
Venus
Security Audit Report

Filecoin Foundation
Final Report Version: 29 June 2021

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Weak Scrypt Due to Low Parameters

Issue B: Node Initialization Loads a Validator for Namespace ”v” Accepting Every Message

Issue C: Locking a Wallet Requires a Password

Issue D: Keys Lack Adequate Protection

Issue E: Incorrect Logic for Comparing Sync Target’s Parent Weight and Missing Parent Check in
IsNeibor Function

Issue F: Program Panics if Length of Returned Messages is Less Than Length of Tipset Segments
Requested

Issue G: Target Queue Size Exceeds the Preset Maximum Size

Suggestions

Suggestion 1: Increase Code Comments and Disable Linting Exemption

Suggestion 2: Reduce Syncing Time

Suggestion 3: Increase Test Coverage

Suggestion 4: Correct Inaccurate and Misleading Names

Suggestion 5: Remove Duplicate Code

Suggestion 6: Use 32 Random Bytes as HMAC JSON Web Token Secret

Security Audit Report | Venus | Filecoin Foundation 1
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 7: Check That Linting Works as Expected

Suggestion 8: Switch Away From Deprecated Packages

Suggestion 9: Conduct an Audit of the Trusted Setup

About Least Authority

Our Methodology

Security Audit Report | Venus | Filecoin Foundation 2
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Filecoin Foundation requested that Least Authority perform a security audit of Venus, an implementation
of the Filecoin Distributed Storage Network written in Go.

Filecoin is a decentralized storage network that transforms unused cloud storage into an algorithmic
market in which miners and clients are incentivized to participate.

Project Dates
● March 8 - April 16: Code review (Completed)
● April 22: Delivery of Initial Audit Report (Completed)
● June 24 - June 28: Verification Review (Completed)
● June 29: Final Audit Report delivered (Completed)

Review Team
● Bryan White, Security Researcher and Engineer
● Jan Winkelmann, Cryptography Researcher and Engineer
● Rai Yang, Security Researcher and Engineer
● Steve Thakur, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of Venus followed by issue reporting,
along with mitigation and remediation instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● Venus: https://github.com/filecoin-project/venus/tree/v0.9.1

Specifically, we examined the Git revisions for our initial review:

f7b073a29b2fb181b8af28e9fe9ca225e1c085bb

For the verification, we examined the Git revision:

8ea74190ba237214e1e2c1436362b9b030f936f3

For the review, this repository was cloned for use during the audit and for reference in this report:

https://github.com/LeastAuthority/Filecoin-Venus

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Security Audit Report | Venus | Filecoin Foundation 3
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://filecoin.io/
https://github.com/filecoin-project/venus/tree/v0.9.1
https://github.com/LeastAuthority/Filecoin-Venus

Supporting Documentation
The following documentation was available to the review team:

● Protocol Specification: https://spec.filecoin.io/*
● Filecoin Documentation: https://docs.filecoin.io/get-started/#filecoin-implementations
● README.md: https://github.com/filecoin-project/venus/blob/master/README.md
● CODEWALK.md: https://github.com/filecoin-project/venus/blob/master/CODEWALK.md
● Venus Documentation Repository (still in progress):

https://github.com/filecoin-project/venus-docs

In addition, this audit report references the following documents:
● Blog post, “The Scrypt Parameters”: https://blog.filippo.io/the-scrypt-parameters/
● P. Maymounkov, D. Mazières, 2002, “Kademlia: A Peer-to-Peer Information System Based on the

XOR Metric.” In: Druschel P., Kaashoek F., Rowstron A. (eds) Peer-to-Peer Systems. IPTPS 2002.
Lecture Notes in Computer Science, vol 2429. Springer, Berlin, Heidelberg. [MM02]

*The Protocol Specification can be used as an aid, however, it is incomplete. Section 1.1 Spec Status
indicates which sections of the specification are stable, incomplete, incorrect, or a work in progress (WIP).

