
Auro Wallet Extension
Security Audit Report

Mina Foundation
Updated Final Audit Report: 6 August 2021

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope & Dependencies

Specific Issues & Suggestions

Issue A: Sensitive Data Not Cleared Upon Locking

Issue B: Encryption Library Provides Insufficient Security for Low-Entropy Passwords

Issue C: Memo Allows GraphQL Injections

Issue D: Password Prompts on an Unlocked Wallet Can be Circumvented

Suggestions

Suggestion 1: Verify State Received From API Using SNARKs

Suggestion 2: Improve Auro UI Architecture

Suggestion 3: Improve Code Comments

Suggestion 4: Improve Code Readability

Suggestion 5: Improve Password Handling

Suggestion 6: Increase Test Coverage

Suggestion 7: Improve Project Documentation

About Least Authority

Our Methodology

Security Audit Report | Auro Wallet Extension | Mina Foundation 1
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Mina Foundation requested that Least Authority perform a security audit of the Auro Wallet
Extension, a browser extension wallet for the Mina Protocol. The Auro Wallet Extension aims
to provide a more convenient way for users to participate in the Mina Network through secure local
account storage, management of Mina assets, convenient and simplified staking, user-owned private
keys, and a user-friendly interface.

Project Dates
● May 19 - June 15: Code review (Completed)
● June 18: Delivery of Initial Audit Report (Completed)
● July 28 - 29: Verification (Completed)
● July 30: Delivery of Final Audit Report (Completed)
● August 6: Delivery of Updated Final Audit Report (Completed)

Review Team
● Ann-Christine Kycler, Cryptography Researcher and Engineer
● Jan Winkelmann, Cryptography Researcher and Engineer
● Gabrielle Hibbert, Security Researcher and Engineer
● May-Lee Sia, Security Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Auro Wallet Extension followed by
issue reporting, along with mitigation and remediation instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● Auro Wallet Extension: https://github.com/bitcat365/auro-wallet-browser-extension

Specifically, we examined the Git revisions for our initial review:

C46ad68638085ffaee4ea4d27230f09c28bb9b6f

For the verification, we examined the Git revision:

990f595cd96820c6b39d8548332017b7d3ad46df

For the updated verification, we examined the Git revision:

1fbc0013e7ecc9f3db25bb8ff494e0020d57718b

For the review, this repository was cloned for use during the audit and for reference in this report:

https://github.com/LeastAuthority/auro-wallet-browser-extension

All file references in this document use Unix-style paths relative to the project’s root directory.

Security Audit Report | Auro Wallet Extension | Mina Foundation 2
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/bitcat365/auro-wallet-browser-extension
https://github.com/LeastAuthority/auro-wallet-browser-extension

In addition, any dependency and third party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● J. Bonneau, I. Meckler, V. Rao, and E. Shapiro, 2020, “Mina: Decentralized Cryptocurrency at Scale”
New York University, O(1) Labs [BMR+20]

● Mina Extension Document: mina_wallet_for_audit_0407-en.pdf (provided by Bit Cat via Discord on
7 April 2021)

● Auro Extension Wallet.png:
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/docs/auro-extensio
n-wallet.png

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation and adherence to best practices;
● Exposure of any critical information during user interactions with the blockchain and external

libraries, including authentication mechanisms;
● Adversarial actions and other attacks that impact funds, such as the draining or the manipulation

of funds;
● Mismanagement of funds via transactions;
● Vulnerabilities in the code, as well as secure interaction between the related and network

components;
● Proper management of encryption and storage of private keys, including the key derivation

process;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
The Auro Wallet Extension is a Chrome and Firefox browser extension that enables users to generate a
key pair using a BIP-39 library, store the private key locally, and perform common wallet functions. These
functions include sending, receiving, and staking Mina assets, as well as account management. The
repository in scope consists of a user interface (Auro UI) component and a backend component (Auro
background), which includes security critical sub-components, such as local storage of private keys and
Mina Network communication functionality.

The Auro Wallet team has been proactive in response to our questions and feedback throughout this
security review, demonstrating that security is a strong consideration and priority in their development
approach.

