

TezosKit Client
Security Audit Report
Tezos Foundation
Final Audit Report Version: 8 May 2020

Table of Contents

Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Areas of Concern

Findings

General Comments

Specific Issues

Issue A: Swift Memory Security Might Compromise Private Key Deletion

Issue B: Undefined Behavior in the Tez Class

Issue C: TezosKit Does Not Support Unbounded ​nat​ and ​int​ Types

Issue D: Hex Seeded Key Initializer is Hard Coded to Ed25519 Curve

Suggestions

Suggestion 1: Implement All Primitive Michelson Types in Separate Classes

Suggestion 2: Improve Precision in Cryptography Documentation

Suggestion 3: Review Dependencies Used in TezosKit

Suggestion 4: Ensure Secure Environment for Running TezosKit Applications

Suggestion 5: Minimal Amount of Overly Complex Code

Suggestion 6: Warn Users of Incapability of Backing Up Enclave Key

Recommendations

About Least Authority

Our Methodology

Manual Code Review

Vulnerability Analysis

Documenting Results

Suggested Solutions

Responsible Disclosure

Security Audit Report | TezosKit | Tezos Foundation 1
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Tezos Foundation has requested that Least Authority perform a security audit of TezosKit, a Swift based
toolbox for interacting with the Tezos blockchain.

Project Dates
● March 24 - April 12:​ Initial Review ​(Completed)
● April 13: ​Delivery of the​ ​Initial Audit Report ​(Completed)
● May 6 - 7:​ Verification Review ​(Completed)
● May 8: ​ Delivery of the Final Audit Report ​(Completed)

Review Team
● Mirco Richter, Cryptography Researcher and Engineer
● Nathan Ginnever, Security Researcher and Engineer
● Jehad Baeth, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the TezosKit followed by issue
reporting, along with mitigation and remediation instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● TezosKit: ​https://github.com/keefertaylor/tezoskit

○ ~ 5,000 of Swift code

Changes made to the Elliptic Curve Key Pair are considered in-scope, however, the ​Elliptic Curve Key Pair
library​ is considered out of scope.

Specifically, we examined the Git revisions for our initial review:

5b24c098a15121aaa5cc59812faec8a679f9290b

For the verification, we examined the Git revision:

​20d3ebde3eb91fca7c6e816f0c348be7d023984f

All file references in this document use Unix-style paths relative to the project’s root directory.

Areas of Concern
Our investigation focused on the following areas:

● Attacks that impacts funds, such as draining or manipulating of funds;
● Mismanagement of funds via transactions;
● Secure communication between the nodes;
● Proper management of encryption and signing keys;
● Vulnerabilities within each component as well as secure interaction between the contracts and

network components;

Security Audit Report | TezosKit | Tezos Foundation 2
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/keefertaylor/tezoskit
https://github.com/agens-no/EllipticCurveKeyPair/blob/bb671bc4756929f8842a8b54f536359019086985/Sources/EllipticCurveKeyPair.swift
https://github.com/agens-no/EllipticCurveKeyPair/blob/bb671bc4756929f8842a8b54f536359019086985/Sources/EllipticCurveKeyPair.swift

● Correctness of the implementation;
● Adversarial actions and protection against malicious attacks on the network;
● Economic incentives: ensure token economics (monetary incentives to punish bad behavior and

reward good behavior) are included and functional;
● DoS/security exploits;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team found the TezosKit code to be well organized and easy to read. It was sufficiently commented
with an adequate amount of tests covering a substantial amount of the codebase. The documentation
was comprehensive, accurate, and very easy to follow, which facilitated our team’s ability to effectively
and comprehensively review the code.

We also found that the project adhered to security best practices and standards, making it clear that
security was strongly considered throughout the design and implementation. For example, there were no
linting errors present and the codebase makes good use of SwiftLint to enforce Swift styles and
conventions. This helps keep the codebase standardized so as to not introduce possible unique variations
of style that could be potentially vulnerable. In addition, the cryptographic utilities such as encoding,
decoding and compression follow all known standards.

