
Plumo Protocol: Arithmetic Optimizations
Security Audit Report

cLabs
Final Report Version: 30 June 2021

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Review Scope

Code Quality

Documentation

System Design

Underlying ZEXE Implementation

Assembly Functions

Input Validity Checks in Internal Functions

Specific Issues & Suggestions

Suggestion 1: Adhere to a Clear Distinction Between Private and Public Functions

Suggestion 2: Document Assumptions Made by Functions

Suggestion 3: Clean up Namespaces

Suggestion 4: Improve Published Documentation

Suggestion 5: Consider Side-Channel Attacks

Recommendations

About Least Authority

Our Methodology

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 1
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
cLabs has requested that Least Authority perform a security audit of Plumo, a SNARK-based protocol for
achieving an ultra-fast light client for the Celo blockchain. Plumo is based on the Groth16 SNARK.
Specifically, Celo uses the BW6-761 curve and the Groth16 proving system, as implemented in ZEXE, a
Rust library for decentralized private computation. A key feature of Celo is the use of advanced speed
optimizations for computations on BW6-761.

This audit is the first of three consecutive reviews, as follows:
1. Plumo Protocol Arithmetic Optimizations (this report)
2. Plumo Protocol Underlying ZEXE Gadgets
3. Plumo Protocol High-Level Gadgets

Project Dates
● October 19 - November 11: Arithmetic Optimizations Code Review (Completed)
● November 13: Delivery of Arithmetic Optimizations Initial Audit Report (Completed)
● January 18 - 25: Verification (Completed)
● January 27: Delivery of Final Audit Report (Completed)
● June 30: Delivery of Updated Final Audit Report (Completed)

Review Team
● Ann-Christine Kycler, Cryptography Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer
● Jan Winkelmann, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Plumo Protocol Arithmetic
Optimizations followed by issue reporting, along with mitigation and remediation instructions outlined in
this report.

The following pull requests are considered in-scope for the review:
● GLV:

○ https://github.com/celo-org/zexe/pull/16
○ https://github.com/celo-org/zexe/pull/24

● Batch inversion + batch subgroup membership checks
○ https://github.com/celo-org/zexe/pull/11

● Assembly:
○ https://github.com/celo-org/zexe/pull/14
○ https://github.com/celo-org/zexe/pull/20
○ https://github.com/celo-org/zexe/pull/32

Specifically, we examined the Git revisions for our initial review:

2d389ddfd84a6b7c632700050c473e5edb0a74e8

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 2
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2020/351.pdf
https://github.com/celo-org/zexe
https://github.com/celo-org/zexe/pull/16
https://github.com/celo-org/zexe/pull/24
https://github.com/celo-org/zexe/pull/11
https://github.com/celo-org/zexe/pull/14
https://github.com/celo-org/zexe/pull/20
https://github.com/celo-org/zexe/pull/32

For the verification, we examined the Git revisions:

5a845949200a0aacc4e315ecf12500e0496eebf1

679fd44ac690426b84704decf3b984ae6019e6a0

199dcade443bb506825fe06ec5b824e4e9619dbf

B8a4fbb6895a7006d6cacb67b5c6ac77fa4b4365

5c59339000365e8eae266ea46e059e097746e743

For the review, these repositories were cloned for use during the audit and for reference in this report:

https://github.com/LeastAuthority/celo-bls-snark-rs

https://github.com/LeastAuthority/plumo-zexe

All file references in this document use Unix-style paths relative to the project’s root directory.

Supporting Documentation
The following documentation was available to the review team:

● Specification for ZEXE Algorithmic/Performance Optimisations:
https://hackmd.io/@celo/S10UeWUBD

● S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra and H. Wu, 2020, "ZEXE: Enabling Decentralized
Private Computation," 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA,
pp.947-964. [Bowe et. al. 20]

● A. Gabizon, K. Gurkan, P. Jovanovic, G. Konstantopoulos, A. Oines, M. Olszewski , M. Straka, E.
Tromer, and P. Vesely, “Plumo: Towards Scalable Interoperable Blockchains Using Ultra Light
Validation Systems.” (document shared with Least Authority via email on September 4, 2020)
[Gabizon et. al. 20]