System Design
Our team performed a manual review of the codebase and examined all security critical components for
security vulnerabilities and implementation errors.

Security Audit Report | Auro Wallet Extension | Mina Foundation 3
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.pdf
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/docs/auro-extension-wallet.png
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/docs/auro-extension-wallet.png

To reinforce the overall security of the system, we encourage adherence to web application security best
practices. We suggest utilizing secure web application resources, such as OWASP GraphQL Security and
the OWASP Authentication Cheat Sheet, in order to promote implementation best practices according to
generally accepted security guidelines.

Auro Background

Our team closely evaluated the Auro background component, in which encrypted private keys are stored.
It is apparent that the Auro Wallet team has considered security in the design of this component, as
demonstrated by requiring sensitive data in the browser extension storage to be encrypted. However,
under feasible preconditions, we found that the user password, which grants the user access to the wallet
extension functionality and decrypts the sensitive data in the browser extension storage, can be retrieved
from the memStore of APIservice.js. We recommend that the user password be cleared from
memory upon each user lock out (Issue A).

Furthermore, we found that the encryption library used to encrypt sensitive data stored in the browser
extension uses a CPU-bound key derivation function, which could make low entropy user passwords
brute-forceable. We recommend that a more secure key derivation function be implemented to protect
against brute-force based attacks (Issue B).

Auro UI

We examined all user input fields in Auro UI and potential vulnerabilities to Cross-Site Scripting (XSS)
attacks. We also investigated the security features of the Auro UI and found that the input field Memo in
the pages Send and Stake allow for a GraphQL injection. Although we did not identify any scenario that
would result in loss of funds, we recommend adhering to GraphQL best practices in order to avoid
GraphQL injections (Issue C).

In reviewing Auro UI, we also found that the user is prompted by pop-ups to input the password to confirm
certain requests. This password prompt is superfluous, since the password is available in plaintext in the
background script state, which can be accessed using Chrome DevTools. These prompts may suggest a
false sense of security to users and, as a result, we recommend that an alternative request confirmation
mechanism be implemented (Issue D).

Our team also noted that user passwords, when stored for validation, are limited arbitrarily in length and
whitespaces are removed. This practice reduces the security of the password and, as a result, we suggest
that password handling in the system adheres to NIST best practices for memorized secret
authenticators (Suggestion 5).

Network Communication

Our team examined the mechanism whereby the Auro Wallet browser extension communicates with the
Mina Network to query information or broadcast transactions. Auro background makes API requests to a
Mina node that is maintained by the Auro Wallet team. This current architecture requires the user to trust
an external Mina node to provide correct information about wallet funds and the state of the network. At
present, there is no mechanism in the Auro background to validate the veracity of data returned from this
node. As a result, we suggest that the validation features of the Mina Network be utilized to enhance user
and network security (Suggestion 1).

Code Quality
Our team found the Auro background component codebase to be well organized.

However, we found that the Auro UI codebase does not adhere to React coding best practices. We
suggest that the GUI components and functionality components be grouped to facilitate maintenance and

Security Audit Report | Auro Wallet Extension | Mina Foundation 4
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://owasp.org/www-chapter-vancouver/assets/presentations/2020-06_GraphQL_Security.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

review of the implementation, and that pages should be broken down further into distinct React
components (Suggestion 2).

Furthermore, the code for both Auro UI and Auro-background is inconsistently formatted, with several
instances of duplicate code and unused variables and functions, which make the code more difficult to
reason about and comprehend. We recommend that all instances of duplicate code and unused variables
and functions be removed and that a linter and code formatter be used to improve the readability of the
code (Suggestion 4).

Tests

The Auro Wallet browser extension codebase includes five unit tests, and no integration tests or
end-to-end tests have been written. In accordance with best practices, sufficient test coverage should test
for all success and failure cases, which helps to identify potential edge cases and protect against errors
and bugs that may lead to vulnerabilities or exploits. We recommend implementing a test suite, which
includes a minimum of unit tests and integration tests. We also suggested end-to-end testing so that it
can be comprehensively determined if the implementation behaves as intended (Suggestion 6).

