
 

Beacon SDK 
Security Audit Report 
Tezos Foundation 
Updated Final Report Version: 8 October 2020 
   

 



Table of Contents 

Overview 

Background 

Project Dates 

Review Team 

Coverage 

Target Code and Revision 

Supporting Documentation 

Areas of Concern 

Findings 

General Comments 

Code Quality + Documentation 

System Design 

Further Investigation 

Specific Issues 

Issue A: Potential Single Point of Failure with Hardcoded Matrix Servers 

Issue B: Provided Tezos Networks Could Run Over Unsecured HTTP 

Issue C: Avoid Conversion Operations on Generated Keys 

Issue D: Use of a Cryptographically Insecure RNG 

Issue E: Low Test Coverage on Security Critical Packages 

Suggestions 

Suggestion 1: Custom Matrix Integration uses Outdated API 

Suggestion 2: Automated Dependency Security Scanning 

Suggestion 3: Improve Documentation 

Suggestion 4: Add End-to-End Integration Tests 

Recommendations 

About Least Authority 

Our Methodology 

 

   

Security Audit Report | Beacon SDK | Tezos Foundation 1 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 



Overview 
Background 
Tezos Foundation has requested that Least Authority perform a security audit of the ​Beacon SDK​, which 
allows developers of decentralized applications and wallets on Tezos to implement the wallet interaction 
standard ​tzip-10​. The Beacon SDK simplifies and abstracts the communication between decentralized 
applications and wallets over different transport layers. 
 

Project Dates 
● July 16 -  August 4​: Code review (​Completed​) 
● August 6​: Delivery of Initial Audit Report (​Completed​) 
● September 14 - 15:​ Verification (​Completed​) 
● September 17: ​Delivery of Final Audit Report (​Completed​) 
● October 8: ​Delivery of Updated Final Audit Report (​Completed​) 

 

Review Team 
● Jehad Baeth, Security Researcher and Engineer 
● Phoebe Jenkins, Security Researcher and Engineer 
● Jan Winkelmann, Cryptography Researcher and Engineer 

Coverage 
Target Code and Revision 
For this audit, we performed research, investigation, and review of the Beacon SDK followed by issue 
reporting, along with mitigation and remediation instructions outlined in this report.  

The following code repositories are considered in-scope for the review: 
● Beacon SDK: ​https://github.com/airgap-it/beacon-sdk 

 
Specifically, we examined the Git revisions for our initial review: 

4002c9b7b5906ec732c7252e5a27fab8b8782947 

For the verification, we examined the Git revision: 

  ​c51c040cd9d5e6b45dd68b8d63dee3c39d0c9294 

All file references in this document use Unix-style paths relative to the project’s root directory. 

Supporting Documentation 
The following documentation was available to the review team: 

● WalletBeacon.io: ​https://www.walletbeacon.io/ 
● Tzip-10: ​https://gitlab.com/AndreasGassmann/tzip/-/blob/master/proposals/tzip-10/tzip-10.md 

 

Areas of Concern 
Our investigation focused on the following areas: 

● Correctness of the implementation; 

Security Audit Report | Beacon SDK | Tezos Foundation 2 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 

https://walletbeacon.io/
https://gitlab.com/tzip/tzip/blob/master/proposals/tzip-10/tzip-10.md
https://github.com/airgap-it/beacon-sdk
https://www.walletbeacon.io/
https://gitlab.com/AndreasGassmann/tzip/-/blob/master/proposals/tzip-10/tzip-10.md


● Vulnerabilities that currently exist in the code; 
● Adversarial actions and other attacks on the interactions; 
● Potential exposure of any critical information during communications; 
● Protection against malicious attacks ​and other methods of exploitation;  
● Inappropriate permissions and excess authority;  
● Data privacy, data leaking, and information integrity; and 
● Anything else as identified during the initial analysis phase. 

 

Findings 
General Comments  
The ​Beacon SDK​ is an implementation of the ​tzip-10​ standard, which describes an interaction between 
decentralized applications and wallets on Tezos. Our team comprehensively reviewed this interaction, 
which aims to simplify and abstract the communication between decentralized applications and wallets 
over different transport layers.  

