
Staking and Claims Registry Smart Contracts
Security Audit Summary

Fractal
Final Audit Summary Report: 8 May 2021

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Specific Issues & Suggestions

Issue A: Use Check-Effects-Interactions Pattern

Issue B: APY Calculation Fix (Found By Fractal Team)

Suggestions

Suggestion 1: Add Additional Documentation

Suggestion 2: Consider Domain Separation

Suggestion 3: Remove Hardhat Logging Imports

About Least Authority

Our Methodology

Manual Code Review

Vulnerability Analysis

Documenting Results

Suggested Solutions

Responsible Disclosure

Security Audit Report | Staking and Claims Registry Smart Contract | Fractal 1
8 May 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Fractal has requested that Least Authority perform a security audit of the Staking and Claims Registry
smart contracts.

Fractal is an open source protocol that aims to define a basic standard to exchange user information in a
fair and open way while ensuring a high-quality version of the free internet.

Project Dates
● April 28 - 30: Code review (Completed)
● May 3: Delivery of Initial Audit Summary Report (Completed)
● May 7: Verification (Completed)
● May 8: Delivery of Final Audit Summary Report (Completed)

Review Team
● Nathan Ginnever, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Staking and Claims Registry Smart
Contract followed by issue reporting, along with mitigation and remediation instructions outlined in this
report.

The following code repositories are considered in-scope for the review:
● Staking smart contract:

https://github.com/trustfractal/fractal-contracts/blob/master/contracts/Staking.sol
● Claims Registry smart contract:

https://github.com/trustfractal/fractal-contracts/blob/master/contracts/ClaimsRegistry.sol

Specifically, we examined the Git revisions for our initial review:

cf88a2f82673e7fc9bf08b4937f48ad651fe24ea

The updates made after our initial review can be found in the following commit:

8e1b797ef86f9b99952bedca641ed7024a69221d

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● ERC-780: https://github.com/ethereum/EIPs/issues/780
● ERC-20: https://eips.ethereum.org/EIPS/eip-20
● Fractal - Medium: https://medium.com/frctls

Security Audit Report | Staking and Claims Registry Smart Contract | Fractal 2
8 May 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://protocol.fractal.id/
https://github.com/trustfractal/fractal-contracts/blob/master/contracts/Staking.sol
https://github.com/trustfractal/fractal-contracts/blob/master/contracts/ClaimsRegistry.sol
https://github.com/ethereum/EIPs/issues/780
https://eips.ethereum.org/EIPS/eip-20
https://medium.com/frctls

Areas of Concern
Our investigation focused on the following areas:

● Any attack that impacts funds, such as draining or manipulating of funds and/or results in
unbalanced trading

● Other ways to exploit contracts
● Interactions with 3rd party contracts
● Anything else as identified during the initial analysis phase

Findings
General Comments
Our team has conducted a manual code review of the Fractal code base, and found it well written and
follows the latest and standard Solidity patterns. The code is generally well commented, we recommend
additional code comments and documentation that describe the reward calculation functionality.

We concluded that security considerations have been made in the design of this project. We found
extensive tests that provide confidence in the correctness of the implementation of the Staking and
Claims Registry. Additionally, the contracts are using the latest compiler features including new EVM
instructions to prevent over and underflow of integers, removing the necessity of the standard safe math
libraries.

We examined the possibility of using tokens that have a missing return value bug and found that these
tokens will not be used, making a safe transfer wrapper unnecessary. Our team was not able to identify
any severe security issues.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Use Check-Effects-Interactions Pattern Resolved

Issue B: APY Calculation Fix (Found By Fractal Team) Resolved

Suggestion 1: Add Additional Documentation Resolved

Suggestion 2: Consider Using A Domain Separator Resolved

Suggestion 3: Remove Hardhat Logging Imports Resolved

Security Audit Report | Staking and Claims Registry Smart Contract | Fractal 3
8 May 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue A: Use Check-Effects-Interactions Pattern

Location

master/contracts/Staking.sol#L169-L180

Synopsis

In the staking contract, the state that updates the balances of removed tokens from staking happens after
the transfer function call. If a malicious token is used for staking, it may re-enter and drain the tokens held
by the staking contract before the state updates. This state is intended to ensure that the reward
calculation of the staker does not over-withdraw.

Impact

If a malicious token is used in the staking protocol, the token funds stored on the staking contract may be
drained.

Preconditions

A staking token must be used that has a malicious transfer function designed to specifically drain the
stake from this specific staking contract.

Feasibility

This is most certainly not feasible as the tokens that are planned to be used will be audited or known to
not contain malicious transfer code.

Remediation

Use the recommended check-effects-interactions pattern from the Solidity documentation on preventing
re-entrance attacks.