Documentation
The Auro Wallet team has provided some documentation of the code and a diagram that explains the
interactions between the JS code modules. However, documentation outlining the system design is
currently unavailable. Furthermore, the existing documentation of the interaction between the Auro UI,
Auro background, and the API node to be insufficient, as message passing functionality and GraphQL
requests must be documented thoroughly in order to avoid implementation errors and to provide
reviewers with a sufficient understanding of the system. In addition, there is no clear documentation on
the Mina node to which the Auro Wallet browser extension sends API requests. Although this is
configurable at build time, the default configuration sends API requests to a Mina node run by the Auro
Wallet team. Documentation of this area is vital in evaluating the trust relationships between the different
parties and components and the overall security of the system. As a result, we recommend the project
documentation be improved to encompass these missing components (Suggestion 7).

Code Comments

The Auro Wallet code base has very few code comments that explain the intended functionality of the
code. Code comments are the most basic form of documentation and should be comprehensive in
documenting every function and entry point. We suggest the Auro Wallet team improve code comments
to explain the intended functionality of all components to facilitate understanding and reasoning about
security vulnerabilities (Suggestion 3).

Scope & Dependencies
The scope of this security review was sufficient and covered all security critical components of the
system. We examined all dependencies implemented in the codebase, and generally found that well
audited and maintained dependencies have been utilized correctly. However, we did identify one
unmaintained dependency, the QR Code Generator, which was last updated in September 2019. The Auro
Wallet team confirmed that the dependency has been pinned to the current latest version. As a result the
system will not automatically update to a newer, potentially malicious version, and thereby follows best
practices to prevent such attacks.

Unmaintained libraries pose a higher risk of being used as a vector for supply-chain attacks. Inactive
maintainers are often willing to grant push access to anyone who volunteers to maintain the library, and it
is difficult to verify the credibility of the new maintainer. As a result, careful maintenance and
management of dependencies is critical to the security of any system.

Security Audit Report | Auro Wallet Extension | Mina Foundation 5
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.npmjs.com/package/qrcode-generator

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Sensitive Data Not Cleared Upon Locking Resolved

Issue B: Encryption Library Provides Insufficient Security for Low-Entropy
Passwords

Resolved

Issue C: Memo Allows GraphQL Injections Resolved

Issue D: Password Prompts on an Unlocked Wallet Can be Circumvented Unresolved

Suggestion 1: Verify State Received From API Using SNARKs Unresolved

Suggestion 2: Improve Auro UI Architecture Unresolved

Suggestion 3: Improve Code Comments Unresolved

Suggestion 4: Improve Code Readability Unresolved

Suggestion 5: Improve Password Handling Unresolved

Suggestion 6: Increase Test Coverage Unresolved

Suggestion 7: Improve Project Documentation Unresolved

Issue A: Sensitive Data Not Cleared Upon Locking

Location

src/background/APIService.js

Synopsis

The local password can be extracted after locking due to insufficient state clearing.

Impact

With access to the locked extension, an attacker can interact with the browser extension and extract the
password from the internal state of the background script. This password can be used to decrypt the
keystore, which stores the private key.

Preconditions

The attack requires an opportunity to interact with the extension, which requires physical access to the
machine. Alternatively, a means of control of the inputs to the browser extension would be needed, which
would require successful exploitation of the machine beforehand.

The extension must be opened and unlocked, and then locked again, storing the password in memory.

Security Audit Report | Auro Wallet Extension | Mina Foundation 6
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/background/APIService.js#L71

Feasibility

If the preconditions hold, the attack is feasible using the Chrome DevTools, which are part of every
Chrome installation.

Technical Details

The password is stored in the memStore of the APIService. The internal state of this object can be
inspected using the Chrome DevTools.

Remediation

We recommend clearing the password upon locking, which entails deleting the password from the
memStore object.

Status

The Auro Wallet team has updated all code paths that lock the wallet, such that all sensitive data is
deleted from the memStore.