Code Quality + Documentation 
Our team found that the code was well organized and appropriately formatted, adhering to development 
best practices. Furthermore, variables and functions are properly named and functions are written with a 
level of abstraction that makes the code reusable. Overall, we observed low cyclomatic complexity 
methods in addition to good compiler and linter configurations that help reduce the risk of potential 
vulnerabilities in the code to go unnoticed by facilitating early bug detection, less error prone code, more 
readable code, and reusable components. 

However, we found there to be minimal code comments outlining the purpose of different classes and 
methods, in addition to potential failure modes, which made the code more difficult to comprehend by a 
reviewer. We recommend that additional comments be included to help define these areas, allowing 
developers to more easily understand and efficiently implement the code (​Suggestion 3​). Furthermore, 
while some tests are present in the code, others were disabled resulting in challenges to understand 
certain areas of the structure and the intended execution flow. Ideally, more test coverage would be highly 
desirable, particularly around complex and security-critical components, such as end-to-end integration 
tests for Matrix communication (​Suggestion 4​) and focused unit testing around cryptographic methods 
(​Issue E​). 

We found the ​Beacon-SDK documentation​ available for end-users of the Beacon SDK to be very 
comprehensive and useful. In addition, all examples in the documentation are up to date and working with 
the new release. In particular, our team appreciated the ​diagrams​ showing how communication works 
between the different components. We recommend adding more API documentation around the user 
facing classes and their methods in the Beacon SDK, and their possible failure modes, which would help 
users understand how to properly and securely utilize the Beacon SDK (​Suggestion 3​).  

System Design 
The Beacon SDK development team’s use of the secure and decentralized Matrix protocol, as well as the 
modern and heavily reviewed cryptography library, ​libsodium​, demonstrates that security is a priority and 
has been strongly considered throughout the system design. However, we identified a security critical 
issue, which results from the Beacon SDK sending all communication through a single Matrix server, 
creating a single point of failure for all Beacon applications. We suggest having available additional 
redundant servers hosted by the development team and allowing users of the Beacon SDK to supply 

Security Audit Report | Beacon SDK | Tezos Foundation 3 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 

https://walletbeacon.io/
https://gitlab.com/tzip/tzip/tree/master/proposals/tzip-10
https://docs.walletbeacon.io/
https://docs.walletbeacon.io/flows/P2PDirect.html
https://github.com/jedisct1/libsodium


 

additional Matrix servers that they wish to use for redundancy in order to mitigate the potential risk of a 
failure with the server (​Issue A​). 

Further Investigation 
Since the Beacon SDK project utilizes the ​Matrix protocol​ and relies on certain functionality regarding 
federation and redundancy being appropriately set up, we recommend that this area be further 
investigated for potential security vulnerabilities. Although we reviewed the Matrix client, a review of the 
Matrix server configuration would help to ensure that these behaviors work as intended, which could 
potentially impact the security of the Beacon SDK. 

Specific Issues 
We list the issues we found in the code in the order we reported them. In most cases, remediation of an 
issue is preferable, but mitigation is suggested as another option for cases where a trade-off could be 
required. 

ISSUE / SUGGESTION  STATUS 

Issue A: Potential Single Point of Failure with Hardcoded Matrix Servers  Resolved 

Issue B: Provided Tezos Networks Could Run Over Unsecured HTTP  Partially Resolved 

Issue C: Avoid Conversion Operations on Generated Keys  Unresolved 

Issue D: Use of a Cryptographically Insecure RNG  Resolved 

Issue E: Low Test Coverage on Security Critical Packages  Resolved 

Suggestion 1: Custom Matrix Integration uses Outdated API  Unresolved 

Suggestion 2: Automated Dependency Security Scanning  Resolved 

Suggestion 3: Improve Documentation  Resolved 

Suggestion 4: Add End-to-End Integration Tests  Unresolved 

 

Issue A: Potential Single Point of Failure with Hardcoded Matrix Servers  

Location 

beacon-sdk/src/transports/P2PCommunicationClient.ts  

Synopsis 

The current implementation relies on a single, hard coded Matrix server to mediate communication 
between all applications using the functionality of Beacon SDK. This represents a single point of failure 
and, as a result, if this server goes offline (e.g. to perform routine maintenance), this will result in a loss of 
functionality for all Beacon-enabled applications.  

In addition, relying on a single server prevents utilizing the redundant messaging functionality of Beacon, 
leaving this behavior effectively untested.   

