
Overlay Protocol V1 Core Smart Contracts
Security Audit Report

Overlay Market
Final Audit Report: 08 June 2022



Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Suggestions

Suggestion 1: Improve Error Handling

Suggestion 2: Remove Unused Code

Suggestion 3: Remove Redundant Lines in OverlayV1Token Constructor

Suggestion 4: Simplify toInt192Bounded

Suggestion 5: Replace _setupRole with _grantRole

Suggestion 6: Use Multiple Oracles for Feeds

Suggestion 7: Create A Long-Duration Simulation to Test Properties

Suggestion 8: Make Positions Transferable

Suggestion 9: Improve Documentation

About Least Authority

Our Methodology

Security Audit Report | Overlay Protocol V1 Core Smart Contracts | Overlay Market 1
08 June 2022  by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



Overview
Background
Overlay Market has requested that Least Authority perform a security audit of the Overlay Protocol V1
Core smart contracts.

Overlay is a Decentralized Finance (DeFi) protocol for trading positions based on data streams, enabling
markets without the need for traditional counterparties or liquidity pools. The protocol accomplishes this
through its native token, OVL.

Project Dates
● April 4 - May 9: Initial Code Review (Completed)
● May 11: Delivery of Initial Audit Report (Completed)
● June 6 - June 7: Verification Review (Completed)
● June 8: Delivery of Final Audit Report (Completed)

Review Team
● David Braun, Security Researcher and Engineer
● Steven Jung, Security Researcher and Engineer
● Xenofon Mitakidis, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Overlay Protocol followed by issue
reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repository is considered in-scope for the review:

https://github.com/overlay-market/v1-core

Specifically, we examined the Git revision for our initial review:

c480f6f9af526d4c15f16a3442b2d090197cfb76

For the verification, we examined the Git revision:

24dffd529068cf3d3e8b3599a06d9aebfd212e37

For the review, this repository was cloned for use during the audit and for reference in this report:

https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Security Audit Report | Overlay Protocol V1 Core Smart Contracts | Overlay Market 2
08 June 2022  by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://overlay.market/
https://github.com/overlay-market/v1-core
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts


Supporting Documentation
The following documentation was available to the review team:

● Overlay V1 Core.pdf:
https://planckcat.mypinata.cloud/ipfs/QmVMX7DH8Kh22kxMyDFGUJcw1a3irNPvyZBtAogkyJYJ
Ev

● README.md:
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/master/README.md

● Docs:
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/tree/master/docs

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Adherence to the specification and best practices;
● Adversarial actions and other attacks on the smart contracts;
● Potential misuse and gaming of the smart contracts;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial of Service (DoS) and security exploits that would impact the code’s intended use or disrupt

the execution of the code;
● Vulnerabilities in the code for all features;
● Protection against malicious attacks and other ways to exploit the smart contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
The Overlay protocol enables users to take long and short positions against values from any stream of
data, with V1 focusing on the price of DeFi tokens. A distinguishing feature of the protocol is that it
enables trading without counterparties by minting and burning a settlement token (OVL).

OVL’s value is determined by the equilibrium of supply and demand for the token. A minting and burning
imbalance of OVL would create an inflation risk. An increase in the supply of the OVL token would reduce
its value in ETH terms, which would affect the functionality of the system. This risk is mitigated by
defensive mechanisms that work to keep the minting and burning of OVL at an optimal level.

Our team attempted to force existing positions to become liquidatable by executing a flash loan attack.
The attack attempted to build large subsequent positions that would cause the existing positions to lose
value. However, the attack was thwarted by the circuit breaker defense. We observed that the risk
parameters maintenanceMarginFraction and liquidationFeeRate are critical in preventing flash
loan attacks and should be set carefully by a secure governance mechanism.