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Vulnerabilities within individual components as well as secure interaction between the network

components;
● Securely handling large volumes of network traffic;
● Adversarial actions and other potential attacks on the network;
● Protection against malicious attacks and other methods of exploitation;
● Resistance to Denial of Service (DoS) and similar attacks;
● Key management implementation, including the secure key storage and proper management of

encryption and signing keys;
● Storing assets securely;
● Vulnerabilities within the implementation and potential for loss of funds handled by the

implementation;
● Any attack that impacts funds, such as draining or manipulating of funds;
● Mismanagement of funds via transactions;
● Exposure of any critical information during user interactions with the blockchain and any external

libraries;
● Networking and communication with external data;
● Data privacy, data leaking, and information integrity;
● Inappropriate permissions and excess authority; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Filecoin is a peer-to-peer network made up of Filecoin client nodes (clients) that participate in a
distributed file storage network with Filecoin miner nodes (miners), which execute data storage and
retrieval calls and provide data integrity and security. The network leverages a native protocol token,

Security Audit Report | Venus | Filecoin Foundation 4
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://spec.filecoin.io/
https://docs.filecoin.io/get-started/#filecoin-implementations
https://github.com/filecoin-project/venus/blob/master/README.md
https://github.com/filecoin-project/venus/blob/master/CODEWALK.md
https://github.com/filecoin-project/venus-docs
https://blog.filippo.io/the-scrypt-parameters/
http://www.scs.stanford.edu/~dm/home/papers/kpos.pdf
https://spec.filecoin.io/#section-intro.spec-status
https://filecoin.io/

Filecoin (FIL), to create an incentive structure and facilitate the negotiation of data storage and retrieval
services between clients and miners. Miners earn FIL by providing data storage and retrieval while clients
pay miners for data storage or distribution and retrieval. Venus, a Go implementation of the Filecoin
Distributed Storage Network, was the core focus of our security review.

System Design
The Venus system design is well defined and adheres to the overall design of the Filecoin system, which
demonstrates strong considerations for security. However, the Venus coded implementation is
considerably large and characterized by a high level of complexity. In particular, the interaction of multiple
critical components is further complicated by those components running submodules, which also
perform critical functions and intricate interactions. While our team did not identify any critical security
vulnerabilities in the design of the system, we did identify several issues in the Venus implementation.
Systems characterized by a high degree of complexity are exposed to a larger attack surface, which may
result in hidden errors leading to critical security issues. We recommend that the Venus team continue to
pursue opportunities to reduce the complexity of the implementation if and where possible. In addition,
we suggest that regular security audits of the Venus implementation be conducted by different teams to
mitigate against potential vulnerabilities. This is particularly pertinent at junctures where the existing
system design and the implementation undergo changes that introduce updates or new functionality.

Incentive Mechanism

The Venus incentive mechanism functions such that miners are compensated in FIL to store data. Miners
are required to prove that a unique copy of the data is stored by Proof of Replication and prove
continuously that the data is being stored using a Proof of Spacetime. Miners are also compensated for
executing storage and retrieval tasks. In turn, the proofs will be verified by clients and miners will be
penalized for providing the fault proof or committing false consensus faults. We did not identify any
issues in the implementation of the incentive mechanism.

Actor Model

The Filecoin Virtual Machine (VM) uses an actor model to manage state, in which eleven types of built-in
actors maintain the state of the system in the state tree. The actors method can be invoked by messages
sent by other actors or by the system itself. Message invocation will drive the state change of the system.
In the case of Venus and the Filecoin system at large, actors are the equivalent of smart contracts in other
ecosystems. We did not identify any issues in the implementation of the actor model to manage state.

Distributed Hash Table (DHT)

The Filecoin Network utilizes a DHT-based routing design (i.e. [MM02]), which efficiently allows a node’s IP
address to be located by node ID. However, this type of design potentially allows miner nodes to become
targets of Distributed Denial of Service (DDoS) attacks, severing a miner from the network and inhibiting
its responsiveness to challenges, which results in the miner being penalized. While this may have an
impact on a miner’s uptime, this type of attack is common to all DHT-based systems. However, the
Filecoin protocol was designed to be resilient against such attacks and, as a result, the DHT-based routing
design does not pose a serious threat to the overall security and stability of the network.

