

Loopring 3.6 Design + Implementation: Circuit
Security Audit Report
Loopring
Final Report Version: 16 March 2021

Table of Contents

Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Scope

Dependencies

Code Quality

Documentation

System Design

Specific Issues & Suggestions

Issue A: The BN254 Curve Provides Insufficient Security

Suggestions

Suggestion 1: Use the emplace_back Method Consistently Across Gadgets

Suggestion 2: Remove Unnecessary Bitness Check in ArraySelectGadget

Suggestion 3: Write A Comprehensive Accompanying SNARK Statement

Suggestion 4: Clearly Distinguish Between Computing Witnesses and Enforcing Constraints

Suggestion 5: Expand Code Comments

Suggestion 6: Use Regular Integer Representation Instead of 24 Bit Floating Point Values

Suggestion 7: Expand Test Suite to Enforce Security Assumptions

Recommendations

About Least Authority

Our Methodology

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 1
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Loopring is a flexible layer-2 scalability solution for basic value transactions as well as a variety of
exchanges such as order book and Automated Market Maker (AMM). This system uses advanced
cryptography in the form of a limited one-way homomorphic encryption using bilinear pairings,
popularized in the implementation of the Zcash protocol. This solution is classified as a validity proof
system that ensures that state transition must be correct by the properties provided in the encryption
scheme.

Loopring​ has requested that Least Authority perform a security audit of Loopring 3.6, a zkRollup layer-2
decentralized exchange​ and payment protocol implementation on the Ethereum blockchain. Loopring 3.6
is an improved version of Loopring 3.1, which is built on top of the same technical stack, and introduces
Solidity smart contracts and ​libsnark​ and ​ethsnark-​based circuit code.

Project Dates
● November 25 - December 16:​ Circuit Code review (​Completed)
● December 23:​ Delivery of Circuit Initial Audit Report (​Completed)
● March 11 - 15​: Verification Review (​Completed)
● March 16​: Final Audit Report delivered (​Completed)

Review Team
● JR, Cryptography Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer
● Jan Winkelmann, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Loopring 3.6 Circuit followed by
issue reporting, along with mitigation and remediation instructions outlined in this report.

The following code subdirectory is considered in-scope for the review:
○ Loopring 3.6 Circuit:

https://github.com/Loopring/protocols/tree/a66e1db6a31879518ab08721bb73009deb1
5a3a1/packages/loopring_v3/circuit

Specifically, we examined the Git revisions for our initial review:

A66e1db6a31879518ab08721bb73009deb15a3a1

For the verification, we examined the Git revision:

 ​5eb273fe76ba242c6a5f1bb3d1cd0edd57d070b4

This subdirectory was cloned for use during the audit and is linked for reference in this report:

https://github.com/LeastAuthority/loopring-protocols/tree/audit/packages/loopring_v3/circuit

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 2
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

http://loopring.org/
https://loopring.org/resources/en_whitepaper.pdf
https://github.com/Loopring/protocols/tree/a66e1db6a31879518ab08721bb73009deb15a3a1/packages/loopring_v3/circuit
https://github.com/Loopring/protocols/tree/a66e1db6a31879518ab08721bb73009deb15a3a1/packages/loopring_v3/circuit
https://github.com/LeastAuthority/loopring-protocols/tree/audit/packages/loopring_v3/circuit
https://github.com/LeastAuthority/loopring-protocols

All file references in this document use Unix-style paths relative to the project’s root directory.

Supporting Documentation
The following documentation was available to the review team:

● Loopring 3.6 Design:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md

● Loopring 3.6 README:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/README.md

● Loopring 3.6 vs. 3.1:
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/security_audit/Loopr
ingV3_6_vs_V3_1.pdf

● Loopring 3.6 Circuit Documentation:
https://github.com/Loopring/protocols/blob/d0eec91edc9bb195acbeddd38ebbdb71e6938127/p
ackages/loopring_v3/circuit/statements.md

● R. Barbulescu, and S. Duquesne, 2017, “Updating key size estimations for pairings.” ​IACR Cryptol.
ePrint Arch 2017/334 ​[​BD17​]