● R.P. Gallant, R.J. Lambert, S.A. Vanstone, 2001, “Faster Point Multiplication on Elliptic Curves with
Efficient Endomorphisms.” CRYPTO '01: Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, pp.190–200. [GLV01]

● Y.E. Housni, A. Guillevic, 2020, “Optimized and secure pairing-friendly elliptic curves suitable for
one layer proof composition.” IACR Cryptol. ePrint Arch, pp.351. [HG20]

● C. Koc, K. Kaya, T. Acar, and B.S. Kaliski, 1996, "Analyzing and comparing Montgomery
multiplication algorithms." IEEE micro 16.3, pp.26-33. [KAK96]

● B. Möller, 2003, “Improved Techniques for Fast Exponentiation.” Information Security and
Cryptology – ICISC 2002. LNCS 2587. Springer-Verlag, pp.298–312. [M03]

● E. Ronen, R. Gillham, D. Genkin, A. Shamir, D. Wong, and Y. Yarom, 2019, “The 9 Lives of
Bleichenbacher's CAT: New Cache Attacks on TLS Implementations.” 2019 IEEE Symposium on
Security and Privacy (SP), pp.435-452. [Ronen et. al. 19]

● P.L. Montgomery, 1987, “Speeding the Pollard and elliptic curve methods of factorization.”
Mathematics of computation, 48(177), pp.243-264. [M87]

● D.J. Bernstein, and B.Y. Yang, 2019. “Fast constant-time gcd computation and modular inversion.”
IACR Transactions on Cryptographic Hardware and Embedded Systems, pp.340-398. [BY19]

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 3
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/celo-bls-snark-rs
https://github.com/LeastAuthority/plumo-zexe
https://hackmd.io/@celo/S10UeWUBD
https://eprint.iacr.org/2018/962.pdf
https://www.iacr.org/archive/crypto2001/21390189.pdf
https://eprint.iacr.org/2020/351.pdf
https://pdfs.semanticscholar.org/5e39/41ff482ec3ee41dc53c3298f0be085c69483.pdf
https://www.bmoeller.de/pdf/fastexp-icisc2002.pdf
https://eprint.iacr.org/2018/1173.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025--5718-1987-0866113-7.pdf
https://eprint.iacr.org/2019/266

● Performance problems or other potential impacts on performance;
● Changes (optimizations) made to ZEXE;
● Data privacy, data leaking, and information integrity;
● Vulnerabilities in the code leading to adversarial actions and other attacks;
● Protection against malicious attacks and other methods of exploitation;
● Performance problems or other potential impacts on performance;Anything else as identified

during the initial analysis phase.

Findings
General Comments
The cLabs team has optimized Plumo’s field and curve arithmetic code by implementing a new pairing
friendly elliptic curve, BW6-761, which is suited for one layer proof composition of pairing based SNARKs,
a property that is required in the Plumo protocol [Bowe et. al. 20]. BW6-761 is designed to create a
pairing-friendly amicable chain on top of BLS12-377, further explained in [HG20]. The key contributions of
the code are highly speed-optimized versions of batched inversion, addition, scalar multiplication, and
subgroup checks in these curves. The cLabs team achieved this by implementing the Montgomery trick
(See the Specification for ZEXE Algorithmic/Performance Optimisations) for faster batched addition of
curve points, by using special Endomorphisms [GLV01], and window NAF exponentiation [M03], along with
general strategies for highly efficient code, such as using tight loops, ensuring memory locality, and
avoiding frequent heap allocations. In addition, the cLabs team optimized the base field arithmetics by
writing the addition, subtraction, and multiplication in Assembly. The Assembly code was optimized by
performing computations in the Montgomery product and using the Separated Operand Scanning from
[KAK96].

We commend the cLabs team for carefully and thoroughly implementing the new BW6 curve as a
replacement of CP6 in ZEXE, which demonstrates strong considerations for maintaining security. While
our team did not identify any immediate security issues, we have made several suggestions on
maintaining the integrity of the code base.

Review Scope
The scope of the review was sufficient. It covered all relevant parts of the code concerning the
implementation of the new curve, as well as the necessary field arithmetics. Our review concentrated on
the core areas described below.

