incentivized to do so.

ZKAPs can offer an approach to securely and privately facilitate interoperability by utilizing tokenization to
prevent the need to share customer data with the other payment processors. This allows payment processors
to offer more flexibility to their customers (interoperable payments) without risking the exposure of customer
data, and provides an advantage over competitors.

5.1.3 Increasing customer satisfaction
In addition to its advantages for service providers, disconnecting payment data from service data can offer
value to customers. The company offering a service can still know who its customers are through payment
data. However, customers may not want that company to know how they use the service—specifically, for
the company to tie behavior that they observe (service data) to an individual name. This can be relevant
for file storage services, but also for any other kind of use that may be privacy-sensitive, such as medical
advice or even newspaper consumption.

In the remainder of this section, we discuss some potential use cases for ZKAPs.

ZKAPs Whitepaper 29

https://gdpr-info.eu/

5.2 Potential use cases for ZKAPs
5.2.1 Digital gift cards and invitation systems

Services trying to build a user base often want
to encourage users to invite their friends to use
the service. This often happens via personal-
ized links or gift cards (in the form of personalized
codes), revealing users’ social network graph to
the service.

As a privacy-preserving solution, the service
could issue a number of access passes like
ZKAPs which users could distribute to their
friends to redeem in exchange for joining the ser-
vice. Since ZKAPs’s token numbers are random,
the service provider cannot connect new user to
the one who gave them the pass. This "breaks
the edges" in the social network graph from the
perspective of the service provider.

If the service also uses ZKAPs for authorization
instead of an identity-based scheme, it could also
avoid collecting users’ identities entirely. This re-
moves identifying information from the nodes of
the social network graph, which is now less of a
graph and more of a bland point cloud.

5.2.2 Public transport
Another use case is payment for a physical service, such as using a public transit system. Many such
systems have transitioned to digital payment schemes in recent years. Using identity-based authorization,
however, provides the opportunity to track individual’s movements through the transit network, and, typically,
to link these movements to a customer’s real identity.

A system utilizing ZKAPs would still allow for the digital processing of payments without the possibility for
tracking the physical movement of users.

5.2.3 VPN and direct messaging services
Privacy-focused VPN (Virtual Private Network) and direct messaging apps have seen a rising demand: not
only do users wish to stop their data from being commercialized, there is a rising pushback against privacy
from repressive governments. While the data going through the service are usually well-protected, personal
information can still be leaked via logs or billing. In some countries, merely using such privacy-focused
services can have repercussions, and providers can be ordered to reveal such data about their users.

ZKAPs Whitepaper 30

ZKAPs can give a company the ability to store service usage logs without having to worry about personal
data appearing in those logs. Since ZKAPs do not reveal the identity of users, service providers cannot
hand over these data even if ordered to do so by a government body.

At the same time, the fact that someone is using certain VPN or messaging services can potentially be
revealed by the data stored by the payment provider. Employing an anonymous payment method for
purchasing ZKAPs decreases the likelihood of this scenario.

5.2.4 Content escrow
Monetizing digital assets typically requires that customers reveal personal information to the digital asset
creator, the file hosting entity and/or a payment processor. A file escrow system operating between digital
asset producers and purchasers, utilizing Tahoe-LAFS and ZKAPs could facilitate an online exchange of
value while disconnecting the payment and service data.

This system could use 2 types of ZKAPs to act as access control to both uploading and downloading files.
The uploading of files (by authors or publishers) would be based on a proof of copyright or proof of creation
(type 1 ZKAPs), while a second type of ZKAPs would act as proof of payment to allow users to download
files from the Tahoe-LAFS storage servers (type 2 ZKAPs).

In order to provide the necessary gatekeeping for the value exchange, we need to check on proof of creation
for the digital asset supplier and proof of payment by the digital asset purchaser. Both the proof of creation
and proof of payment are real world interactions that would need to be confirmed by trusted third parties.
After the proof of creation is verified by a trusted party, type 1 ZKAPs would be issued, allowing access to
upload and store data on the Tahoe-LAFS storage nodes. These are the ZKAPs currently implemented:
they allow for upload, and they are redeemed upon the uploading of the files.