● L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger, 2019, “POSEIDON: A New
Hash Function for Zero-Knowledge Proof Systems.” ​IACR Cryptol. ePrint Arch 2019/458 ​[​Grassi et
al.19​]

● J. Groth, 2016, “On the Size of Pairing-based Non-interactive Arguments.” [​Groth16​]
● D. Hopwood, 2019, “Designing efficient R1CS circuits.” [​Hopwood19​]
● D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, 2020, “Zcash Protocol Specification.” [​Hopwood

et al. 20​]
● T. Kim, and R. Barbulescu, 2015, “Extended Tower Number Field Sieve: A New Complexity for the

Medium Prime Case.” ​IACR Cryptol. ePrint Arch 2015/1027 ​[​KB15​]
● A. Menezes, P. Sakar, and S. Singh, 2016, “Challenges with Assessing the Impact of NFS

Advances on the Security of Pairing-based Cryptography.” ​IACR Cryptol. ePrint Arch 2016/1102
[​MSS16​]

● Y. Sakemi, Ed. Lepidum, T. Kobayashi, T. Saito, NTT, R. Wahby, 2020, “Pairing-Friendly Curves.”
[​Sakemi et al.​ 20]

● T. Perrin, 2016, “Curves for pairings.” [​P16​]
● E. Baker, 2020 “Recommendation for Key Management: Part 1 – General.” NIST Special

Publication 800-57. [​B20​, Table 4]

Areas of Concern
Our investigation focused on the following areas:

● Common and case-specific implementation errors in the circuit code;
● Overflow protection against the SNARK scalar field;
● Attacks that impacts funds, such as the draining or the manipulation of funds;
● Mismanagement of funds via transactions;
● Proper management of encryption and signing keys;
● Protection against malicious attacks ​and other ways to exploit contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity;
● Performance problems or other potential impacts on performance; and
● Anything else as identified during the initial analysis phase.

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 3
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/README.md
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/security_audit/LoopringV3_6_vs_V3_1.pdf
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/security_audit/LoopringV3_6_vs_V3_1.pdf
https://github.com/Loopring/protocols/blob/d0eec91edc9bb195acbeddd38ebbdb71e6938127/packages/loopring_v3/circuit/statements.md
https://github.com/Loopring/protocols/blob/d0eec91edc9bb195acbeddd38ebbdb71e6938127/packages/loopring_v3/circuit/statements.md
https://eprint.iacr.org/2017/334.pdf
https://eprint.iacr.org/2019/458.pdf
https://eprint.iacr.org/2019/458.pdf
https://eprint.iacr.org/2016/260.pdf
https://github.com/daira/r1cs/blob/master/zkproofs.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://eprint.iacr.org/2015/1027
https://eprint.iacr.org/2016/1102
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-09
https://moderncrypto.org/mail-archive/curves/2016/000740.html
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final

Findings
General Comments
This audit of the Loopring 3.6 Circuit accompanies a previous audit our team conducted on the Loopring
3.6 Contracts for the Loopring Protocol. The previous report closely investigated how Loopring's smart
contracts handle deposit, withdrawal, and block state updates. This report focuses on the way in which
the Groth16-based zk-rollup circuits generate and verify proofs for each state update.

At the beginning of our audit, a clear and explicit description of Loopring’s highly complex statement did
not exist and statement details needed to be extracted from the code, which resulted in increased
difficulty in auditing the code. Upon our recommendation, it was determined that the development of a
SNARK statement would be a prerequisite to resuming and completing the audit. As a result, the Loopring
team created a compact and more readable document containing the ​SNARK statement​. We commend
the Loopring team for dedicating their time towards this effort, which allowed for a more successful
review by our team and demonstrates their commitment to the security of the protocol.

Our team’s review of the Loopring circuit was able to ascertain that proofs work as expected in the
intended cases. However, due to the complexity of Loopring’s SNARK statement, determining whether the
system proves unintended cases requires more robust system design. This includes a comprehensively
documented SNARK statement (​Suggestion 3​) and code that is structured such that it clearly
differentiates between the three foundational layers of SNARK development (​Suggestion 4​). As a result,
we recommend that the Loopring team consider a subsequent audit of the circuit once the suggested
system design changes have been implemented (See ​System Design​).