Verification

Resolved.

Issue B: Encryption Library Provides Insufficient Security for Low-Entropy
Passwords

Location

src/background/APIService.js#L12

Synopsis

The browser-passworder encryption library uses the PBKDF2 key derivation function using a SHA
hash, which is purely CPU-bound. This means brute-force attacks can be sped up relatively easily using
ASICs and FPGAs.

Impact

A successful brute force attack on the password based encryption compromises the private key.

Preconditions

The attacker has access to a locked, encrypted wallet.

Feasibility

Moderately feasible. The attack requires access to a hardware implementation (ASIC or FPGA) of
PBKDF2-HMAC-SHA256. The initial investment for an FPGA implementation is low to moderate.

Technical Details

The browser-passworder encryption library uses PBKDF2 to derive a key from a password. PBKDF2 is
a standard for iterated invocation of a keyed hash function. The function used in browser-passworder
is HMAC-SHA256. This function is purely CPU-bound, and can therefore be sped up using specialized
hardware that has little memory. Such hardware is not very expensive and very energy efficient. In order to
protect against brute-force attacks carried out with the help of such devices, a memory-hard function
should be used. This makes brute-force attacks based on specialized hardware infeasible, because they
require access to a considerable amount of fast memory. This increases both the hardware cost and the
amount of energy required for the derivation, which minimizes the gap to the efficiency of CPUs.

Security Audit Report | Auro Wallet Extension | Mina Foundation 7
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/bitcat365/auro-wallet-browser-extension/compare/c46ad68..8409013
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/background/APIService.js#L12

Remediation

We recommend using the Argon2id function for deriving keys from passwords. There are two possible
approaches:

1. Provide a patch to browser-passworder to support Argon2id (see this GitHub Issue).
2. Derivation and encryption manually.

For deriving a key from the password, we recommend this Argon2id function library implemented with a
memory parameter of 64 MB. Additionally, an iteration count (called OPSLIMIT by sodium) of 3 should be
used. It is important to note that a longer processing time provides better protection against brute-force
attacks.

For encryption of the browser extension storage, we recommend using the secretbox functions from
libsodium.

Status

The Auro Wallet team has added code for a new encryption system based on Argon2id and AES-GCM.
They also added automatic migration logic, in order to convert encrypted wallets in the old format to the
new format. The security parameters of the Argon2 invocation fit the use case. For the base64
conversion, a well-maintained, web-compatible implementation of the Buffer object from Node.js is being
used.

Verification

Resolved.

Issue C: Memo Allows GraphQL Injections

Location

pages/StakingTransfer/index.js#L150-L156

pages/Send/index.js#L354-L360

background/api/gqlparams.js#L55-L156

Synopsis

The input fields from the Send and Staking screens are inserted into the GraphQL mutation strings
without validation or sanitization. If a user inserts a double-quote (“) character into a memo field, they can
end the GraphQL field that constrains the results and insert additional GraphQL code.

Impact

There are several strings that, when entered as a Memo string, result in the submission of an invalid
transaction, which would be rejected by the Mina Network. We did not find a string that would result in a
changed destination or amount.

Preconditions

The attacker is able to choose the contents of the memo field.

Feasibility

Depending on the context, this is very feasible. For example, a merchant may require a specific memo for
matching the payment to the order. This may not be a deliberate attack, however, most strings containing
quotes will fail.

Security Audit Report | Auro Wallet Extension | Mina Foundation 8
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/danfinlay/browser-passworder/issues/1
https://github.com/antelle/argon2-browser
https://www.npmjs.com/package/libsodium
https://github.com/bitcat365/auro-wallet-browser-extension/compare/c46ad68..8409013
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/popup/pages/StakingTransfer/index.js#L150-L156
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/popup/pages/Send/index.js#L354-L360
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/background/api/gqlparams.js#L55-L156

Technical Details

The memo field can be filled with arbitrary text. This text will then simply be inserted into the GraphQL
mutation string, between two quotation marks. Since that text can also contain quotation marks, the
structure of the GraphQL mutation can be escaped and thereby modified. This is referred to as GraphQL
injection.