GLV Implementation

During our review of the cLabs team’s Plumo protocol implementation of the new BW6 curve as a
replacement of CP6 in ZEXE, we compared the GLV implementation against the specification as described
in [GLV01] and found no errors in the implementation. The Plumo code uses a particular optimization to
offload expensive division to a precomputation phase, which is not outlined in the original reference
[GLV01]. This optimization is explained in detail in the Specification for ZEXE Algorithmic/Performance
Optimisations, from which we analyzed the given correctness proof and identified no errors. Furthermore,
we found no errors in its corresponding implementation.

wNAF implementation

Our team compared the wNAF implementation, including the table, decomposition, and application,
against the specifications as described in [M03]. No issues were identified, with the exception of incorrect
behavior that might occur from unintended use of input parameters (Suggestion 2).

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 4
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/celo-org/zexe

Batched Trait Implementations

Additionally, our team compared the various implementations of the BatchGroupArithmetic trait
against the specification as described in the Specification for ZEXE Algorithmic/Performance
Optimisations (including batch_scalar_mul_in_place()), which included the batched inversion
operations and the various batch addition operations. During the audit, the cLabs team improved the
documentation around the bucketed batch addition operation, which significantly aided our team in
verifying the correctness of the respective function. In this instance, we did not identify security issues,
except for similar unintended behavior as noted above (Suggestion 2).

Assembly Code Implementation

Our team checked the Assembly code implementation of the underlying field arithmetics of the BW6-768
curve. The multiplication implements the Selective Operand Scanning (SOS) algorithm given in [KAK96].
We verified that the implementation corresponds to the algorithm described in the paper and analyzed
and checked the correctness of the subtraction and addition functions. The Assembly code was tested
for byte slices that represent actual field elements and no unexpected behaviour occurred. The functions
adhere to standard C calling-conventions, as used in Rust when “extern C” functions are used.
Furthermore, our team checked the safe integration of the Assembly functions into the Rust code (i.e.
safe handling of pointers) and found the Assembly code to be constant time, which we discuss further in
the System Design section.

Code Quality
The code base is well organized, which facilitated our ability to review and comprehend the
implementation of the new curve. Our team found the test coverage to be sufficient. We recommend
some improvements to further aid the ability to maintain and review the code (Suggestion 2; Suggestion
3; Suggestion 4). In particular, multi-precision (bigint) arithmetic is implemented for a small set of limb
counts in order to improve the potential for optimizations at compile time, which extends to the types
representing fields and groups that internally use multi-precision arithmetic. At times, this leads to
difficulty in understanding macro structures, even though they are not extraordinarily complex. In addition,
modules have a tendency to re-publish a considerable amount of values from modules they use
themselves. As a result, one piece in the source code is identified by several different names, thus
increasing cognitive overhead by the reviewer or maintainer of the code.

The code operates on a very low level, thus relying on only a small number of external dependencies,
which reduces the surface area for potential vulnerabilities. According to the RustSec Security Advisory
Database, no known vulnerabilities exist in the dependency versions used in the Plumo code and GitHub
will automatically warn the cLabs team of newly published security advisories, unless the cLabs team
chooses to opt out of the Dependabot feature.

Documentation
Our team found the documentation to be broad and comprehensive and found the Specification for ZEXE
Algorithmic/Performance Optimisations and code comments to be a particularly helpful source in
understanding most of the code. In addition, the accompanying papers, [GLV01], [HG20], [M03] and
[KAK96], were used for reference. Thorough documentation is critical as the implementation uses highly
non-trivial optimization of elliptic curve operations and we commend the cLabs team for their
comprehensive documentation.

The Specification for ZEXE Algorithmic/Performance Optimisations documentation is well written and
valuable in providing an understanding of most of the complex aspects of code. In areas where our team
required further insight, the cLabs team responded quickly and thoroughly to requests for further
documentation and clarification. One area of improvement that benefited from further clarification were

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 5
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://rustsec.org
https://rustsec.org

the proofs in section GLV of the Specification for ZEXE Algorithmic/Performance Optimisations
documentation.