On the other side, the proof of payment would result in the issuance of a new type of ZKAPs (type 2), that
allow for access to download the files, at which point they are redeemed.

ZKAPs in Action

• We will be launching PrivateStorage later
this year! Sign up to be notified at
https://private.storage/

• We are investigating offering ZKAPs as a
standalone service.
Email us if you want to talk about using
ZKAPs at contactus@leastauthority.com

ZKAPs Whitepaper 31

https://securethoughts.com/anonymous-payment-methods-guide/
https://privatestorage.io/
https://private.storage/
https://private.storage/
mailto:contactus@leastauthority.com

References
Chaum, D. (1982). Blind Signatures for Untraceable Payments. In D. Chaum, R. L. Rivest, and A. T.
Sherman (Eds.), Advances in Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, California, USA,
August 23-25, 1982, pp. 199–203. Plenum Press, New York.

Chaum, D. (1983). Blind signature system. In D. Chaum (Ed.), Advances in Cryptology, Proceedings of
CRYPTO ’83, Santa Barbara, California, USA, August 21-24, 1983, pp. 153. Plenum Press, New York.

Davidson, A., I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda (2018). Privacy Pass: Bypassing
Internet Challenges Anonymously. Proceedings on Privacy Enhancing Technologies 2018, 164 – 180.

Jarecki, S., A. Kiayias, and H. Krawczyk (2014). Round-Optimal Password-Protected Secret Sharing and T-
PAKE in the Password-OnlyModel. In P. Sarkar and T. Iwata (Eds.), Advances in Cryptology – ASIACRYPT
2014, Berlin, Heidelberg, pp. 233–253. Springer Berlin Heidelberg.

Jarecki, S., A. Kiayias, H. Krawczyk, and J. Xu (2016). Highly-Efficient and Composable Password-Protected
Secret Sharing (Or: How to Protect Your Bitcoin Wallet Online). IACR Cryptology ePrint Archive 2016,
144.

Links
• Brave’s Rust implementation of Privacy Pass.

• Merlin: a transcript construction for zero-knowledge proofs.

• PrivateStorage: a privacy-enhanced cloud storage product based on Tahoe-LAFS.

• Ristretto: a technique for constructing prime order elliptic curve groups with non-malleable encodings.

• Tahoe-LAFS: a free and open decentralized cloud storage system.

ZKAPs Whitepaper 32

https://doi.org/10.1007/978-1-4757-0602-4_18
https://www.petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
https://www.petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
https://eprint.iacr.org/2014/650.pdf
https://eprint.iacr.org/2014/650.pdf
https://eprint.iacr.org/2016/144.pdf
https://eprint.iacr.org/2016/144.pdf
https://docs.rs/challenge-bypass-ristretto/1.0.0-pre.0/challenge_bypass_ristretto/
https://merlin.cool/
https://private.storage/
https://ristretto.group/ristretto.html
https://tahoe-lafs.org/trac/tahoe-lafs

	Why do we need ZKAPs?
	The problems with user accounts
	An alternative to user-based verification
	Towards anonymous authorization

	How ZKAPs work
	A short summary of the process of using ZKAPs
	Cryptographic basics
	Issuance phase
	Redemption phase

	The evolution of ZKAPs
	Privacy Pass
	The problem with CAPTCHAs
	One challenge, multiple tokens
	The Brave implementation

	Adapting Privacy Pass for PrivateStorage
	Anonymous file storage
	Redeeming ZKAPs for anonymous file storage
	The advantages of PrivateStorage

	Known problems and limitations
	Outside factors influencing privacy
	Metadata
	The necessity of a crowd

	Limitations of the current implementation
	Only one denomination
	The issuer and service provider must be the same entity
	The issuer’s signing key commitment

	Expanding the use of ZKAPs
	The advantages of adopting ZKAPs
	Reducing the risks of handling customer data for service providers
	Payments interoperability: allowing services to integrate without sharing customer data
	Increasing customer satisfaction

	Potential use cases for ZKAPs
	Digital gift cards and invitation systems
	Public transport
	VPN and direct messaging services
	Content escrow