Security Audit Report | Beacon SDK | Tezos Foundation 4 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 

https://matrix.org/
https://github.com/airgap-it/beacon-sdk/blob/4002c9b7b5906ec732c7252e5a27fab8b8782947/src/transports/P2PCommunicationClient.ts#L28


 

Impact 

If the hard coded Matrix server goes offline, all applications using this library would be unable to 
communicate. 

Mitigation 

An initial approach to mitigate this issue would be to add additional redundant servers that are hosted by 
the Beacon SDK development team. While this will make the operation much less fragile, it places an 
increased amount of responsibility on the development team to ensure that multiple servers are always 
up, running properly, and well maintained.  

In addition to this approach, it would be useful to allow users of the Beacon SDK to supply additional 
Matrix servers that they wish to use for redundancy or alternative servers they wish to maintain 
themselves. This would assist in sharing or shifting the responsibility of server uptime to multiple parties 
and that decentralization will result in a more stable and secure operation.  

Status 

The Papers team has issued a ​commit​ addressing this issue. As a result, both the ​WalletClient​ and 
DAppClient​ are configurable so that users are able to provide custom Matrix server URLs. If a custom 
URL is not provided, the Beacon SDK will use the predefined default Matrix server URL. 

Verification 

Resolved. 

Issue B: Provided Tezos Networks Could Run Over Unsecured HTTP  

Location 

src/types/beacon/Network.ts 

Synopsis 

When a user ​provides a custom configuration for connecting to a Tezos node​, this connection can be 
specified to take place over HTTP. Since this communication is unencrypted, it could be read over the 
network and could be subject to man-in-the-middle attacks without authentication.  

Impact 

In the most severe cases with HTTP, traffic could be intercepted by a third party, providing invalid 
responses and making the application believe that some actions have taken place when they have not. 
This is likely to cause applications to end up in undefined states, unless special precautions have been 
taken to avoid this.  

Preconditions 

End-user provides a URL using the HTTP protocol, rather than HTTPS.  

Mitigation 

The following mitigation strategies are possible: 

● Ensure that provided URLs do not begin with ​http://​; or 
● Do not allow users to provide the protocol for URLs, instead forcing HTTPS. 

Security Audit Report | Beacon SDK | Tezos Foundation 5 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 

https://github.com/airgap-it/beacon-sdk/commit/985ab687d3284fcf48951e05639891a7e906df49
https://github.com/airgap-it/beacon-sdk/blob/4002c9b7b5906ec732c7252e5a27fab8b8782947/src/types/beacon/Network.ts#L6
https://docs.walletbeacon.io/examples/#using-custom-network


 

Remediation 

Add a unit test for this specific case and ensure failure in the case of a provided URL using the HTTP 
protocol.  

Status 

The Papers team has issued a ​commit​ partially addressing this issue.  

The Beacon SDK ​documentation​ has been updated to recommend that prospective developers should 
check and warn users whenever an insecure Tezos node RPC URL is being used.  

However, the Papers team has chosen not to enforce the use of HTTPS, given that developers may want 
to enable local testing of applications using Beacon SDK, utilizing the HTTP protocol, and setting up a 
secure connection would require considerable effort. As a result, we recommend that the Papers team 
implement warnings in the User Interface (UI) when an insecure Tezos node RPC URL is being used, in 
order to make developers and end users aware of potentially insecure communication. 

Verification 

Partially Resolved. 

Issue C: Avoid Conversion Operations on Generated Keys  

Location 

beacon-sdk/src/utils/crypto.ts 

Synopsis 

Beacon SDK’s encrypted messages system involves generating a cryptographic key of one type 
(ed25519), and then converting it to a different type (curve25519) under certain situations. The 
conversion between ed25519 and curve25519 keys is not considered to be well defined and the libsodium 
documentation itself advises against doing this: 
https://doc.libsodium.org/advanced/ed25519-curve25519  

Impact 

While the impact is unclear, the behavior does not appear to be considered or well-defined. As a result, the 
consequences may potentially range from signatures forged by an attacker to an attacker being able to 
compute a shared Diffie-Hellman secret they do not have a private key for, but observed messages 
signatures. 