Scope
Loopring implements a large and highly complex SNARK circuit [​Groth16​], with a statement of
considerable length. The complexity of the statement presents an added layer of difficulty, in addition to
the inherent complexities associated with SNARK circuits. This creates a challenge for reviewers, as it is
difficult to estimate the associated ​r1cs​ solution set and determining if unintended behavior can
nevertheless lead to valid ​r1cs​ solutions.

Dependencies
Loopring uses the established ​mcl​ library instead of alt_bn128 for curve arithmetic. The Loopring team
forked ​ethsnarks​, ​libsnark​, ​libff​ and ​libfqfft​ and modified the libraries to accommodate the
newly added dependency. None of these forks were considered in scope for the audit and we estimate
the likelihood of potential security issues with these to be very low.

The circuit code depends heavily on ​ethsnarks​, which depends on ​libsnark​. Due to the heavy use of
Git submodules within the dependencies, problems encountered when attempting to build the system
from a pinned commit resulted in build issues related to dependencies. These issues prevented our team
from running test code during the course of the assessment. Furthermore, the dependencies comprised a
series of Git submodules that were compared against sources of known vulnerabilities and no
vulnerabilities were identified for these dependencies.

Code Quality
Given the challenges of writing complex SNARK systems, the Loopring team demonstrated good
organization of the code by using classes and abstraction where necessary. However, since the high-level

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 4
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/loopring-protocols/blob/audit/packages/loopring_v3/circuit/statements.md
https://eprint.iacr.org/2016/260.pdf

circuits and gadgets rely on several tiers of sub-gadgets, navigating the hierarchy to clearly understand
the functionality of the circuits is more challenging.

Tests

Tests are present in the ​circuit/test​ directory, which demonstrate the intended use and error catching
mechanisms. While the test cases are not thoroughly explained in the comments, the test names are
often self explanatory vis-à-vis their intended function. We recommend expanding the test cases to model
advanced adversaries’ potential attempts to violate the assumptions of the respective gadgets
(​Suggestion 7​). This should be done once the security assumptions and the intended use of the circuit are
explicitly documented in the SNARK statement and the code comments (​Suggestions 3​; ​Suggestion 5​).

Standards and Best Practices

SNARK research and development is still in its early stages and there are currently only a few
well-established standards and best practices. As a result, we recommend that active developers in this
field maintain a clear distinction between the three fundamental layers of SNARK development:
protoboard allocation of variable slots, r1cs-generation, and witness computation. In addition, we
recommend consistently maintaining a distinction between computation and constraint enforcement, as
well as a clear delineation between instance and witness variables. In a considerable number of instances
throughout the code base, it is unclear whether witness variables are being passed in through the
constructor or whether those are public instance variables. As a result, we recommend that these
distinctions be made clear in the design phase of the statement, prior to implementing them in the code
(​Suggestion 4​).

Documentation
Our team found that a justification for the used Poseidon parameters was not given in the documentation.
The Loopring team explained they were derived using a script found in the repository. This script was
compared to the Poseidon paper [​Grassi et al.19​] and found to be properly implemented in the Loopring
circuit.

Code Comments

While the aforementioned statement descriptions contribute to the understanding of how the system
works, the inclusion of more extensive code comments is strongly recommended, given the complexity of
the project. Code comments should explain the use of each building block within the system, as well as
the reasons for using particular constraints, explicitly specifying the intended purpose and function of
each component and, more importantly, the purpose and function it should not perform. In addition, a
comprehensive list of all assumptions made by the gadget should be provided (​Suggestion 5​). This would
help delineate the proper use of the circuit from its potential misuse, while facilitating better
understanding and easier review of the code, thus making potential issues more visible and resulting in a
more robust and secure system.