Trusted Setup

The Venus implementation’s Common Reference String (CRS) requires a trusted setup that utilizes a
somewhat centralized MPC ceremony, with limited participants and transparency. While this system
component is out of scope, it is worth noting that it introduces the possibility of collusion and
compromising of the proof system. In addition, the system implements a Groth16 zk-SNARK proof,
creating a one-time and non-updateable CRS. We recommend that a security audit of the trusted setup be

Security Audit Report | Venus | Filecoin Foundation 5
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

http://www.scs.stanford.edu/~dm/home/papers/kpos.pdf

performed by an independent team, in order to explore ways to protect the network and users from
compromise of the proof system (Suggestion 9).

Code Quality
The Venus implementation is well organized in some parts of the code base. However, some sections of
the coded implementation make use of an inconsistent naming convention, which results in difficulty
reading and understanding the code. We recommend adhering to a naming convention for variables and
functions that is descriptive and accurate, and that is consistent with generally accepted best practices
(Suggestion 4).

Tests

Several of the packages in the Venus repository contain unit and integration tests. However, a significant
proportion of the packages are missing tests. A robust test suite helps to identify errors and bugs that
may lead to potential vulnerabilities. As a result, we recommend increasing test coverage to include all
packages, with tests for success and failure cases to account for edge cases, unexpected, and
unintended behavior (Suggestion 3).

Fuzz Testing

As a supplement to our manual review of the code, our team identified prospective fuzz testing targets
and identified several data structures which implement a CBOR codec from partially generated code via
whyrusleeping/cbor-gen. We prioritized the prospective targets list based on potential severity and
implemented fuzz tests on the following targets:

● tools/conformance/chaos/state.go: State
● pkg/chainsync/exchange/protocol.go:

○ Request
○ BSTipset

● pkg/types/signed_message.go: SignedMessage
● pkg/crypto/keyinfo.go: KeyInfo

The results from our fuzz testing efforts included only false positives.

Documentation
The Venus implementation is supported by thorough and comprehensive documentation, including a
CODEWALK.md explaining the intended functionality of the code and the Filecoin Specification, which
provides a comprehensive overview of the system. While the Filecoin Specification is currently
incomplete, it is thoroughly defined and clearly specifies the status of the sections within the specification
and whether they are stable or a work in progress, which minimizes the risk of confusion. While we do not
consider the incompleteness of the specification to be a security issue, we recommend that further
updates to the system that correspond with updates to the specification be followed with regular reviews
and security audits. We commend the Filecoin team for being rigorous in their efforts to provide clear,
concise, detailed, and up-to-date documentation.

Code Comments

The Venus code base contains minimal code comments describing the intended functionality of the
system. Furthermore, the exemption of missing comments is enabled in the linter. Code comments help
increase visibility into the intended functionality of the code and facilitate a more thorough understanding
of the system, which is beneficial for users, security researchers, and the overall security of the system.
We recommend disabling the exemption of lacking comments in the linter and increasing code comment

Security Audit Report | Venus | Filecoin Foundation 6
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/whyrusleeping/cbor-gen
https://github.com/LeastAuthority/Filecoin-Venus/pull/1
https://github.com/LeastAuthority/Filecoin-Venus/pull/1
https://github.com/filecoin-project/venus/blob/master/CODEWALK.md
https://spec.filecoin.io/
https://spec.filecoin.io/#section-intro.spec-status

coverage, which reduces the opportunity for errors and misunderstanding the intended functionality of the
code (Suggestion 1).

Scope
The scope of the security audit was sufficient in that it encompassed the entire implementation, including
all security critical components of the system. While the dependencies used by the Venus implementation
were not in scope, the use of dependencies is mostly limited to standard libraries that are both well
audited and maintained. For example, Venus makes use of the specs-actors dependency, which
performs a core functionality of the implementation. While specs-actors was not in scope, it has
recently undergone an independent security review.