We also attempted to create many small positions as an alternative vector to manipulate the value of
existing positions but found that the gas cost was prohibitive. Given that the ability to access the feed

Security Audit Report | Overlay Protocol V1 Core Smart Contracts | Overlay Market 3
08 June 2022  by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://planckcat.mypinata.cloud/ipfs/QmVMX7DH8Kh22kxMyDFGUJcw1a3irNPvyZBtAogkyJYJEv
https://planckcat.mypinata.cloud/ipfs/QmVMX7DH8Kh22kxMyDFGUJcw1a3irNPvyZBtAogkyJYJEv
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/master/README.md
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/tree/master/docs


creation mechanism is unguarded, we explored the potential for griefing attacks but did not identify any
issues.

Our team found the protocol to be well designed and implemented. However, the project is based on
complex finance structures that increased the auditing complexity substantially.

System Design
We found that security has been taken into consideration in the design of the Overlay protocol as
demonstrated by a careful delineation of roles and the authority granted to them. Our team noted that
sufficient input validation has been implemented where appropriate, in addition to mechanisms that
hinder attacks, such as caps, spreads, and market-specific parameters set by protocol governance.
However, governance functionality, which is critical to the security of such a system, has not been
implemented yet. As such, the protocol cannot be considered ready for launch until a proper governance
system is in place.

The current implementation of the Overlay protocol relies on a single oracle, Uniswap’s WETH/OVL pool,
as a price feed that is used to determine the profitability of trader positions. We recommend that
functionality to aggregate additional price data from other liquidity pools be implemented to reduce this
single point of failure risk (Suggestion 6).

Code Quality
The Overlay code is well organized and adheres to best practices as demonstrated by optimizing storage
space by rationally assigning storage variables, moving logic into libraries to minimize the code,
appropriately using the require function to ensure the validity of contract state transitions, and also
using interfaces to improve readability and facilitate reasoning about the code by abstracting code
functionality.

However, we found instances of redundant code, which should be removed to improve the readability and
maintainability of the code (Suggestion 2, Suggestion 3). Additionally, we suggest that the
toInt192Bounded function be simplified to improve readability (Suggestion 4), and that deprecated
calls to _setupRole be updated to _grantRole (Suggestion 5).

Lastly, the implementation imports the errors library for the purpose of gas efficiency. We recommend
using custom errors, instead, as a better practice (Suggestion 1).

Tests

Overlay has comprehensive test coverage, which significantly aids developers and security researchers in
identifying implementation errors that could lead to security vulnerabilities. To test for edge case
scenarios, we suggest the creation and running of long-duration simulations in which bots execute
millions of trades (Suggestion 7).

Documentation
The project documentation for this review included a README, which describes the general architecture
of the system, in addition to a file that lists and describes the core functions implemented in the protocol.
Other background documentation was out of date and considered out of scope for this audit, inhibiting
our understanding of the functionality of the protocol in a broader context. Furthermore, the project
documentation insufficiently describes how the governance of the protocol will be handled. We
recommend that the documentation be improved to cover all components of the system (Suggestion 9).

Security Audit Report | Overlay Protocol V1 Core Smart Contracts | Overlay Market 4
08 June 2022  by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



The project documentation also included a whitepaper describing the economic model that the Overlay
protocol is governed by, which explains the theory well and describes the security mechanisms that are in
place.

Code Comments

The documentation within the code sufficiently describes the intended behavior of security-critical
functions and components.

Scope
The in-scope repository for this review included all security critical components of the Overlay protocol.
However, key components that are necessary for Overlay to function securely, such as the governance
and fee recipient mechanisms, were not in-scope for this review and must be included in a follow-up audit.

Dependencies

The implementation utilizes a few dependencies like the FullMath.sol and TickMath.sol libraries
from the 0.8 branch of Uniswap. We examined the two libraries and did not identify any issues.