Our team found it notable that the secure enclave generates Tz3 accounts that provide a unique extra
layer of security to devices that contain an Apple T2 chip. The enclave separates the P256 private key
from the device processor which makes its extraction much harder, as the private information never
leaves the chip hardware and only a pointer is passed to the wallet software. This is an improvement over
previous mobile wallets that support cryptocurrency that do not have a secure enclave.

Although the inability to extract the key provides extra security, it presents a challenge to backing up the
Tezos account (​Suggestion 6​). Without the ability to back up a Tezos account, it is possible to lose the
entire contents of the account in the case of system failures. Given that the origin of the constant
parameters for the Secp256r1 or NIST-P256 curve are unknown, some cryptography experts express
caution in using the P256 curve as they may have been selected as a back door. However, there is no
known evidence that the parameters are compromised beyond attempts. Additionally, we found that
Tezos primitive types are not represented in all detail in their Swift counterparts (​Issue C​ and ​Suggestion
1​).

Specific Issues
We list the issues we found in the code in the order we reported them. In most cases, remediation of an
issue is preferable, but mitigation is suggested as another option for cases where a trade-off could be
required.

ISSUE / SUGGESTION STATUS

Issue A: Swift Memory Security Might Compromise Private Key Deletion Resolved

Issue B: Undefined Behavior in the Tez Class Resolved

Security Audit Report | TezosKit | Tezos Foundation 3
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue C: TezosKit Does Not Support Unbounded ​nat​ and ​int​ Types Resolved

Issue D: Hex Seeded Key Initializer is Hard Coded to Ed25519 Curve Resolved

Suggestion 1: Implement All Primitive Michelson Types in Separate Classes Resolved

Suggestion 2: Improve Precision in Cryptography Documentation Resolved

Suggestion 3: Review Dependencies Used in TezosKit Resolved

Suggestion 4: Ensure Secure Environment for Running TezosKit Applications Resolved

Suggestion 5: Minimal Amount of Overly Complex Code Invalid

Suggestion 6: Warn Users of Incapability of Backing Up Enclave Key Resolved

Issue A: Swift Memory Security Might Compromise Private Key Deletion

Location

Function ​deleteKeyPair()​ in ​/TezosKit/Crypto/EllipticCurveKeyPair/EllipticCurveKeyPair.swift

Synopsis

According to the expected behavior of the Swift programming language, function ​deleteKeyPair()
might not fully erase the footprint of the private key in storage. This behavior in Swift is designed so that
some parts of the memory are not controlled by the developers. In particular, copies of memory can be
created at runtime that are uncontrollable and untrackable. Moreover, the operating system can move and
copy memory without hindrance. As a result, this might allow an attacker to read the private key from
RAM.

Impact

If successful, an attacker is able to access a private key and has full control over the wallet and its funds.

Feasibility

Low. Since locating the private key footprint in the RAM is difficult, it would also be difficult to carry out
such an attack in a real world application. However, this is a general concern that has also been noted in
the ​Apple Security Development Checklist​.

Mitigation

Since this issue is based on the expected behavior of Swift, we recommend that the development team
research potential mitigation strategies that align with industry best practices.

Status

Since research for a mitigation strategy by the development team drew inconclusive results, our team
suggested adhering to ​Apple's Security Development Checklists​, specifically as it pertains to the
following:

“Scrub (zero) user passwords from memory after validation: ​Passwords must be kept in memory for the
minimum amount of time possible and should be written over, not just released, when no longer needed.
It is possible to read data out of memory even if the application no longer has pointers to it.”