However, we found that Venus utilizes the deprecated packages go-multiaddr-net and
go-libp2p-crypto. We recommend replacing deprecated packages with the replacement packages
provided by the authors (Suggestion 8).

Finally, as noted previously (see Trusted Setup), we recommend a follow up audit of the trusted setup,
which was out of scope for this review (Suggestion 9).

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Weak Scrypt Due to Low Parameters Resolved

Issue B: Node Initialization Loads a Validator for Namespace ”v" Accepting
Every Message

Resolved

Issue C: Locking a Wallet Requires a Password Resolved

Issue D: Keys Lack Adequate Protection Partially Resolved

Issue E: Incorrect Logic for Comparing Sync Target’s Parent Weight and
Missing Parent Check in IsNeibor Function

Resolved

Issue F: Program Panics if Length of Returned Messages is Less Than
Length of Tipset Segments Requested

Partially Resolved

Issue G: Target Queue Size Exceeds the Preset Maximum Size Resolved

Suggestion 1: Increase Code Comments and Disable Linting Exemption Partially Resolved

Suggestion 2: Reduce Syncing Time Unresolved

Suggestion 3: Increase Test Coverage Partially Resolved

Suggestion 4: Correct Inaccurate and Misleading Names Resolved

Suggestion 5: Remove Duplicate Code Resolved

Security Audit Report | Venus | Filecoin Foundation 7
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/filecoin-project/specs-actors
https://sereen.tech/audits/2020/09/filecoin-actors/filecoin-actors-audit-2020-06.pdf

Suggestion 6: Use 32 Random Bytes as HMAC JSON Web Token Secret Resolved

Suggestion 7: Check That Linting Works as Expected Resolved

Suggestion 8: Switch Away From Deprecated Packages Resolved

Suggestion 9: Conduct an Audit of the Trusted Setup Unresolved

Issue A: Weak Scrypt Due to Low Parameters

Location

pkg/config/config.go#L19-L22

Synopsis

The scrypt function is a memory hard function designed to securely derive keys from passwords. The
caller can specify parameters, such as iterations and required memory. However, the parameters chosen
by the client are too low.

Impact

Setting low scrypt parameters more easily facilitates an attacker’s ability to successfully guess a
low-entropy password. This would enable an attacker to unlock a user’s wallet, which can result in the loss
of user funds.

Preconditions

A low-entropy password (which is common) and physical access to the encrypted wallet of the target.

Feasibility

This attack requires significant computational resources but is technically feasible. This attack is
economically feasible if the profits gained from compromising the wallet surpass the costs of the
computational resources.

Technical Details

An established standard for scrypt parameters does not exist and the scrypt parameters in Venus are
implemented as suggested in an article on scrypt parameters, written in 2017. The Venus implementation
makes use of the scrypt parameter recommendations for interactive logins but uses scrypt for computing
file encryption keys. These lower interactive login parameter settings produce much higher performance
than what is required for unlocking a wallet, resulting in a much lower cost of computing hashes and
decreasing the time needed to bruteforce the password.

Remediation

We recommend using a minimum of scrypt parameter N = 1 << 21.

Status

The Venus team has updated the scrypt N parameter to 1 << 21. The lower value 1 << 15 is still used in
tests, in order to maintain short test execution times.

Verification

Resolved.

Security Audit Report | Venus | Filecoin Foundation 8
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/config/config.go#L19-L22
https://blog.filippo.io/the-scrypt-parameters/
https://github.com/filecoin-project/venus/pull/4410

Issue B: Node Initialization Loads a Validator for Namespace ”v”
Accepting Every Message

Location

submodule/network/network_submodule.go#L133

Synopsis

The network submodule uses a DHT validator that allows all records in the “v” namespace. While the
purpose of namespace is unclear, it does constitute a validation bypass.

Impact

Messages in the “v” namespace are not being adequately validated, which allows unvalidated messages
to enter the system. This may interfere with the correct processing of valid messages.

