
Bi-directional FastBTC
Security Audit Report

Sovryn
Final Audit Report: 02 September 2022

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Suggestions

Suggestion 1: Clear Buffers Holding Secret Values after Usage

Suggestion 2: Enforce High Entropy Passwords for Encrypting Config Secrets Stored in
Filesystems

Suggestion 3: Update Vendored Dependencies

About Least Authority

Our Methodology

Security Audit Report | Bi-directional FastBTC | Sovryn 1
02 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Sovryn has requested that Least Authority perform a security audit of Bi-directional FastBTC, which
facilitates the transfer of RSK to Bitcoin (rBTC to BTC). Bi-directional FastBTC is an update to FastBTC,
which facilitates the transfer of Bitcoin to RSK (BTC to rBTC).

Project Dates
● June 8 - July 26: Initial Code Review (Completed)
● July 29: Delivery of Initial Audit Report (Completed)
● September 2: Delivery of Final Audit Report (Completed)

Review Team
● Jehad Baeth, Security Researcher and Engineer
● Nicole Ernst, Security Researcher and Engineer
● Ahmad Jawid Jamiulahmadi, Security Researcher and Engineer
● Rosemary Witchaven, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Bi-directional FastBTC followed by
issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in-scope for the review:
● Bi-directional FastBTC:

https://github.com/DistributedCollective/bidirectional-fastbtc

Specifically, we examined the Git revision for our initial review:

97d1f3916836260979db9b20ee78c1d5e11bedfd

For the review, this repository was cloned for use during the audit and for reference in this report:

Bi-directional FastBTC:
https://github.com/LeastAuthority/Sovryn-Bidirectional-Fastbtc-Audit

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● README.md:
https://github.com/DistributedCollective/bidirectional-fastbtc#readme

Security Audit Report | Bi-directional FastBTC | Sovryn 2
02 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/DistributedCollective/bidirectional-fastbtc
https://github.com/LeastAuthority/Sovryn-Bidirectional-Fastbtc-Audit
https://github.com/DistributedCollective/bidirectional-fastbtc#readme

In addition, this audit report references the following document:

● P.A. Grassi, J.L. Fenton, E.M. Newton, R.A. Perlner, A.R. Regenscheid, W.E. Burr, et al., “Digital
Identity Guidelines: Authentication and Lifecycle Management.” NIST Special Publication 800-63B,
2017, [GFN+17]

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Adherence to the specification and best practices;
● Adversarial actions and other attacks on the smart contracts and backend service;
● Potential misuse and gaming of the smart contracts and backend service;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial of Service (DoS) and other security exploits that would impact the intended use or disrupt

the execution of the smart contracts and backend service;
● Vulnerabilities in the smart contract code and backend service;
● Protection against malicious attacks and other ways to exploit the smart contracts and backend

service;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Bi-directional FastBTC aims to provide a bridge between the Bitcoin network and the RSK network, an
EVM compatible blockchain. The system is composed of two main components. One component is a
validator node implementation in typescript where validator nodes validate RSK chain data and sign RSK
and BTC batch transactions. The second component is a smart contract suite, which performs bridge
operations on the RSK chain.

Our team performed a comprehensive review of Sovryn’s Bi-directional FastBTC implementation. We
investigated the design of the system and its coded implementation to identify security vulnerabilities and
implementation errors and to assess adherence to best practice recommendations.

In addition to reviewing the security of the system and the areas of concern listed above, we reviewed the
smart contracts for vulnerabilities that could result in the loss of funds through the impersonation of
federators. We verified that reentrancy safeguards are appropriately implemented and checked for any
potential overflows or underflows in the implementation of arithmetic operations.

Our team did not identify security vulnerabilities in the design and implementation of the Bi-directional
FastBTC system and found that the implementation generally adheres to security best practice
recommendations.

System Design
Our team reviewed the design of the Bi-directional FastBTC system and found that security has been
taken into consideration as demonstrated by adherence to recommended standards in the use of

Security Audit Report | Bi-directional FastBTC | Sovryn 3
02 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret

cryptography in the validator node implementation, and by appropriate implementation of role-based
access controls, freeze, and pause functionalities in the smart contract suite.

Although our team did not identify any security vulnerabilities in the design of the system, we did discover
opportunities to improve the overall security of the implementation. In the validator node implementation,
we found that buffers are not cleared of secret data appropriately, which could leave this data vulnerable
in case of a memory dump. This data could be used to take control of user assets. We recommend that
the buffer be cleared after being used (Suggestion 1). We also found that the config file, which contains
secret data relating to the node participating in the system (including private keys), is encrypted using a
user-selected password. However, there are insufficient constraints on the password that the user can
select, which could result in the user selecting an insufficiently secure password that is vulnerable to
dictionary attacks. We recommend that user-selected passwords be constrained according to NIST best
practice recommendations (Suggestion 2).

Code Quality
Our team found that the codebase is generally well organized and adheres to best practices. However, in
multisig.ts, we found that the length and complexity of the functions implemented in this file could
cause confusion to readers and maintainers. We recommend that these functions be refactored.

Tests

The unit tests and integration tests in place provide sufficient test coverage of the implementation. This
helps identify implementation errors that could lead to security vulnerabilities and verify that the system
behaves as intended.