Specific Issues & Suggestions
We list the issues and suggestions found during the review in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Suggestion 1: Improve Error Handling Unresolved

Suggestion 2: Remove Unnecessary Code Resolved

Suggestion 3: Remove Redundant Lines in OverlayV1Token Constructor Resolved

Suggestion 4: Simplify toInt192Bounded Resolved

Suggestion 5: Replace _setupRole with _grantRole Resolved

Suggestion 6: Use Multiple Oracles for Feeds Unresolved

Suggestion 7: Create A Long-Duration Simulation to Test Properties Unresolved

Suggestion 8: Make Positions Transferable Unresolved

Suggestion 9: Improve Documentation Unresolved

Suggestions

Suggestion 1: Improve Error Handling

Location

/contracts/utils/Errors.sol

/contracts/libraries/LogExpMath.sol

Security Audit Report | Overlay Protocol V1 Core Smart Contracts | Overlay Market 5
08 June 2022  by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/master/contracts/libraries/uniswap/v3-core/FullMath.sol
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/master/contracts/libraries/uniswap/v3-core/TickMath.sol
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/c480f6f9af526d4c15f16a3442b2d090197cfb76/contracts/utils/Errors.sol
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/c480f6f9af526d4c15f16a3442b2d090197cfb76/contracts/libraries/LogExpMath.sol


Synopsis

The Overlay team utilizes the Errors library to reduce gas costs in case of reverts. However, only 5 out
of the 140 defined error codes are used. Custom errors in Solidity provide similar gas efficiencies, in
addition to being more featureful by supporting arguments and increased readability, which can make
errors easier to understand.

Mitigation

We recommend using custom errors for all error handling.

Status

The Overlay team chose not to address this suggestion.

Verification

Unresolved.

Suggestion 2: Remove Unused Code

Location

/contracts/feeds/uniswapv3/OverlayV1UniswapV3Feed.sol#L283

Synopsis

uint32 secondsAgo = secondsAgos[i];

The variable secondsAgo is no longer used, so its declaration can cause confusion for reviewers and
maintainers.

Mitigation

We recommend removing the unnecessary line of code.

Status

The Overlay team has removed the unused code as suggested.

Verification

Resolved.

Suggestion 3: Remove Redundant Lines in OverlayV1Token Constructor

Location

/contracts/OverlayV1Token.sol#L13-L15

Synopsis

The following lines in OverlayV1Token are redundant:

_setRoleAdmin(MINTER_ROLE, DEFAULT_ADMIN_ROLE);
_setRoleAdmin(BURNER_ROLE, DEFAULT_ADMIN_ROLE);
_setRoleAdmin(GOVERNOR_ROLE, DEFAULT_ADMIN_ROLE);

The OpenZeppelin documentation reads:

Security Audit Report | Overlay Protocol V1 Core Smart Contracts | Overlay Market 6
08 June 2022  by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.soliditylang.org/en/v0.8.10/contracts.html#errors
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/c480f6f9af526d4c15f16a3442b2d090197cfb76/contracts/feeds/uniswapv3/OverlayV1UniswapV3Feed.sol#L283
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/master/contracts/OverlayV1Token.sol#L13-L15
https://docs.openzeppelin.com/contracts/4.x/access-control


AccessControl includes a special role called DEFAULT_ADMIN_ROLE, which acts as the
default admin role for all roles. An account with this role will be able to manage any other role,
unless _setRoleAdmin is used to select a new admin role.

Mitigation

We recommend removing the redundant lines.

Status

The Overlay team removed the redundant lines as suggested.

Verification

Resolved.

Suggestion 4: Simplify toInt192Bounded

Location

/contracts/libraries/Cast.sol#L12-L19

Synopsis

There is an opportunity to improve the readability of the toInt192Bounded function.

Mitigation

We recommend this minor refactor, which is easier to read and saves a comparison:

function toInt192Bounded(int256 value) internal pure returns (int192) {
int192 value192 = value < type(int192).min

? type(int192).min
: value > type(int192).max

? type(int192).max
: int192(value);

return value192;
}

Status

The Overlay team refactored the function as suggested.

Verification

Resolved.

Suggestion 5: Replace _setupRole with _grantRole

Location

/contracts/OverlayV1Token.sol#L11-L12

Synopsis

In the following code, _setupRole is called:

_setupRole(DEFAULT_ADMIN_ROLE, msg.sender);
_setupRole(MINTER_ROLE, msg.sender);

Security Audit Report | Overlay Protocol V1 Core Smart Contracts | Overlay Market 7
08 June 2022  by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/master/contracts/libraries/Cast.sol#L12-L19
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/master/contracts/OverlayV1Token.sol#L11-L12


According to OpenZepplin’s documentation, _setupRole is deprecated in favor of _grantRole.