Technical Details

Networked applications should first check incoming messages for validity. The function that does this is
called a validator. In this instance, a validator that allows all messages is explicitly loaded, leading to a
bypass of validation.

Remediation

We recommend removing the blankValidator from the DHT initialization.

Status

The Venus team has removed the validator from the initialization.

Verification

Resolved.

Issue C: Locking a Wallet Requires a Password

Location

pkg/wallet/dsbackend.go#L241-L250

Synopsis

The wallet requires the input of the password in order to lock and encrypt the data, slowing the user’s
response to real-world threats, and increasing risk of unauthorized access. When needed, placing a wallet
in a locked state must always be easy and quick, enabling a user to secure their assets. Furthermore, a
locked wallet would require that a password is entered before new transactions can be made.

Increased difficulty in locking the wallet inhibits the user from being able to quickly respond to real-world
threats to the security of their digital assets. An attack could be as simple as pushing the user away from
the computer and using the unlocked wallet.

Impact

An attacker is able to access an unlocked and unencrypted wallet, which could lead to the loss of user
funds.

Preconditions

An attacker must separate the unlocked device from the user before the user is able to lock the device.

Security Audit Report | Venus | Filecoin Foundation 9
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/app/submodule/network/network_submodule.go#L133
https://github.com/filecoin-project/venus/pull/4430
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/wallet/dsbackend.go#L241-L250

Remediation

We recommend removing the requirement for a password in order to lock the wallet.

Status

The Venus team has changed the implementation so that it no longer requires entering the password for
locking the wallet.

Verification

Resolved.

Issue D: Keys Lack Adequate Protection

Location

pkg/wallet/dsbackend.go

Synopsis

Upon locking, the wallet does not delete the Keccak hash of the password from memory, which facilitates
efficient password checking. When attempting to unlock the wallet, the password is Keccak-hashed and
compared against the stored hash. This operation is very efficient, which is not desirable. Optimally,
checking a password should take a long time, in order to make brute-force and dictionary attacks difficult.

The fact that the wallet still contains the Keccak hash in locked states means that an attacker with access
to a memory dump of a locked wallet is able to derive the wallet encryption key. If an attacker also has
access to the encrypted wallet, this allows them to decrypt the wallet and obtain the secret key.

Additionally, secret keys are never cleared from the memory and may be moved by Go’s memory
management system or swapped to disk by the operating system, further reducing the security of the
secret keys.

Impact

An attacker may get hold of the secret keys of a wallet.

Preconditions

The attacker needs access to the encrypted wallet, in addition to the API or memory of a locked wallet
that has been previously unlocked and then locked.

Feasibility

The feasibility varies with the specific setting, but it is to be expected that the attack is possible, yet
expensive if the preconditions are fulfilled. The economic feasibility would be determined by the expected
reward of an attack, which may vary.

Technical Details

In Venus, the wallet encryption key is derived from the Keccak hash of the passowrd. Locking the wallet
only removes the encryption key, but not the Keccak hash, leaving a critical value in memory. Computing
the scrypt hash of a Keccak hash of a password is not a common practice, which we suspect is
implemented to speed up the password checking process. This could be counterproductive because
slower password checking mechanisms are a good protection against brute force and dictionary attacks.

Security Audit Report | Venus | Filecoin Foundation 10
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/wallet/dsbackend.go

Keys are also never overwritten with zeros, and no other effort is made to secure secrets stored in
memory (e.g. to prevent Go’s memory management from copying memory segments arbitrarily). These
may also be written to disk for swap and virtual memory, making the secret values even more accessible.

Given that all of these security issues can not be completely remediated, we recommend implementing
both the mitigation and the remediation, as detailed below.

Mitigation

We recommend using memguard to protect keys in memory against Go’s memory management and the
operating system’s swap, as well as protect against memory dumps. Memguard provides its own memory
management, encrypts the memory contents, and sets a non-swap flag.