In this case, we did not find a way to perform an attack with a very strong outcome, because the signature,
which is also included in the mutation, is only valid for the correct data. Therefore, we only found attacks
which resulted in failed transactions.

Such injections can be prevented by properly using the GraphQL named mutations and variables features.

Remediation

We recommend adhering to the best practice guidelines provided in the GraphQL documentation. Steps to
avoid GraphQL injections include:

● Use accepted naming conventions and avoid conventions where a mutation is named
“MyMutation”;

● Use variables instead of inserting strings directly;
● Mutations must be a static string; and
● Remove the startFetchMyQuery function, then map the proper values to these variables using

the variables parameter of fetchGraphQL.

Status

The Auro Wallet team has updated the code such that the generation of query and mutation strings is
minimized (e.g. through the use of GraphQL variables), which prevents GraphQL injections of any kind.

Verification

Resolved.

Issue D: Password Prompts on an Unlocked Wallet Can be Circumvented

Location

src/popup/pages/SecurityPwdPage/index.js

src/background/APIService.js#L60

Synopsis

All password prompts that are presented when the wallet is already unlocked can be circumvented, since
the wallet password is stored in the background script state, which can be accessed using the
Chrome DevTools.

Impact

A user may not notice that it is possible to extract the private key from any unlocked wallet and, given this
false sense of security, may be less careful than is warranted. This may lead to the compromise of their
secret key and/or mnemonic, or the change of the password by an attacker.

Preconditions

The wallet must be unlocked.

Security Audit Report | Auro Wallet Extension | Mina Foundation 9
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://graphql.org/learn/queries/
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/popup/pages/SecurityPwdPage/index.js
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/0401d024e5d29e2970d175b021bcfb433228ed19/src/background/APIService.js#L60

Feasibility

The password can be easily extracted.

Technical Details

The password is stored in the memStore of the APIService. The internal state of this object can be
inspected using the Chrome DevTools. Unfortunately, this is an inherent limitation of the execution
environment and cannot be prevented.

In order to decide on what action is to be taken in order to reduce the risk of leaking the secret key and
seed, two attack scenarios have to be considered, as detailed below.

First, consider a scenario where the password prompt remains in the wallet and a user believes it is
secure. The user temporarily (because the user trusts the security of the password prompt) gives an
attacker access to the wallet UI, and afterwards checks that no transactions were made. An attacker who
is aware of this weakness and has experience with web extension development and debugging will be
able to extract the secret key without the user noticing.

Second, consider a scenario where the password prompt is removed. The user is aware that they should
not leave the wallet unlocked, but due to a lapse in operational security, the user leaves it open during a
window of opportuning where the attacker has access to the wallet. The attacker does not need
specialized knowledge to export the secret key.

The action to be taken is a trade-off between these risks. Both are real risks and an evaluation needs to
happen in the context of the application and user base, which is ultimately a decision to be made by the
software vendor.

Mitigation

One mitigation is to lock the wallet during these password prompts. Whenever an attacker first tries to
export the keys through the UI (instead of immediately going for a DevTools-based attack), the wallet
would be locked and the attack prevented. This would prevent UI-based attacks and secure the password
prompt. However, it would still be vulnerable to attacks where the attacker immediately uses the DevTools
to exfiltrate the secret key or seed.

The user should, if possible, use a hardware wallet, as they categorically prevent the accessing and
exfiltration of secret keys. If that is not possible in the specific context of the user, the user should be very
careful not to leave the wallet unlocked.

Status

The Auro Wallet team has decided not to implement the mitigation as they feel this would reduce the
usability of the application. Specifically, if the mitigation is implemented and the user aborts the password
prompt when attempting to view the mnemonic, they could not go back to the home screen without
unlocking the wallet again. We encourage the Auro Wallet team to continue to evaluate solutions to
resolve this issue. We also recommend that the Auro Wallet team recommend users to utilize a hardware
wallet.

Verification

Unresolved.