Although most of the complex components of the implementation are well commented, we suggest
additional code comments or clear references to the appropriate sections of the Specification for ZEXE
Algorithmic/Performance Optimisations documentation (Suggestion 4). In particular, there are some
instances where low-level functions crash for some of the possible inputs, and there is an absence of
comments that define valid inputs. Important variables from research papers and literature were named
accordingly, however, code comments that reference the relevant papers and literature would be helpful
for users and reviewers of the code in order to avoid confusion which could cause misuse issues. For
example, in some instances, single letters such as R have various meanings in different reference
materials. The cLabs team significantly improved the code comments in the bucketed batch addition
function upon request, which helped us understand and verify the correctness of the addition trees used
therein. We recommend clearly defining these variables and potential specific properties, which will
provide clarity for users and reviewers of the code.

System Design

Underlying ZEXE Implementation

The design and structure of the Plumo code is mostly predetermined by the underlying ZEXE code base,
which the cLabs team has further optimized. The structure of ZEXE matches algebraic structures like
fields, groups, and curves. The system design requirements that ZEXE fulfills are well-defined and are also
used in the reference research papers, thus making Plumo’s optimizations relatively straightforward from
a design perspective.

The design is theoretically sound and practical. However, we recommend that the cLabs team consider
timing side-channel and constant time algorithms (Suggestion 5). With the exception of the Assembly
code, functions that operate on potentially secure values are not constant-time and this could be used by
an attacker who can execute processes on the same system to gain knowledge about the secret values.
For operations like batch-inversion, there are recent publications on constant-time algorithms which could
be considered [BY19].

Assembly Functions

Plumo implements the prime field arithmetics in the underlying base field of the curve BW6-761 in
Assembly. The optimized Assembly functions for the modular multiplication, addition, and subtraction
follow the standard calling-conventions. The optimized multiplication follows [KAK96] and all three
Assembly functions take constant time, so execution time does not depend on the input, thus avoiding the
potential for side-channel attacks.

Input Validity Checks in Internal Functions

Many functions do not check whether the input values they were called with are inputs the functions are
supposed to process. For many low-level functions, we identified several inputs that crashed the test
function or gave incorrect results. Our team did not identify a method in the existing implementation to
make the public functions call those functions with such arguments. At a minimum, we recommend
including a comment that describes what makes a valid input for functions that crash for certain inputs.
However, it would be optimal to have a check to determine whether the inputs are valid, if only during
debug builds (Suggestion 2), or to ensure that internal helper functions can not be called publicly
(Suggestion 1).

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 6
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

SUGGESTION STATUS

Suggestion 1: Adhere to a Clear Distinction Between Private and Public
Functions

Resolved

Suggestion 2: Document Assumptions Made by Functions Resolved

Suggestion 3: Clean up Namespaces Unresolved

Suggestion 4: Improve Published Documentation Resolved

Suggestion 5: Consider Side-Channel Attacks Unresolved

Suggestion 1: Adhere to a Clear Distinction Between Private and Public
Functions

Location

Trait Batch Group Arithmetic in
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/sr
c/curves/batch_arith.rs

Synopsis

Several functions have higher visibility than is necessary in order to accomplish the intended behavior.
This is particularly concerning when the functions are internal helper functions that do not return the
correct result for all inputs, or even crash in some instances.

Mitigation

Emulate private functions and macros in public traits and eventually implement publicly callable wrappers
that check for unintended arguments around the (faster) internal functions. While previous Rust versions
allowed for private and public parts in traits by splitting a trait accordingly, this functionality has been
removed. We recommend splitting the trait into a private and a public part, wherein the private part must
be represented by a public trait within a private module.

Status

The cLabs team issued a pull request which clarifies the distinction between private and public visibility of
their interfaces. In particular, they restricted helper functions and constants to only be visible inside the
current crate and only exposed functions that are safe and intended for use by external developers.

In addition, they emulated functions in public traits, which should only be visible in the current crate by
representing those functions in a public trait inside a pub(crate) module, as recommended.

Verification

Resolved.

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 7
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/curves/batch_arith.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/curves/batch_arith.rs
https://github.com/rust-lang/rust/issues/34537
https://github.com/rust-lang/rust/issues/34537
https://github.com/celo-org/zexe/pull/38

Suggestion 2: Document Assumptions Made by Functions

Location

For example, functions in the BatchGroupArithmetic trait defined in
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/sr
c/curves/batch_arith.rs

This example should not be considered to be exhaustive.