SNARK Statement

The high-level SNARK statement developed by the Loopring team contributed significantly to our
understanding of how the system works. However, it is critical that the documentation is maintained and
updated regularly as an accurate point of reference for the coded implementation, as inconsistency in the
documentation and the implementation could result in confusion or errors (​Suggestion 3​). Furthermore,
the existing preliminary draft of the statement should adhere to the conventions of proper statement
design (See ​SNARK Statement Design​).

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 5
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/loopring-protocols/tree/audit/packages/loopring_v3/circuit/test
https://eprint.iacr.org/2019/458.pdf

System Design

Use of Cryptographic Algorithms

The Groth16 proof system internally uses elliptic curve pairings. These computations are non-trivial and
require support from precompiled contracts in order to keep gas costs at a reasonable level. This allows
the computation to be performed natively on the machine executing the smart contract instead of being
performed on the Ethereum Virtual Machine (EVM). Currently, precompiled contracts are available only for
the BN254 curve (which, among other names, is also called BN128). However, due to more recent
advances in number theory, this curve is no longer considered to provide the security we have come to
expect from cryptographic algorithms. In light of this, Ethereum developers have decided to include
precompiled contracts for operations on the pairing-friendly curve BLS12-381, which is assumed to
provide sufficient security. The precompiled contract is found in the Ethereum Berlin hard fork, which is
expected to take place in January 2021. As a result, we recommend that the Loopring team implement
the curve pairing-friendly curve BLS12-381 (​Issue A​).

SNARK Statement Design

The design of SNARK circuit systems should begin with proper statement design, as recommended by
[​Hopwood19​]. If this is not possible due to the complexity of the statement, parallel development of both
statement design and implementation is strongly recommended. As previously noted, the Loopring circuit
statement was written following the completion of the coded implementation by extracting it from the
code. Given that this does not adhere to recommended best practices of SNARK development, we
suggest that an extensive and rigorous statement definition be written (​Suggestion 3​).

Floating Point Values

In the ​FloatGadget​, monetary values are represented as floats, which is not considered best practice
since precision and rounding errors occur on floating point number calculations. While intended as a
means to save space in transactions, the added complexity in the circuit did not make the optimization
appear advantageous. As a result, we recommend using regular integer representation instead
(​Suggestion 6​).

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 6
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

ISSUE / SUGGESTION STATUS

Issue A: The BN254 Curve Provides Insufficient Security Unresolved

Suggestion 1: Use the ​emplace_back​ Method Consistently Across Gadgets Resolved

Suggestion 2: Remove Unnecessary Bitness Check in ​ArraySelectGadget Resolved

Suggestion 3: Write A Comprehensive Accompanying SNARK Statement Partially Resolved

Suggestion 4: Clearly Distinguish Between Computing Witnesses and
Enforcing Constraints

Resolved

Suggestion 5: Expand Code Comments Unresolved

https://github.com/daira/r1cs/blob/master/zkproofs.pdf

Issue A: The BN254 Curve Provides Insufficient Security

Location

/CMakeLists.txt#L47-L53

Synopsis

Loopring uses a variant of the BN254 curve. In 2016, advances in number theory led to a lower security
estimate of that curve. Specifically, its security is now considered to be around 96 bits. This is
significantly lower than the 112 bits required by NIST for new products.

Impact

Use of the BN254 curve undermines the security of the zk-SNARK scheme, such that the feasibility of
computing valid, forged proofs cannot be ruled out. Such proofs would pass validation, yet violate the
constraints imposed by the circuit. For example, a valid, forged proof could increase or reduce the
balance of accounts arbitrarily.

Preconditions

In Loopring, only proofs published by the operator are considered. As a result, an attacker needs access
to the operators keys, either through being the operator or through having gained access to them by
different means.

Feasibility

The exact feasibility is difficult to estimate. However, the potential gains from a successful attack are
high, which suggests that an attacker would have incentive to invest significant resources.

Technical Details

Attacks based on the Tower Number Field Sieve (TNFS) and the derivative exTNDS and SexTNFS have led
to a reduced estimate of the security level of BN254. The several scholars and practitioners working on
this issue do not entirely agree on the new estimate, but opinions range from 96 bits to 110 bits [​KB15​,
MSS16​, ​BD17​, ​Perrin16​]. Regardless of where on this spectrum the real value falls, it is still too low. Even
for applications that only need to remain secure until 2030, NIST requires a security level of at least 112
bits [​B20​, Table 4], which BN254 does not achieve.