Documentation
The documentation provided for this security review was generally sufficient in describing the architecture
of the system, each of its components, and the interaction between those components.

Code Comments

The Bi-directional FastBTC codebase implements sufficient code comments, which describe the intended
behavior of security-critical functions and components. The code comments of the smart contracts
component adhere to NatSpec guidelines.

Scope
The scope of this security review was sufficient and included all security-critical components.

Dependencies

Our team did not identify any vulnerabilities in the implementation's use of dependencies. However, we
found a vendored dependency that is not the latest version. We recommend using up-to-date
dependencies, which include the latest security patches and bug fixes, in accordance with best practice
(Suggestion 3).

Specific Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

SUGGESTIONS STATUS

Security Audit Report | Bi-directional FastBTC | Sovryn 4
02 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Sovryn-Bidirectional-Fastbtc-Audit/blob/master/packages/fastbtc-node/src/btc/multisig.ts

Suggestion 1: Clear Buffers Holding Secret Values after Usage Unresolved

Suggestion 2: Enforce High Entropy Passwords for Encrypting Config Secrets
Stored in Filesystems

Unresolved

Suggestion 3: Update Vendored Dependencies Unresolved

Suggestions

Suggestion 1: Clear Buffers Holding Secret Values after Usage

Location

/packages/fastbtc-node/src/utils/secrets.ts#L111

/packages/fastbtc-node/src/utils/secrets.ts#L123

Synopsis

It is a recommended practice that buffers holding secret values be zero-filled/cleared when they are no
longer in use to prevent unencrypted data leakage in the case of a memory dump.

Mitigation

We recommend that the buff.fill function be utilized to clear values held by buffers containing secret
values or plaintext messages.

Status

The Sovryn team acknowledged this suggestion and has added the recommendations to their backlog but
will not be implementing the mitigation at this time.

Verification

Unresolved.

Suggestion 2: Enforce High Entropy Passwords for Encrypting Config
Secrets Stored in Filesystems

Location

/packages/fastbtc-node/src/utils/secrets.ts#L136-L156

Synopsis

When setting up a node, users are prompted to enter a password to encrypt config files, which contain
secrets, including private keys. Currently, the system does not enforce any particular level of password
strength, and users may choose insufficiently secure passwords. Insufficiently secure passwords can be
vulnerable to dictionary attacks, which would put the secret data in the config file at risk of compromise.

Mitigation

We recommend increasing the requirement of password entropy and disallowing passwords that are easy
to guess by following the NIST Guidelines noted in [GFN+17], which are industry-standard rules and best

Security Audit Report | Bi-directional FastBTC | Sovryn 5
02 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Sovryn-Bidirectional-Fastbtc-Audit/blob/97d1f3916836260979db9b20ee78c1d5e11bedfd/packages/fastbtc-node/src/utils/secrets.ts#L111
https://github.com/LeastAuthority/Sovryn-Bidirectional-Fastbtc-Audit/blob/97d1f3916836260979db9b20ee78c1d5e11bedfd/packages/fastbtc-node/src/utils/secrets.ts#L123
https://nodejs.org/api/buffer.html#buffillvalue-offset-end-encoding
https://github.com/LeastAuthority/Sovryn-Bidirectional-Fastbtc-Audit/blob/97d1f3916836260979db9b20ee78c1d5e11bedfd/packages/fastbtc-node/src/utils/secrets.ts#L136-L156
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret

practices for handling passwords when building memorized secret authenticators. We recommend
utilizing a password strength estimator, such as zxcvbn.

Status

The Sovryn team acknowledged this suggestion and has added the recommendations to their backlog but
will not be implementing the mitigation at this time.

Verification

Unresolved.

Suggestion 3: Update Vendored Dependencies

Location

/packages/fastbtc-node/vendor

Synopsis

The vendored dependency “Ataraxia” has not been updated for almost 9 months, and the version used in
the implementation is several versions behind the main repository. Although no security issues have been
reported in the version used in the implementation, it is a best practice to use vendored dependencies that
are up to date with their mainstream repositories.

Mitigation

We recommend that pull changes be committed on the mainstream repository and that the Sovryn team
continue to monitor the mainstream repository for critical security fixes. Alternatively, if possible, we
recommend that the Sovryn team merge the needed changes directly to the main repository, which would
enable the use of automated dependency auditing tools in their CI/CD workflow to detect vulnerable
dependencies and aid developers in taking necessary action when needed.

Status

The Sovryn team acknowledged this suggestion and has added the recommendations to their backlog but
will not be implementing the mitigation at this time.

Verification

Unresolved.

Security Audit Report | Bi-directional FastBTC | Sovryn 6
02 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/dropbox/zxcvbn
https://github.com/LeastAuthority/Sovryn-Bidirectional-Fastbtc-Audit/tree/97d1f3916836260979db9b20ee78c1d5e11bedfd/packages/fastbtc-node/vendor

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts, and
zero-knowledge protocols. Additionally, the team can utilize various tools to scan code and networks and
build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Bi-directional FastBTC | Sovryn 7
02 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Bi-directional FastBTC | Sovryn 8
02 September 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