Synopsis

For several functions throughout the code base, it is easy to find arguments that make the function crash
or for which it returns wrong results. For example, batch_wnaf_opcode_recoding() crashes on
input w=0 and batch_add_in_place() gives incorrect results when the first elements of the tuples in
the argument array occur multiple times, as w.g. with index = [(0,1), (0,2), (0,3)].

While these functions are not called with such invalid arguments internally, it is best practice to document
the assumptions or preconditions of functions. This allows reviewers and maintainers of the code
immediate understanding of what they should and should not pass into the function. Furthermore, it
allows for easier verification of correctness.

Mitigation

Clarify assumptions made by functions on their arguments and state within the comments of the function
definition what the requirements are on the inputs such that the function behaves correctly. While it
should be specific and correct, it does not need to be machine readable.

Additionally, it should be checked whether the assumptions hold in debug builds. In this case, the
assumption needs to be encoded in a way that the computer can automatically check if it holds.

While we have identified this issue with the functions noted above, this example should not be considered
to be exhaustive. We recommend that the cLabs team further identify and document functions that make
assumptions without checking them.

Status

The cLabs team issued a pull request that adds comments that specify the classes of inputs for which
the aforementioned functions fail. Automatic verification would be desirable in order to prevent
regressions in the future. However,at present, no such tooling is yet implemented in the Rust ecosystem
and the cLabs team is unable to make use of automatic verification until that effort has been completed.

Verification

Resolved.

Suggestion 3: Clean up Namespaces

Location

https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/sr
c/lib.rs

https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/sr
c/curves/mod.rs

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 8
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/curves/batch_arith.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/curves/batch_arith.rs
https://github.com/celo-org/zexe/pull/38
https://github.com/rust-lang-nursery/wg-verification/issues/14
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/lib.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/lib.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/curves/mod.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/curves/mod.rs

https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/sr
c/fields/mod.rs

https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/sr
c/fields/models/mod.rs

https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra/src/lib.r
s

https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra/src/bw
6_761/mod.rs

https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra/src/bw
6_761/fields/mod.rs

This list of locations should not be considered to be exhaustive.

Synopsis

Throughout the code base, types and values from submodules are frequently re-exported, which has led
to them having several valid identifiers. For example, consider the files mod.rs and sub.rs:

// file mod.rs
pub mod sub; pub mod other; pub mod yet_another;
pub use sub::*;
pub use other::*;
pub use yet_another::*;

// file sub.rs
pub const PI = 3;

In this example, it is difficult to see in mod.rs where PI is defined, since it may be present in any of the
re-published modules.

Note that in this case, both PI and sub::PI are valid identifiers for the constant. There are repeated
instances of this in the in-scope code, such that a single item has a large number of names it acquired
through re-publishing. This makes the code more difficult to read and maintain.

Mitigation

The following two approaches are recommended to be implemented in conjunction with each other:

● First, avoid blanket re-publishing of modules in the style of pub use some_mod::*. Instead,
consider publishing the module itself, which avoids unnecessary ambiguity. However, importing
whole modules into the local namespace is not an issue.

● Second, only re-publish an item from a used module if that module is considered private. This
avoids unnecessary namespace blowup and reduces the effort required from readers and
maintainers of the code.

Status

The cLabs team has responded with the decision to address this suggestion at a later point in time, and
provided the following insights:

The ZEXE code base that the cLabs team initially forked has been abandoned and restructured into a new
project (arkworks). In part, this decision was made in order to resolve some of the issues outlined in this

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 9
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/fields/mod.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/fields/mod.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/fields/models/mod.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra-core/src/fields/models/mod.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra/src/lib.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra/src/lib.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra/src/bw6_761/mod.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra/src/bw6_761/mod.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra/src/bw6_761/fields/mod.rs
https://github.com/celo-org/zexe/tree/2d389ddfd84a6b7c632700050c473e5edb0a74e8/algebra/src/bw6_761/fields/mod.rs
https://github.com/arkworks-rs

suggestion. The cLabs team has responded that they intend to port Plumo to arkworks at a future point in
time, which would help resolve this suggestion.