Mitigation

This attack can be detected, however, it would require that one or more parties permanently check for
forged proofs.

Remediation

We recommend using the curve BLS12-381. According to the draft RFC on pairing-friendly curves [​Sakemi
et al. 20​], it has a security level of ~128 bits, which is above the 112 bits considered sufficient by NIST
until 2030.

The Berlin hard fork, which is planned to take place in January 2021, will bring precompiled contracts
support for operations on this curve. This will make using the curve viable. Given the potentially high

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 7
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 6: Use Regular Integer Representation Instead of 24 Bit Floating
Point Values

Unresolved

Suggestion 7: Expand Test Suite to Enforce Security Assumptions Unresolved

https://github.com/Loopring/ethsnarks/blob/842f6fec638616a938b5361a5b603912ef5315ef/CMakeLists.txt#L47-L53
https://eprint.iacr.org/2015/1027
https://eprint.iacr.org/2016/1102
https://eprint.iacr.org/2017/334.pdf
https://moderncrypto.org/mail-archive/curves/2016/000740.html
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-09#section-4.2
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-09#section-4.2

incentive for launching such an attack, running a new trusted setup computation to generate a required
common reference string for BLS12-381 should be strongly considered. As a result, we recommend this
approach as an appropriate long-term solution for Loopring.

Status

The Berlin hard fork upgrade will no longer contain EIP-2537, as originally planned at the time we
delivered the ​Initial Audit Report​. As a result, 384 bit arithmetic in the EVM (i.e. EVM-384) is currently
unavailable. Given this change, there is currently no efficient method for secure pairing based
cryptography that is able to achieve at least 112 bits of security as required by NIST for new products.
Thus, a long-term remediation is not currently possible and we recommend that the Loopring team
continue to monitor developments with EIP-2537.

Verification

Unresolved.

Suggestions

Suggestion 1: Use the ​emplace_back​ Method Consistently Across Gadgets

Location

/circuit/Gadgets/MathGadgets.h#L1645

/circuit/Gadgets/MathGadgets.h#L1809

Synopsis

The ​emplace_back​ method of ​std::vector​ is usually called with the constructor arguments and then
constructs the new value inside the new vector. Compared to constructing the value and then appending
it with ​push_back​, this approach saves one copy. While most of the code uses this pattern, in
FloatGadget​ and ​SelectGadget​, the ​TernaryGadget​ is explicitly constructed, which introduces an
unnecessary copy.

Mitigation

Remove the explicit constructor call and let ​emplace_back​ perform the creation of the new value.

Status

The Loopring team ​has removed​ the unnecessary constructor allowing ​emplace_back​ to construct the
object itself.

Verification

Resolved.

Suggestion 2: Remove Unnecessary Bitness Check in ​ArraySelectGadget

Location

/circuit/Gadgets/MathGadgets.h#L1871

Synopsis

ArraySelectGadget​ is analogous to ​SelectGadget​, except that it constrains a ​VariableArrayT
instead of a ​VariableT​. In ​SelectGadget​, the bitness checks of the conditional value in the ​Ternary

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 8
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/loopring-protocols/blob/a66e1db6a31879518ab08721bb73009deb15a3a1/packages/loopring_v3/circuit/Gadgets/MathGadgets.h#L1645
https://github.com/LeastAuthority/loopring-protocols/blob/a66e1db6a31879518ab08721bb73009deb15a3a1/packages/loopring_v3/circuit/Gadgets/MathGadgets.h#L1809
https://github.com/Loopring/protocols/commit/5eb273fe76ba242c6a5f1bb3d1cd0edd57d070b4
https://github.com/LeastAuthority/loopring-protocols/blob/a66e1db6a31879518ab08721bb73009deb15a3a1/packages/loopring_v3/circuit/Gadgets/MathGadgets.h#L1871

operator are explicitly disabled (because they are not required). However, in ​ArraySelectGadget​, they
are not disabled.