Status

Resolved. The withdraw function has now been updated and additionally the team applied the
check-effects-interactions pattern to the staking function for extra caution.

Issue B: APY Calculation Fix (Found By Fractal Team)

Location

master/contracts/CappedRewardCalculator.sol

Synopsis

There was a problem with the `Staking.currentAPY` calculation.

The function currently returns the APY for the following period of time: (now, now + 1 day). It was
unclear if this was the intended time frame or if (now - 1 day, now + 1 day) was.

Before the start date it should either return 0 or revert. Or it should just return the first day’s APY. But
it’s always starting from uint currentReward = calculateReward(startDate, current,
amount); which gives you an unpredicted result. Because you expect a 1-day reward, but startDate -
current will be lower than 1 day and always changing.

Impact

Since this function was added at last minute, and is purely for informative purposes only (to display an
estimated APY on the staking UI, with no actual consequences to the staking calculations themselves), its

Security Audit Report | Staking and Claims Registry Smart Contract | Fractal 4
8 May 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/trustfractal/fractal-contracts/blob/master/contracts/Staking.sol#L169-L180
https://docs.soliditylang.org/en/v0.6.11/security-considerations.html#re-entrancy
https://github.com/trustfractal/fractal-contracts/commit/8e1b797ef86f9b99952bedca641ed7024a69221d#diff-d68c5d1cb58f5c1a605715c214f298834a43573fe1cd8405abf1bbedcc688265

full behaviour was not properly thought out. Given that this is meant for UI purposes, the scope of this
change is outside of the audit itself.

Remediation

After the team’s discussing, the desired output is:

Before startDate, it should have the same result as if it were called exactly at `startDate`. So rather than
returning `0`, we must show what the estimated APY will be once it starts

The range (now, now + 1 day) is correct, as we want to provide an answer to "what will be my APY should I
stake right now?"

Status

Resolved. Ensuring that, if using the view before the start, that the current date is moved forward to the
start date will give this view function the consistency that they desire.

Suggestions

Suggestion 1: Add Additional Documentation

Location

master/contracts/Staking/CappedRewardCalculator.sol#L54

Synopsis

Generally there are good comments throughout the code, however the signature verification library does
not contain any code comments. This is a common library and comments are not entirely necessary here
and we only suggest adding them for consistency if desired.

The reward calculation however is particularly complicated and does not have many accompanying
comments. There is a spreadsheet of expected values provided.

Mitigation

We suggest that there be additional documentation provided that describes the staking reward
calculation in better detail beyond the spreadsheet of expected values.

Status

Resolved. Additional documentation has been provided to the reward calculation contract.

Suggestion 2: Consider Domain Separation

Location

master/contracts/ClaimsRegistry.sol#L49

Synopsis

While EIP-712 is not recommended in this case, given that the signed data is typed and human readable
off-chain, and contains the standard prefix that prevents signed messages from executing transactions, It
is possible however for another organization to use this code to create a registry whereby the signatures
that are valid for fractal will also be valid for their project. This is only possible if the claim hashes and
signatures on those hashes are able to be stored in the new registry, which may not be the case. This

Security Audit Report | Staking and Claims Registry Smart Contract | Fractal 5
8 May 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/trustfractal/fractal-contracts/blob/master/contracts/Staking/CappedRewardCalculator.sol#L54
https://github.com/trustfractal/fractal-contracts/blob/master/contracts/ClaimsRegistry.sol#L49
https://eips.ethereum.org/EIPS/eip-712

domain separation does not directly affect this project unless there is a migration to a new version where
it is desired to not allow old claims.

Mitigation

Ensuring that the address of the “verifying contract”, in this case the claims registry, is present in the
signature will remove the possibility of using signed data from one platform on another platform. Using a
new claim issuer could potentially work as a form of domain separation, but this is not a standard way of
preventing signature reuse.

Status

Resolved. The team internally discussed the use case of the registry and determined that domain
separation is not necessary.

Suggestion 3: Remove Hardhat Logging Imports

Location

All

Synopsis

Hardhat logging is still present on the files meant for better visibility while testing. While this is not a
security concern, it can be removed easily with tooling.

Mitigation

There are no console logs present in the code, but Hardhat provides a tool for removing logging before
deployment and may be useful to help cut out the unnecessary imports. It would likely be easier to simply
remove the unnecessary importing of Hardhat logging on each contract.

Status

Resolved. All imports of hardhat logging have been removed from contracts meant to be deployed.

Security Audit Report | Staking and Claims Registry Smart Contract | Fractal 6
8 May 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://hardhat.org/plugins/hardhat-log-remover.html

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create

Security Audit Report | Staking and Claims Registry Smart Contract | Fractal 7
8 May 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Staking and Claims Registry Smart Contract | Fractal 8
8 May 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