Furthermore, the cLabs team does not consider this to be an immediate security issue. Our team does not
regard this to be a security critical suggestion, however, confusing and unclear code may result in the
introduction of errors and mistakes as development continues. We urge the cLabs team to consider
implementing the suggested mitigation at the earliest convenience.

Verification

Unresolved.

Suggestion 4: Improve Published Documentation

Synopsis

Central ideas of the optimizations applied in the code were explained and derived in the accompanying
reference (Specification for ZEXE Algorithmic/Performance Optimisations), which is currently an external
source and not part of the code base or referenced in the repository. Since understanding certain
optimizations without that reference is difficult, it is important that this information remains accessible
and conveniently discoverable. In addition, in some instances, single letters such as R have various
meanings in different reference materials.

Mitigation

In order to make it possible for reviewers to verify the correctness of the code, we recommend including
the Specification for ZEXE Algorithmic/Performance Optimisations into the repository and to expand all
relevant code comments by referencing the relevant sections in the document accordingly. Moreover
additional code comments should clarify the intended use of variable names.

Status

The cLabs team has updated the documentation in the repository to include all relevant information,
presented in an understandable format, as recommended.

Verification

Resolved.

Suggestion 5: Consider Side-Channel Attacks

Synopsis

Side-channel attacks utilize both the explicit input and output values of a system and metadata, such as
how long the computation took or how much power was consumed during the computation. If an attacker
is able to learn the values and infer information about secret data, it can be considered that they have
access to a side-channel. For networked applications, the most relevant form of side-channel is the timing
side-channel and the most well-known timing side-channel attacks are variants of Bleichenbacher’s attack
[Ronen et. al. 19].

In order to avoid vulnerabilities to this class of attacks, many cryptographic protocols are diligent in their
use of constant-time algorithms for cryptographic computations. We note that the arithmetic for the new
curve does not run in constant time.

For the scope of this audit, this is not an issue, since we are looking at the correctness of an
implementation of arithmetic computations, not the security of a distributed system. However, the fact

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 10
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/celo-org/zexe/pull/38

that many computations are not constant-time means that the implementation needs to be used with
caution in interactive protocols.

We acknowledge that the ZEXE code base (and by extension Plumo) does not have constant-time
behavior as a design goal, and that achieving that property is a significant undertaking. Additionally, unlike
the setting of the Bleichenbacher variants, variable-time computations in ZEXE/Plumo are not
immediately performed on attacker input, leaving open the question of how such an attack could even be
mounted. However, this is a long-term security goal that is worth considering.

Mitigation

We recommend investigating constant-time alternatives to the current algorithms and to evaluate their
performance and efficacy for interactive use-cases. Possible starting points could be the Montgomery
ladder [M87] and the greatest common divisor algorithm proposed in [BY19].

Status

The cLabs team has responded that this suggestion will remain unaddressed since the ZEXE code base
from which Plumo is forked would require significant redesign in order to achieve this property.

Additionally, the cLabs team has noted that the performance costs of achieving side-channel attack
resistance are not acceptable for them.

Finally, the cLabs team makes the argument that the optimizations are used for the setup and proof
generation. The setup is secure as long as one involved party is honest (i.e. not under a successful
attack). Using the optimizations for proof generation is secure, because Plumo does not use ZEXE for
hiding data, only for verifying the integrity of transactions. Therefore, there is no relevant secret data that
could be extracted from them. Our team agrees with this assessment for the Plumo use case.

Nonetheless, we recommend that the cLabs team continue to assess the risk of side-channel attacks in
future development efforts and consider further addressing them if the above-mentioned circumstances
change.

Verification

Unresolved.

Recommendations
We recommend that the unresolved Suggestions stated above are addressed as soon as possible and
followed up with verification by the auditing team.

We also recommend that the cLabs team clean up namespaces in order to facilitate better readability and
comprehension of the implementation.

Finally, we commend the cLabs team for publishing the Specification for ZEXE Algorithmic/Performance
Optimisations, which is now linked to the public repository and easily accessible by maintainers and
reviewers of the code. Furthermore, the cLabs team has integrated relevant technical details into the code
comments by documenting assumptions made by functions.

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 11
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 12
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Plumo Protocol: Arithmetic Optimizations | cLabs 13
30 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