Mitigation

We suggest either letting the parent gadget decide whether the check should be performed or disabling it
for consistency.

Status

The Loopring team ​implemented a fix​ where the ​enforceBitness​ parameter of
generate_r1cs_constraints​ is explicitly set to false, thus removing the unnecessary bitness check.

Verification

Resolved.

Suggestion 3: Write A Comprehensive Accompanying SNARK Statement

Location

/circuit/statements.md

Synopsis

SNARKS are short and computationally sound proofs for the existence of witnesses to given statements.
In order to correctly perform a security audit on a SNARK, it is fundamental to start with a clear and formal
definition of a SNARK statement. Without such an abstract definition, there is no foundation to compare
the implementation against. It is insufficient to have the statement implicit in the code, as this would
force a circular approach for reviewers, consisting of comparing the code against a statement that is
implicit in the code.

The statement documentation created by the Loopring team is helpful, however, we identified subtle
errors in comparison to the actual functionality of the gadgets. For example, in the
RequireFillsGadget​, it appeared as if a ​TernaryGadget​ was being used improperly when in fact, it
was used correctly but the documentation itself was incorrect and therefore misleading. These
inconsistencies were reported to the Loopring team and were promptly corrected once they concluded
that the circuit implementation was correct.

In addition, there are repeated instances in the documentation of computation (witness generation) and
r1cs-enforcement being used interchangeably and it is often unclear what exactly is computed and what
is constrained. SNARKS are system critical, cryptographic primitives and any implementation should
adhere to the same rigor and documentation as every other crypto-primitive (e.g. hash functions). As a
result, our team has determined that the statement definition requires further improvement.

Finally, gadget descriptions are not provided with a list of assumptions that a gadget has to make on its
inputs. For example, in the ​UpdateAccountGadget​, the address is assumed to be Boolean constrained
elsewhere, which is not clear from the description of the gadget. In addition to the assumptions made, a
reference should be given to where those assumptions are satisfied. We consider this essential, given
that auditing the statement on an abstract mathematical level is as important as performing an audit on
its corresponding coded implementation.

Mitigation

Write an extensive and rigorous statement definition, adhering to the best practices of SNARK
development. In addition, institute regular documentation reviews to ensure the documentation remains
up to date and consistent with the implementation.

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 9
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Loopring/protocols/commit/5eb273fe76ba242c6a5f1bb3d1cd0edd57d070b4
https://github.com/LeastAuthority/loopring-protocols/blob/a66e1db6a31879518ab08721bb73009deb15a3a1/packages/loopring_v3/circuit/statements.md
https://github.com/LeastAuthority/loopring-protocols/blob/audit/packages/loopring_v3/circuit/Gadgets/AccountGadgets.h#L74

Status

In response to our suggestion during the course of the audit, the Loopring team began the efforts of
writing a statement description, which was iteratively improved based on our feedback and
recommendations. However, the final version is absent of cryptographic rigor, a proper list of
assumptions that the gadget witnesses must satisfy, and a clear distinction between computation and
constraining of witness variables. Importantly, there are still repeated instances in the documentation of
computation (witness generation) and r1cs-enforcement being used interchangeably and it is often
unclear what exactly is computed and what is constrained. We recommend that the Loopring team
continue to improve the SNARK statement until it satisfies the requirements of SNARK statement design
best practices.

Verification

Partially Resolved.

Suggestion 4: Clearly Distinguish Between Computing Witnesses and
Enforcing Constraints

Location

Example:
/circuit/Gadgets/StorageGadgets.h#L31

Synopsis

According to [​Groth16​], inputs to the verifier are called instance variables, while all other factors in any
r1cs solution are called the witness. Therefore, strictly speaking, Loopring’s SNARK only has a single
instance value (the hash of the public inputs). Those variables should be handled in ​ethsnark​’s
generate_r1cs_witness()​ function. In contrast, the constructor should only assign the slots for
these variables (allocate them on the protoboard), but not assign actual values. However, such a clear
distinction has not been made in the code, making it difficult to judge in both the prover phase or in the
verifier phase which constraints and constants are known at compile time.