Security Audit Report | Auro Wallet Extension | Mina Foundation 10
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestions

Suggestion 1: Verify State Received From API Using SNARKs

Synopsis

In order to query information about accounts, the Auro Wallet browser extension makes API requests to a
Mina node operated by the Auro Wallet team. The wallet extension trusts that the returned results are true,
similar to API wallets for other blockchains. However, the central promise of Mina is that the blockchain is
small and that state can be verified efficiently on any device. A wallet that fully exploits the potential of
Mina would make use of the zero knowledge proofs, such that light-clients can verify the veracity of the
responses of the API node.

However, since this functionality is not currently implemented in the JavaScript APIs of Mina libraries, this
is not currently possible for a browser wallet extension.

Mitigation

Once the Mina Client APIs support trustless verification of the data returned by the API node, we
recommend making use of this feature and verify the veracity of the data returned from the API.

Status

The Auro Wallet team responded they will address this suggestion in the next version of the wallet. As
such, the suggestion remains unresolved at the time of the verification.

Verification

Unresolved.

Suggestion 2: Improve Auro UI Architecture

Location

Examples, not exhaustive:

pages/Send/index.js#L337

pages/StakingTransfer/index.js#L134

pages/Wallet/index.js#L108

Synopsis

The use of small, reusable components, and composing the pages out of these components is a React
best practice. In addition, business logic should be isolated from the Auro UI code as much as possible.

Mitigation

We recommend adhering to GUI and React coding best practices.

Status

The Auro Wallet team responded they will address this suggestion in the next version of the wallet. As
such, the suggestion remains unresolved at the time of the verification.

Verification

Unresolved.

Security Audit Report | Auro Wallet Extension | Mina Foundation 11
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/popup/pages/Send/index.js#L337
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/popup/pages/StakingTransfer/index.js#L134
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/popup/pages/Wallet/index.js#L108
https://reactjs.org/docs/thinking-in-react.html

Suggestion 3: Improve Code Comments

Location

src/background/APIService.js

Synopsis

There are currently very few comments throughout the codebase, and the comments that are present
repeat the function and method names. The documentation contained within the code should be
comprehensive and document every function and entry point, in addition to explaining the intended
functionality of each of the components. This allows both maintainers and reviewers of the codebase to
comprehensively understand the intended functionality of the implementation and system design, which
increases the likelihood for identifying potential errors which may lead to security vulnerabilities.

Mitigation

We recommend creating code comments that explain each variable, function, and entry point.

Status

The Auro Wallet team responded they will address this suggestion in the next version of the wallet. As
such, the suggestion remains unresolved at the time of the verification.

Verification

Unresolved.

Suggestion 4: Improve Code Readability

Location

background/api/index.js#L30

background/api/index.js#L76

background/api/gqlparams.js#L24

pages/Send/index.js#L262-L263

pages/Send/index.js#L399-L400

Synopsis

The code contains unused variables, unused functions, duplicate code, and is not consistently formatted.
In addition, variables and functions often have names that are not intuitive or relay the purpose of the
function and variable. These inconsistencies with coding best practices decrease the readability of the
code, which makes it more difficult for reviewers to identify errors and security vulnerabilities.

Mitigation

We recommend using the linter output to improve the code (the linter ESLint is already part of the project
dependencies). We recommend including the linter in the Continuous Integration (CI) pipeline to flag
commits that introduce linter warnings. A code formatter like Standard JS helps with consistent code
formatting. Additionally, we recommend manual auditing and refactoring to eliminate redundant or
unused code and improve naming.

Security Audit Report | Auro Wallet Extension | Mina Foundation 12
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/0401d024e5d29e2970d175b021bcfb433228ed19/src/background/APIService.js
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/0401d024e5d29e2970d175b021bcfb433228ed19/src/background/api/index.js#L30
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/0401d024e5d29e2970d175b021bcfb433228ed19/src/background/api/index.js#L76
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/0401d024e5d29e2970d175b021bcfb433228ed19/src/background/api/gqlparams.js#L24
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/popup/pages/Send/index.js#L262-L263
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/popup/pages/Send/index.js#L399-L400
https://eslint.org/
https://standardjs.com/

Status

The Auro Wallet team responded they will address this suggestion in the next version of the wallet. As
such, the suggestion remains unresolved at the time of the verification.