Mitigation 

Rather than converting from ed25519 keys to curve25519 keys when encryption needs to be performed, a 
curve25519 key can be generated instead, alongside the initial ed25519 key with the 
crypto_kx_seed_keypair​ function in libsodium. Having a separate dedicated key for signing will 
avoid any potential issues that could arise from this conversion. 

Remediation 

Ensuring that the ​crypto_sign_ed25519_sk_to_curve25519​ and 
crypto_sign_ed25519_pk_to_curve25519​ keys are not present in the codebase and using a 
specifically generated key pair instead.  

Security Audit Report | Beacon SDK | Tezos Foundation 6 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 

https://github.com/airgap-it/beacon-sdk/commit/9635be24f2ce60f02fa3a4a6e38d25efd2fa8677
https://github.com/airgap-it/beacon-sdk/blob/feat/v2/docs/beacon/08.security.md
https://github.com/airgap-it/beacon-sdk/blob/4002c9b7b5906ec732c7252e5a27fab8b8782947/src/utils/crypto.ts#L58
https://doc.libsodium.org/advanced/ed25519-curve25519


 

 

Status 

Due to the added complexity of using two seperate keypairs, the Papers team has chosen not to 
implement the mitigation of this issue and decided to keep the current implementation instead. We 
suggest that the Papers team reconsider implementing the mitigation or remediation in the future.  

Verification 

Unresolved. 

Issue D: Use of a Cryptographically Insecure RNG 

Location 

beacon-sdk/src/utils/generate-uuid.ts 

Synopsis 

The Globally Unique Identifier (GUID) uniqueness relies on the underlying Random Number Generator 
(RNG). ​generateGUID()​ generates GUIDs using the browser cryptographically strong RNG. However, it 
uses JavaScript’s ​Math.random()​ when this functionality is unavailable. ​Math.random()​ is not a 
secure source of entropy and its usage should be avoided in such cases. 

Impact 

Implementation of ​Math.random() ​does not have sufficient entropy and leaves an opportunity for 
collisions. This is important because among other things, the GUID is used to create the initial key pairs. 

Remediation 

Utilize crypto API to generate the seeds instead of using​ Math.random()​, or replace the 
generate-uuid.ts​ code with a call to  a well-maintained, cross-platform, and a cryptographically 
strong RNG utilizing library to generate GUID/seed (i.e. uuid.js). 

Status 

The Papers team has issued a ​commit​ addressing this issue. As a result, the Beacon SDK’s 
generateGUID()​ function now always uses libsoduim’s ​randombytes_buf()​, which is considered a 
secure RNG.  

Verification 

Resolved. 

Issue E: Low Test Coverage on Security Critical Packages  

Location 

All locations (client, transports, managers, matrix-client, utils/crypto.ts) 

Synopsis 

The automated testing coverage is insufficient and may lead to future bugs and security issues. Certain 
areas of complexity, such as the cryptographic utility functions, would benefit from having lower-level unit 
tests to ensure correct the behavior of individual functions. 

Impact 

The low overall testing coverage may lead to mergers of faulty code changes and potential security 
vulnerabilities.  

Security Audit Report | Beacon SDK | Tezos Foundation 7 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 

https://github.com/airgap-it/beacon-sdk/blob/4002c9b7b5906ec732c7252e5a27fab8b8782947/src/utils/generate-uuid.ts#L42
https://github.com/airgap-it/beacon-sdk/commit/e02aeeadc97e7c4fa9b1f76bf32d58ee54c12595


 

 

Mitigation 

We recommend following the npm-generated coverage reports and ensuring that all present classes and 
methods have associated tests. The test suite should be incorporated into a continuous integration 
system such as ​Travis CI​ to allow early detection of bugs upon changes made to the Beacon SDK’s code 
base.   

Remediation 

Use of ​npm test​’s coverage reports is helpful in determining what code is not being covered in the 
existing test suite and helps determine if any existing coverage has become inadequate.   

Status 

The Papers team has issued a ​commit​, which significantly increases the overall unit test coverage ratio. 
The unit tests added cover critical security hotspots. We recommend that the Papers team maintain a 
good unit test coverage ratio as they implement new features and add more code. 

Verification 

Resolved. 