Mitigation

We recommend replacing _setupRole with _grantRole.

Status

_grantRole is now used for DEFAULT_ADMIN_ROLE and the MINTER_ROLE line has been removed by
the Overlay team.

Verification

Resolved.

Suggestion 6: Use Multiple Oracles for Feeds

Location

/contracts/feeds/OverlayV1Feed.sol

Synopsis

The current design of Overlay relies on a single oracle for each feed. This creates a single point of failure
because individual oracles can become unavailable, supply incorrect data, or be manipulated.

Mitigation

We suggest sampling data from multiple oracles for each feed and combining the results. For the feed
implemented in the first Overlay market (OVL/WETH), a second liquidity pool could be created on an
automated market maker other than Uniswap.

Status

The Overlay team chose not to address the suggestion.

Verification

Unresolved.

Suggestion 7: Create A Long-Duration Simulation to Test Properties

Synopsis

There are many tunable risk parameters to help manage the risk of the protocol drifting into an
undesirable state (e.g. excessive OVL inflation). It is difficult to anticipate the future behavior of the
markets and to know whether the risk parameters are set appropriately.

Mitigation

We suggest creating a long-running simulation in which bots place millions of randomly generated trades.
The simulation should monitor key systemic properties (such as acceptable OVL inflation) and alert if any
of them go out of bounds.

Status

The Overlay team responded they intend to address this suggestion in the future.

Verification

Unresolved.

Security Audit Report | Overlay Protocol V1 Core Smart Contracts | Overlay Market 8
08 June 2022  by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.openzeppelin.com/contracts/4.x/api/access#AccessControl-_setupRole-bytes32-address-
https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/master/contracts/feeds/OverlayV1Feed.sol
https://blog.synthetix.io/response-to-oracle-incident/
https://blog.euler.finance/uniswap-oracle-attack-simulator-42d18adf65af


Suggestion 8: Make Positions Transferable

Location

/contracts/OverlayV1Market.sol#L268

Synopsis

In the current design, trader positions can only be unwound by the same Ethereum account that built
them. The Overlay protocol could be more valuable if it were possible for traders to trade the right to
unwind a position to other traders. This would make the Overlay protocol a more composable and
multipurpose DeFi building block, which could generate more revenue through trading fees.

Mitigation

We recommend making trader positions transferable.

Status

The Overlay team plans to add this feature in a future peripheral library outside the core.

Verification

Unresolved.

Suggestion 9: Improve Documentation

Synopsis

The README provides instructions for running the code, a simple architecture diagram, and some
developer documentation. The whitepaper is an excellent deep dive into the financial formulas used in the
protocol. What is missing is up-to-date documentation that explains the problem that the Overlay protocol
is trying to solve and how it solves it. It is also missing detailed descriptions of key components of the
system and how they interact with each other (such as governance, liquidity pools, and the fee recipient).

Mitigation

We recommend documentation be created that introduces the big picture of the Overlay protocol with
background context, visual diagrams including system components and interactions, and detailed
descriptions of planned but undocumented components.

Status

The Overlay team responded they intend to address this suggestion in the future.

Verification

Unresolved.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and

Security Audit Report | Overlay Protocol V1 Core Smart Contracts | Overlay Market 9
08 June 2022  by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Overlay-Protocol-Smart-Contracts/blob/master/contracts/OverlayV1Market.sol#L268


unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each, we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even though we have not yet verified the feasibility and
impact of the issue. This process is conservative because we document our suspicions early even if they
are later shown to not represent exploitable vulnerabilities. We generally follow a process of first
documenting the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative and we strive to provide test

Security Audit Report | Overlay Protocol V1 Core Smart Contracts | Overlay Market 10
08 June 2022  by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/


code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take and finally, we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Overlay Protocol V1 Core Smart Contracts | Overlay Market 11
08 June 2022  by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.