Security Audit Report | TezosKit | Tezos Foundation 4
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/TezosKit/Crypto/EllipticCurveKeyPair/EllipticCurveKeyPair.swift#L105
https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/SecurityDevelopmentChecklists/SecurityDevelopmentChecklists.html#//apple_ref/doc/uid/TP40002415-CH1-SW6
https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/SecurityDevelopmentChecklists/SecurityDevelopmentChecklists.html

Notifying implementers of TezosKit about security best practices adequately mitigates the issue, at this
point. As a result, a comment alerting that there is a secret key stored in memory when using the ​Wallet
class has been ​added to the code​, linking to Apple’s best practice suggestions. However, we are not
certain this will be an appropriate long-term solution as this is a fundamental issue with SWIFT and it is
hoped that it will be addressed at that level.

Verification

Resolved.

Issue B: Undefined Behavior in the Tez Class

Location

 ​/TezosKit/Common/Models/Tez.swift

Synopsis

The ​Tez​ class uses ​bignums​ to represent the native token of the Tezos currency but can be initialized
with ​init(_ balance: double)​, which accepts negative values and results in undefined behavior.

Impact

We are not aware of any attack that can be based on this behavior. However, the type ​Tez​ does not
behave according to the Michelson specifications, outlined in ​Michelson: the language of Smart Contracts
in Tezos​ and ​Michelson Reference​, which might lead to various unexpected problems with calculations.

Feasibility

The problem may arise whenever a developer wants to subtract a certain amount of ​Tez​ from another
Tez​ and uses negative ​Tez​ and addition to achieve that.

Technical Details

Suppose a user has 2.1 ​Tez​ and wants to subtract 1.999999 ​Tez​ from this. The computation is 2.1 ​Tez​ -
1.999999 ​Tez​ = 0.100001 ​Tez​. However, since ​init(_ balance: double)​ accepts negative ​Tez​, the
user can execute something like the following:

let tez1 = Tez(2.1)

let tez2 = Tez(-1.999999)

let result = tez1 + tez2

This gives the undefined value ​result = 1,-899999​ which is not a number. This happens because
tez2 is the non number ‘-1.-999999’.

Remediation

Prevent initialization with negative ​Tez​. According to the Michelson specifications, the type ​Tez​ should
only be able to store positive values.

Status

A ​remediation strategy has been implemented​ so that the ​Tez​ class now uses ​BigUInt​ instead of
BigInt​ internally to represent ​Tez​ decimals in addition to ensuring that the initializer ​init(_
balance: double)​ fails on any attempt to initialize a negative amount of ​Tez​.

Security Audit Report | TezosKit | Tezos Foundation 5
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/keefertaylor/TezosKit/pull/201
https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/TezosKit/Common/Models/Tez.swift#L56
https://tezos.gitlab.io/whitedoc/michelson.html
https://tezos.gitlab.io/whitedoc/michelson.html
https://michelson.nomadic-labs.com/#type-option
https://github.com/keefertaylor/TezosKit/pull/192

Verification

Resolved.

Issue C: TezosKit Does Not Support Unbounded ​nat​ and ​int​ types

Location

/TezosKit/Common/Michelson/IntMichelsonParameter.swift

Synopsis

According to the Michelson specifications, the types ​nat​ and ​int​ are unbounded and the size of the
actual instances is only controlled by storage and gas cost. However, this is not reflected in TezosKit as it
mixes both types and represents them internally as the Swift signed integer type ​Int​. This is equivalent to
Int_32​ on 32-bit platforms and ​Int_64​ on 64-bit platforms.

Impact

Since the TezosKit implementation of both ​nat​ and ​int​ is bounded by 32/64 bit signed integers, it is not
possible to send parameters or read storage of those types from/to on-chain Tezos Smart contracts that
exceed the storage capacities of Swifts ​Int​ type, leading to various boundary errors. For example, it is
not possible to write the number 9,223,372,036,854,775,808 into a ​nat​ ​type​ storage of any Tezos Smart
contract using TezosKit.

Remediation

Implement the ​IntMichelsonParameter​ class using ​bignum​ instead of ​Int​ internally. This does not
lead to overflow errors, as the storage of Michelson Smart Contract is bounded by storage and gas costs.