Suggestions 

Suggestion 1: Custom Matrix Integration uses Outdated API  

Location 

beacon-node/docker/crypto_auth_provider.py 

beacon-node/blob/master/docker/crypto_auth_provider.py 

Synopsis 

While this area is out of scope for this review, the custom integration used in ​beacon-node​ makes use 
of an outdated version of the API, which prevents upgrading Matrix. The inability to upgrade Matrix does 
not allow for taking advantage of new features and security updates as they are released.  

Mitigation 

One approach is to change all references to the ​.hs ​property of the ​AccountManager​ to ​._hs​. Since 
this functionality is being deprecated​, further updates may be needed in the future to keep the plugin 
up-to-date. Alternatively, since it seems the call to ​.hs​ is unnecessary, it could be deleted to remove the 
dependence on deprecated functionality   

Status 

The Papers team has acknowledged the suggestions and has stated their intent to implement a 
mitigation in the future. 

Verification 

Unresolved. 

Suggestion 2: Automated Dependency Security Scanning  

Location 

All locations 

Security Audit Report | Beacon SDK | Tezos Foundation 8 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 

https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://github.com/airgap-it/beacon-sdk/commit/c401563dae62a53c7b8cad5f006caf46c0015394
https://github.com/airgap-it/beacon-node/blob/master/docker/crypto_auth_provider.py
https://github.com/airgap-it/beacon-node/blob/master/docker/crypto_auth_provider.py
https://github.com/matrix-org/synapse/issues/6772#issuecomment-577723490


 

Synopsis 

NPM-Auditing the Beacon SDK package dependencies found 394 vulnerabilities (389 low, 5 high), all of 
which are devDependencies. Running ​npm audit fix​ resolves all of these issues by upgrading to 
compatible new releases. 

Mitigation 

Our team was unable to verify if automated package dependency auditing is part of the project’s CI 
pipeline flow. As a result, we recommend including it in order to proactively monitor and prevent having 
outdated and vulnerable dependencies.  

Status 

The Papers team has issued a ​commit​, which adds an integrated automatic dependency auditing tool 
“​npm audit​” in their continuous integration tool flow. As a result, the usage of reported vulnerable 
dependencies has been prevented.  

Verification 

Resolved. 

Suggestion 3: Improve Documentation  

Location 

Project Documentation 

Synopsis 

Our team found minimal comments outlining the purpose of different classes and methods, in addition to 
potential failure modes, which made the code more difficult to comprehend.  

We also found that the project would benefit from API documentation around the user facing classes and 
their methods in the Beacon SDK, and their possible failure modes, which would help users better 
understand how to properly and securely utilize the Beacon SDK.  

Mitigation 

We recommend that additional comments and high-level documentation be included to help define these 
areas, allowing developers to more easily and efficiently understand and implement the code. Preferably, 
code comments should follow ​TSDoc standard​ to allow automatic generation of code documentation.  

Additional suggestion related to ​Issue A​:​ We also recommend further extending the documentation with 
the Beacon SDK Matrix servers setup and management guides. 

Status 

The Papers team issued a ​commit​, which adds typedoc compatible inline code comments that can be 
rendered into HTML documentation. In addition, the Papers team issued a ​commit​ that improves the 
overall documentation of the Beacon SDK. In particular,  they have included examples, frequently asked 
questions, and security notices, which will facilitate easier onboarding and comprehension of the system.  

Verification 

Resolved. 

Security Audit Report | Beacon SDK | Tezos Foundation 9 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 

https://github.com/airgap-it/beacon-sdk/commit/efa2bc524d2c69a8840c9edf33ee325c72d5b803
https://github.com/microsoft/tsdoc
https://github.com/airgap-it/beacon-sdk/commit/8eedb0dc7aaa28b9b716c1a7ed11b616838b375e
https://github.com/airgap-it/beacon-sdk/commit/9635be24f2ce60f02fa3a4a6e38d25efd2fa8677


 
Suggestion 4: Add End-to-End Integration Tests 

Location 

All Locations. 

Synopsis 

Certain areas of complexity, such as how clients utilize Matrix communication flows and Tezos 
interactions, would benefit from having higher-level, end-to-end integration tests, particularly those that 
simulate potential failure modes from these external services. 