Verification

Unresolved.

Suggestion 5: Improve Password Handling

Location

src/utils/validator.js

pages/Lock/index.js

pages/ResetPassword/index.js

pages/SecurityPwdPage/index.js

Synopsis

Editing the password by removing whitespaces decreases the security of the password. If a user starts
their password with a space character, the application will also accept a password that does not contain
that space character. Given that there is no resource limitation, passwords should be allowed to be longer
than 32 characters.

Mitigation

We recommend following the NIST Guidelines, which are industry standard rules and best practices for
handling passwords when building memorized secret authenticators.

Status

The Auro Wallet team responded they will address this suggestion in the next version of the wallet. As
such, the suggestion remains unresolved at the time of the verification.

Verification

Unresolved.

Suggestion 6: Increase Test Coverage

Location

test

Synopsis

The Auro Wallet contains only five unit tests in the test suite, and no integration tests or end-to-end
testing. During our review, we manually found an error that could have been avoided if there were a test
written for the function, as detailed below.

In

pages/Send/index.js#L299-L303

let maxAmount = new BigNumber(amount).plus(fee).toString()

Security Audit Report | Auro Wallet Extension | Mina Foundation 13
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/utils/utils.js
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/popup/pages/Lock/index.js#L57
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/popup/pages/ResetPassword/index.js
https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/src/popup/pages/SecurityPwdPage/index.js#81
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret
https://github.com/LeastAuthority/auro-wallet-browser-extension/tree/main/test
https://github.com/bitcat365/auro-wallet-browser-extension/blob/master/src/popup/pages/Send/index.js#L299-L303

if (new BigNumber(amount).gt(maxAmount)) {

Toast.info(getLanguage('balanceNotEnough'))

return

}

Checks whether amount > amount + fees which is always false.Instead, it should check
whether amount + fees > walletBalance.

Mitigation

We recommend that the Auro Wallet team add unit tests and use Test Driven Development (TDD) for all
important checks and functions.

In addition, we recommend adding integration tests to test interaction with services outside of the Auro
Wallet and adding end-to-end tests for the most critical user behaviors.

Status

The Auro Wallet team responded they will address this suggestion in the next version of the wallet. As
such, the suggestion remains unresolved at the time of the verification.

Verification

Unresolved.

Suggestion 7: Improve Project Documentation

Location

mina_wallet_for_audit_0407-en.pdf

README.md

Synopsis

The existing project documentation for the Auro Wallet includes some documentation on the code, as well
as one diagram that explains how different JS code modules interact with each other. However, the
general project documentation for the Auro Wallet Extension is not sufficient in describing the system,
and the intended functionality of each of its components.

Sufficient documentation provides a high-level description of the system, each of the components, and
interactions between those components, allowing reviewers to assess the in-scope components and
understand the expected behavior of the system being audited. Additionally, comprehensive user
documentation helps to ensure users interact with the system correctly and as intended, which
encourages secure and correct usage.

Mitigation

We recommend that the Auro Wallet team expand the general architecture and system design
documentation, create documentation of the interaction between the Auro UI, Auro background script, and
the Mina API node, including message passing functionality and GraphQL requests and documentation on
the Mina node to which the Auro Wallet browser extension sends API requests.

In addition, we recommend creating comprehensive user documentation, which helps to ensure users
interact with the system correctly and as intended.

Security Audit Report | Auro Wallet Extension | Mina Foundation 14
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/auro-wallet-browser-extension/blob/main/README.md

Status

The Auro Wallet team responded they will address this suggestion in the next version of the wallet. As
such, the suggestion remains unresolved at the time of the verification.

Verification

Unresolved.

Security Audit Report | Auro Wallet Extension | Mina Foundation 15
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Security Audit Report | Auro Wallet Extension | Mina Foundation 16
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Auro Wallet Extension | Mina Foundation 17
6 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