Status

A ​remediation strategy has been implemented​ so that the ​IntMichelsonParameter​ class is now split
into two representations: ​IntMichelsonParameter​ and ​NatMichelsonParameter​ of the Michelson
types ​int​ and ​nat​. In addition, ​BinInt​ and ​BigUint​ can now be used to account for big numbers.

Verification

Resolved.

Issue D: Hex Seeded Key Initializer is Hard Coded to Ed25519 Curve

Location

Initializers in ​/TezosKit/Common/Models/Wallet.swift

Synopsis

We found a bug that the curve value was hard coded, despite giving a choice for the user to select a
curve from three choices: Ed25519, Secp256k1 and P256. As a result, the function did not respect
the parameters selected by the user and forced the wallet to use the Ed25519 curve in all cases.

Impact

The user believes they have selected a particular elliptic curve and, as a result, believes they have selected
different security properties.

Remediation

A ​commit has been added which resolves this​ by making the selection take effect. As a result, when the
wallet or other application uses the ​SecretKey​ struct, it will initialize the ​SecretKey​ struct with the

Security Audit Report | TezosKit | Tezos Foundation 6
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/TezosKit/Common/Michelson/IntMichelsonParameter.swift#L6
https://github.com/keefertaylor/TezosKit/pull/193
https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/TezosKit/Common/Models/Wallet.swift
https://github.com/keefertaylor/TezosKit/commit/81d3eeccfd606052aaa3a3b5fd7e9514e4a77904

signing curve that is passed into the ​init()​ function, rather than having Ed25519 hard coded as the only
signing curve that the struct would be initialized with.

Status

The above remediation was implemented prior to the completion of the security audit and delivery of the
audit report.

Verification

Resolved.

Suggestions

Suggestion 1: Implement All Primitive Michelson types in Separate Classes

Location

/TezosKit/Common/Michelson/

Synopsis

The Michelson Specifications distinguish between various primitive types like ​nat​, ​int​, ​address​,
string​ and others. However, this is not strictly reflected in the corresponding ​MichelsonParameters
in TezosKit. For example, there is no distinction between the ​nat​ and the ​int​ type in TezosKit, as both
are handled in the ​IntMichelsonParameter​ class. Moreover TezosKit handles ​string​, ​timestamp​,
address​ and the ​key​ ​type​ inside the ​StringMichelsonParameter​ class. In addition, ​bytes​,
key_hash​ and ​chain_id​ are handled inside the ​BytesMichelsonParameter​.

Remediation

We suggest that TezosKit defines separate ​MichelsonParameter​ classes for all primitive Michelson
types so they are strictly in line with Michelson’s strong type system. In addition, some basic checks (like
proper formats of the ​key type​ or the ​chain_id​) could be enforced on their ​MichelsonParameter
classes.

Status

All Michelson types are now represented by appropriate ​MichelsonParameter​ classes:

Date​: ​https://github.com/keefertaylor/TezosKit/pull/194
Key​: ​https://github.com/keefertaylor/TezosKit/pull/195
Nat​: ​https://github.com/keefertaylor/TezosKit/pull/196
Signature/Address​: ​https://github.com/keefertaylor/TezosKit/pull/197
Key_Hash/Chain_ID​: ​https://github.com/keefertaylor/TezosKit/pull/198

Verification

Resolved.