In contrast, adhering to a clear distinction would highlight the separation between the various phases
(generator, prover, and verifier) during code execution, therefore greatly increasing the ability for
successful review of the project.

For example, the ​StorageGadget​ associates the actual values of ​data​ and ​storageID​, both in a
constructor and in the ​generagte_r1cs_witness​() function. Despite the fact that the mentioned
constructor is never used, it makes execution-phase separation harder to understand from the reviewers’
perspective.

As a result, a distinction between witness computation and constraint enforcement is necessary to draw
attention to the separation between the various phases during code execution, which is not currently
present in the substatements. In order to adhere to SNARK development best practices and make reviews
of the code more feasible, we recommend that the code be restructured as such.

Mitigation

Restructure the code to adhere to a clear distinction between r1cs generation, proof generation, and proof
verification.

Status

The Loopring team ​has updated​ the ​DualVariableGadget​ by splitting it into ​FromBitsGadget​ and
ToBitsGadget​. In addition, the team removed the unused constructor from the

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 10
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/loopring-protocols/blob/a66e1db6a31879518ab08721bb73009deb15a3a1/packages/loopring_v3/circuit/Gadgets/StorageGadgets.h#L31
https://eprint.iacr.org/2016/260.pdf
https://github.com/Loopring/protocols/commit/5eb273fe76ba242c6a5f1bb3d1cd0edd57d070b4

DynamicVariableGadget​ and the ​StorageGadget​ to facilitate a better separation of witness
computation and constraining.

Verification

Resolved.

Suggestion 5: Expand Code Comments

Location

Examples:
/circuit/Circuits/AccountUpdateCircuit.h

/circuit/Circuits/BaseTransactionCircuit.h

Synopsis

We found the code comments to be insufficient in a considerable number of areas in the code and that
the existing descriptive comments require further clarification. Code comments within the codebase are
critical for developers and reviewers, as they help to define and explain the purpose of each gadget and a
description of the intended functionality. It would be helpful for each gadget to be commented on, clearly
describing the assumptions made within the gadget and providing references to the part of the code
where those assumptions are satisfied (e.g. enforcing Booleanness of an address in the
AccountUpdateGadget​).

Mitigation

We recommend that the Loopring team expand code comment coverage, edit existing comments for
clarity, and update the gadget comments such that they describe the intended behavior.

Status

The Loopring team has acknowledged this suggestion and have stated that they intend to improve code
comment coverage if the opportunity arises. At the time of this verification, code comments have not
been further expanded.

Verification

Unresolved.

Suggestion 6: Use Regular Integer Representation Instead of 24 Bit
Floating Point Values

Location

/packages/loopring_v3/circuit/Gadgets/MathGadgets.h#L1617

/packages/loopring_v3/circuit/Gadgets/MathGadgets.h#L1628

Synopsis

While using floating point numbers in the calculation of monetary values is not generally considered best
practice, the reasons for using them in this context are particularly unclear. The 24 bit float encoding uses
5 bits for the exponent and 19 bits for the mantissa, resulting in a maximum value of 2^19*10^5-1, which
in regular integer representation can be encoded using 36 bits. This results in a storage cost of 12 bits
more than the float representation, but provides perfect accuracy, no conversions, and very simple
arithmetic throughout the code base. However, the representation is inaccurate and the conversions incur

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 11
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/loopring-protocols/blob/a66e1db6a31879518ab08721bb73009deb15a3a1/packages/loopring_v3/circuit/Circuits/AccountUpdateCircuit.h
https://github.com/LeastAuthority/loopring-protocols/blob/a66e1db6a31879518ab08721bb73009deb15a3a1/packages/loopring_v3/circuit/Circuits/BaseTransactionCircuit.h
https://github.com/LeastAuthority/loopring-protocols/blob/a66e1db6a31879518ab08721bb73009deb15a3a1/packages/loopring_v3/circuit/Gadgets/MathGadgets.h#L1617
https://github.com/LeastAuthority/loopring-protocols/blob/a66e1db6a31879518ab08721bb73009deb15a3a1/packages/loopring_v3/circuit/Gadgets/MathGadgets.h#L1628

a cost in the form of constraints, thus reducing proving performance. The decision for this approach is
unclear as the tradeoff of saving a few bits of storage per transaction does not appear to be worthwhile.