Mitigation 

For end-to-end integration tests, utilizing tools such as ​Selenium​ can simulate user interactions with the 
UI components. These can be used in addition to mocking browser-specific components, such as 
localStorage​ to provide coverage of complex areas, simulate how the application operates under 
specific failure conditions and edge cases within the browser, or in communication with the Matrix or 
Tezos servers. 

Status 

The Beacon SDK team has stated that they do not consider the inclusion of end-to-end integration testing 
to be a necessity, given that they do not have any critical UI components. As a result, end-to-end 
integrations tests have not been incorporated into the code base at this time. While our team does not 
consider this to be a security critical issue, we recommend that a test suite be added to the continuous 
integration flow as a best practice to help avoid potential code errors.   

Verification 

Unresolved. 

Recommendations 
We recommend that the unresolved ​Issues ​and​ Suggestions​ stated above are addressed as soon as 
possible and followed up with verification by the auditing team.  

We also recommend that an additional review of the Matrix server configuration be conducted, since the 
Beacon SDK relies on certain functionality being set up properly. Conducting an audit to ensure that these 
behaviors work as intended will mitigate against the potential for security vulnerabilities that may impact 
Beacon SDK. 

Finally, we commend the Beacon SDK for the measures taken to prioritize the security of the codebase, 
including following development best practices by properly naming variables and functions, which are 
written to allow code reusability. Early bug detection, less error prone code, more readable code, and 
reusable components are also facilitated by good compiler and linter configurations that help reduce the 
risk of potential vulnerabilities being introduced into the Beacon SDK. 

 

   

Security Audit Report | Beacon SDK | Tezos Foundation 10 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 

https://www.selenium.dev/


About Least Authority 
We believe that people have a fundamental right to privacy and that the use of secure solutions enables 
people to more freely use the Internet and other connected technologies. We provide security consulting 
services to help others make their solutions more resistant to unauthorized access to data and 
unintended manipulation of the system. We support teams from the design phase through the production 
launch and after. 

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity, 
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has 
reviewed implementations of cryptographic protocols and distributed system architecture, including in 
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various 
tools to scan code and networks and build custom tools as necessary.  

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We 
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team, 
we believe that we can have a significant impact on the world by being transparent and open about the 
work we do. 

For more information about our security consulting, please visit 
https://leastauthority.com/security-consulting/​. 

 

Our Methodology  
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our 
security audits are to improve the quality of systems we review and aim for sufficient remediation to help 
protect users. The following is the methodology we use in our security audit process.  

Manual Code Review 
In manually reviewing all of the code, we look for any potential issues with code logic, error handling, 
protocol and header parsing, cryptographic errors, and random number generators. We also watch for 
areas where more defensive programming could reduce the risk of future mistakes and speed up future 
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior 
when it is relevant to a particular line of investigation. 

Vulnerability Analysis 
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration 
testing. We look at the project's web site to get a high level understanding of what functionality the 
software under review provides. We then meet with the developers to gain an appreciation of their vision 
of the software. We install and use the relevant software, exploring the user interactions and roles. While 
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review 
other audit results, search for similar projects, examine source code dependencies, skim open issue 
tickets, and generally investigate details other than the implementation. We hypothesize what 
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue 
Investigation and Remediation process.  

Documenting Results  
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing 
them through successful remediation. Whenever a potential issue is discovered, we immediately create 

Security Audit Report | Beacon SDK | Tezos Foundation 11 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 

https://leastauthority.com/security-consulting/


an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of 
the issue. This process is conservative because we document our suspicions early even if they are later 
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the 
suspicion with unresolved questions, then confirming the issue through code analysis, live 
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test 
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of 
an attack in a live system.  

Suggested Solutions 
We search for immediate mitigations that live deployments can take, and finally we suggest the 
requirements for remediation engineering for future releases. The mitigation and remediation 
recommendations should be scrutinized by the developers and deployment engineers, and successful 
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the 
details are made public. 

Responsible Disclosure 
Before our report or any details about our findings and suggested solutions are made public, we like to 
work with your team to find reasonable outcomes that can be addressed as soon as possible without an 
overly negative impact on pre-existing plans. Although the handling of issues must be done on a 
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the 
users and the needs of your project team. We take this agreed timeline into account before publishing any 
reports to avoid the necessity for full disclosure. 

 

Security Audit Report | Beacon SDK | Tezos Foundation 12 
8 October 2020 by Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 