Suggestion 2: Improve Precision in Cryptography Documentation

Location

/TezosKit/Common/Models/Tez.swift
/TezosKit/Common/Models/Wallet.swift
/TezosKit/Crypto/SecretKey.swift

Security Audit Report | TezosKit | Tezos Foundation 7
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/keefertaylor/TezosKit/tree/5b24c098a15121aaa5cc59812faec8a679f9290b/TezosKit/Common/Michelson
https://github.com/keefertaylor/TezosKit/pull/194
https://github.com/keefertaylor/TezosKit/pull/195
https://github.com/keefertaylor/TezosKit/pull/196
https://github.com/keefertaylor/TezosKit/pull/197
https://github.com/keefertaylor/TezosKit/pull/198
https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/TezosKit/Common/Models/Tez.swift#L7
https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/TezosKit/Common/Models/Wallet.swift#L9
https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/TezosKit/Crypto/SecretKey.swift#L119-L122

Synopsis

Overall, we found that the documentation is very good. However, we found minor imprecisions in the
documentation of various functions. In particular, we found that the initializer ​public init?(_
balance: string)​ in class Tez, interprets the balance argument string as microTezos, not Tezos,
which is slightly misleading given the name of the class. Similarly, we found slight imprecisions in the
descriptions of the initializer ​init?(secretKey: String, signingCurve: ElipticalCurve =
.ed25519)​ in class ​Wallet​, where the argument ​secretKey​ requires a seed, not the actual
secretKey​ interpreted as a string.

In addition, it was not immediately clear to us how the various constructors in the ​Wallet​ class relate to
the Tezos key derivation, based on the “mnemonic, secret, password, email” scheme, used in this
example​.

We also found one slight error in the comments in ​SecretKey.swift​ on line 119, where the comment
mentions that the input parameter is of type hexadecimal ​String​, when it is of type ​[Uint8]​ bytes.

Remediation

Improve documentation by checking for and correcting these imprecisions.

Status

The ​minor errors in the code comments have been corrected​. The TezosKit development team has also
added a seed input initializer for the wallet​ to help clarify the difference between seed and secret keys
used in Tezos.

Verification

Resolved.

Suggestion 3: Review Dependencies Used in TezosKit

Location

Dependencies managed by Carthage in ​/TezosKit/Cartfile
EllipticCurveKeyPair dependencies in ​/TezosKit/Crypto/EllipticCurveKeyPair/

Synopsis

The CryptoSwift 0.14.0 library used by TezosKit is several releases behind (latest release at the time of
writing this report is 1.3.1), in which many fixes, improvements and improved integration with Swift 5 has
been incorporated. In addition, EllipticCurveKeyPair source code files were copy-pasted into TezosKit
codebase.

Mitigation

Review and upgrade release versions of used dependencies when feasible. Use a dependency manager
instead of copy-pasting if possible.

Status

The TezosKit development team ​updated versions of all old dependencies used by the library​.

Verification

Resolved.

Security Audit Report | TezosKit | Tezos Foundation 8
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://faucet.tzalpha.net/
https://github.com/keefertaylor/TezosKit/pull/200
https://github.com/keefertaylor/TezosKit/pull/199
https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/Cartfile
https://github.com/keefertaylor/TezosKit/tree/5b24c098a15121aaa5cc59812faec8a679f9290b/TezosKit/Crypto/EllipticCurveKeyPair
https://github.com/keefertaylor/TezosKit/pull/189

Suggestion 4: Ensure Secure Environment for Running TezosKit
Applications

Synopsis

Allowing applications using TezosKit to run on a Jailbroken iOS makes it less secure and more prone to
attacks. Jailbroken phones have no access control on root files, hence rendering the sandbox model
useless.

Mitigation

Programatically check if the application using TezosKit is running on a Jailbroken phone and prevent it
from executing sensitive operations. Checking Jailbreak can be done by using multiple methods including
checking relevant file changes or checking if Cydia is installed.

Status

The TezosKit development team has ​implemented a function​ that detects and stops communication with
the Tezos Network on Jailbroken devices.

Verification

Resolved.

Suggestion 5: Minimal Amount of Overly Complex Code

Location

/TezosKit​/TezosNode/TezosNodeClient.swift

/TezosKit/Extensions/PromiseKit/TezosNode/TezosNodeClient+Promises.swift

Synopsis

Our team ran the TezosKit codebase against the Codebeat static analyzer tool. This tool generally looks
at the complexity of the code with deep assignment branch conditions, cyclomatic complexity or control
flow paths, lines of code, arity, maximum block nesting, and code duplication.