There are larger space savings for the 16 bit encoding, however, inaccuracies further increase. These
floats are only used for protocol fees, in which this is permissible.

Mitigation

Use regular integer representation instead of 24 bit floating point representations.

Status

The Loopring team has responded that the use of floating point numbers was a design decision intended
to reduce gas costs as well as prove generation costs. They have noted that since no calculations are
performed on float point numbers, they consider the resulting inaccuracies to be an acceptable trade-off.
We recommend that the Loopring team continue to consider the security implications of such design
decisions, in order to make informed decisions about security trade-offs.

Verification

Unresolved.

Suggestion 7: Expand Test Suite to Enforce Security Assumptions

Location

Everything included in ​circuit/tests/

Synopsis

At present, the tests largely verify whether variables are correctly formatted, however, they were not found
to model advanced adversaries potential attempts to violate the assumptions of the respective gadgets.
For example, in the MerkleTree tests, apart from the ​Everything correct​ test case, the tests mainly
test off-by-one errors and an incorrect index.

While protecting against code regression, these test cases do not contribute to maintaining the security
of the system by modeling actions by malicious actors. This follows from what seems to be ambiguity in
the circuit documentation, where clear statements would give insight into the security assumptions of the
circuit in addition to its functionality (​Suggestions 3​; ​Suggestion 5​). We suggest incorporating tests that
perform this function, in order to help protect against the potential for malicious actions.

Mitigation

We recommend expanding the test cases after a more thorough documentation of the security
assumptions of the circuit are generated, with an eye to modelling against malicious actors attempting to
forge proofs.

Status

The Loopring team has responded that, by design, the unit tests for higher level gadgets are intended only
to check for success and failure cases and that more thorough testing is performed in the underlying
gadgets tests. They also note that testing if all linked variables are constrained together in a test would
require the modification of the internal variables of all the gadgets, which they believe will introduce
additional complexity, and potentially, bugs into the code base.

Our team believes that this design decision is costly in the absence of a complete SNARK statement,
which clearly and thoroughly defines the assumptions (see ​Suggestion 3​). In addition to a comprehensive

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 12
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/loopring-protocols/tree/audit/packages/loopring_v3/circuit/test

list of assumptions that would provide insight into edge cases, we recommend increasing test coverage
to model advanced adversaries potential attempts to violate the assumptions of the respective gadgets.

Verification

Unresolved.

Recommendations
We recommend that the unresolved and partially resolved ​Issue ​and​ Suggestions​ stated above are
addressed as soon as possible and followed up with verification by the auditing team.

We consider the security level of the BN254 curve to be insufficient, as it has been determined by more
recent research to be less suitable than more secure alternatives, such as BLS12-381. We recommend
switching to BLS12-381 once that opportunity becomes possible, as the high rewards of a successful
attack provide sufficient incentive to potential attackers to exploit this vulnerability.

We encourage the Loopring team to consider the importance of an abstract statement definition that is
separate from the code itself by expanding on the current specification and checking for consistency,
explicitness, and adherence to best practices. These best practices should also be enforced in the code,
ensuring a clear distinction between r1cs generation, proof generation, and proof verification.

This effort can be considerably aided by improving documentation coverage, including the addition of
code comments and more comprehensive test coverage to model actions of potential attackers
attempting to forge proof, as well as better consistency between the specification and corresponding
coded implementations. The application of these development best practices will facilitate an easier
understanding for users, implementers and reviewers, in addition to enhancing the overall security of the
code.

Finally, as Loopring’s design documentation and mathematically rigorous statement specification
matures, we recommend that follow up audits of the Loopring circuit be conducted, once the findings of
this report are addressed and verified.

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 13
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/​.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 14
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Loopring 3.6 Design + Implementation: Circuit | Loopring 15
16 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