The results have shown that the default critical threshold of six function arguments was exceeded in
multiple places in the locations listed. There is one warning of block nesting too deep with a depth of four
in ​public func forgeSignPreapplyAndInject()​.

Remediation

While these reports do not reveal an immediate security vulnerability, it is suggested that code block
depth never exceeds three levels, and that function arguments remain below a number that makes the
function unwieldy to use or understand. These are minor issues that are present in a few locations so the
impact is very minimal. Reducing these numbers could slightly improve code quality.

Status

In response to this suggestion, the TezosKit development team has noted that careful consideration has
been given to the default thresholds provided by the static analyzer tool. They have reduced stack depth
and parameter counts where they feel it is reasonable to do so and have stated that they consider code
readability of higher priority than the potential complexity implications that are not present in this case
and adhering to a default provided by tooling.

Security Audit Report | TezosKit | Tezos Foundation 9
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/keefertaylor/TezosKit/pull/203
https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/TezosKit/TezosNode/TezosNodeClient.swift
https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/TezosKit/TezosNode/TezosNodeClient.swift
https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/Extensions/PromiseKit/TezosNode/TezosNodeClient%2BPromises.swift

Given that the thresholds for code complexity are not standard, we agree that no additional changes are
needed and that maintaining readability is more desirable than reduced complexity in this case.

Verification

Invalid.

Suggestion 6: Warn Users of Incapability of Backing Up Enclave Key

Location

/TezosKit/Examples/SecureEnclave/ViewController.swift

Synopsis

As mentioned in ​this detailed article by the author of the TezosKit​, the secure enclave does not have the
ability to export the P256 private key that it uses to generate the Tz3 accounts. If the T2 chip
malfunctions, then access to that account will be lost and there will be no way to recover the account. The
severity of this issue does not seem to be broadcast to a user that is creating an account with the secure
enclave. Users may not understand the importance of being able to recover cryptocurrency keys.

Mitigation

Add a warning message to the creation UI of the secure enclave key that will inform the user that their key
will have no options for recovery if their device malfunctions. A link to the article or a provided guide on
how to use the enclave as a multisig signer could be a useful feature that will prevent misunderstanding
and loss of access in the future.

Status

The TezosKit development team has ​implemented a warning message​ on the example UI of the wallet.
Furthermore, they have added comments to the example in an effort to address this issue for
implementers of secure enclave key storage in the future.

Verification

Resolved.

Recommendations
We commend the TezosKit team for addressing all of the ​Issues ​and​ Suggestions​ stated above, prior to
the follow up verification by the auditing team.

Additionally, we recommend some effort be invested into further refining the handling of the
cryptography, such as cleaning up the documentation to be more precise and improving the curve
selection. This can be done by implementing P256 or removing the fatal error when initializing a private
key on P256 or by documenting and separating the initialization of this curve’s private key on the enclave
or external to the enclave. Furthermore, we recommend investigating additional backup methods and
incorporating backup key documentation for implementers of the TezosKit library, in the case of deletion
of the private key in Swift as the keys can be stored in multiple locations.

Overall, the approach to security in TezosKit is commendable and we encourage the team to continue
making it a priority as development continues, updates are made, and new features are introduced.

Security Audit Report | TezosKit | Tezos Foundation 10
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/keefertaylor/TezosKit/blob/5b24c098a15121aaa5cc59812faec8a679f9290b/Examples/SecureEnclave/ViewController.swift
https://medium.com/@keefertaylor/signing-tezos-transactions-with-ioss-secure-enclave-and-face-id-6166a752519
https://github.com/keefertaylor/TezosKit/pull/202

Security Audit Report | TezosKit | Tezos Foundation 11
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/​.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create

Security Audit Report | TezosKit | Tezos Foundation 12
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | TezosKit | Tezos Foundation 13
8 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