To mitigate against secrets written to swap, we recommend advising users to disable or encrypt swap on
the machines that they use for Venus.

Remediation

We recommend that the implementation does not compute an intermediate hash and only computes the
scrypt hash of the password. When locking, we recommend overwriting the value and all decrypted
secrets with zeros.

Status

The Venus team has implemented a change such that all secrets that are kept in memory throughout the
run of the program are stored in memguard protected memory. These measures cover the more feasible
and likely scenarios of data leakage. However, secret data that is only kept temporarily is often still stored
in memory that is managed by the Go runtime, allowing the opportunity for data leakage. While there are
some instances where moving secret data from memguard managed memory to runtime managed
memory can be avoided, we acknowledge that it is often not possible to use memguard managed
memory when interfacing with external code. In this particular instance, the Venus team has no influence
on how allocations are performed externally.

Verification

Partially Resolved.

Issue E: Incorrect Logic for Comparing Sync Target’s Parent Weight and
Missing Parent Check in IsNeibor Function

Location

chainsync/types/target_tracker.go#L32

Synopsis

When adding a new sync target in the target queue, the new target is compared with its neighbor target of
the same parent weight. If the neighbor target is idle, it is replaced by the new target. The function
IsNeibor incorrectly checks the equality of the weights of the parents of the two targets, instead of
checking that the two targets have the same parents.

Impact

The sync target is merged (replaced) with a new target of the same height, but of a different parent weight
or different parents, resulting in an inconsistent chain weight among different clients, potentially delaying
or preventing the clients converging into the chain of highest weight or the chain with highest weight
among different forks.

Security Audit Report | Venus | Filecoin Foundation 11
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/awnumar/memguard
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/chainsync/types/target_tracker.go#L32

Preconditions

A new sync target of the same height from existing targets is found with different parent weight or
different parents, and the current target’s syncing state is idle.

Feasibility

This is feasible when syncing,the target tipset is in an idle (waiting) state and a new target tipset of the
same height is found but with different parents or different parent weight.

Technical Details

In function IsNeibor,

weightIn := target.Head.ParentWeight()

targetWeight := target.Head.ParentWeight()

if !targetWeight.Equals(weightIn) {
return false

}
Weightln and targetWeight is always equal, no check for the two targets having the same parents.

Remediation

We recommend replacing targetWeight := target.Head.ParentWeight() with targetWeight
:= t.Head.ParentWeight(). Furthermore, we recommend adding parents check for the two target
tipsets.

Status

The Venus team has changed the assignment of targetWeight in accordance with the
recommendation. The change is based on code which includes the check for equal parents.

Verification

Resolved.

Issue F: Program Panics if Length of Returned Messages is Less Than
Length of Tipset Segments Requested

Location

chainsync/syncer/syncer.go#L543-L548

chainsync/exchange/client.go#L165

Synopsis

In syncing with target tipsets, the client must fetch messages (fetchSegMessage) for a segment of
tipsets from a peer client. The returned message length could be less than the number of requested
tipsets. When processing the returned message for each tipset in a loop over requested tipsets, the
program will panic.

Impact

The program will panic and exit unexpectedly.

Security Audit Report | Venus | Filecoin Foundation 12
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/filecoin-project/venus/pull/4416
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/chainsync/syncer/syncer.go#L543-L548
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/chainsync/exchange/client.go#L165

Preconditions

The length of the returned message is less than the number of requested tipsets in GetChainMessages
when the syncing peer client is down or the network is down.

Feasibility

This is feasible and likely when preconditions are met (i.e. the syncing peer client is down or disconnected
due to network problems).

Technical Details

In fetchSegMessage:

messages, err := syncer.exchangeClient.GetChainMessages(ctx, leftChain)

...

for index, tip := range leftChain {

fts, err := zipTipSetAndMessages(bs, tip, messages[index].Bls,
messages[index].Secpk, messages[index].BlsIncludes,
messages[index].SecpkIncludes)

...

}

Message length might be less than the length of leftChain, in which case the loop over leftChain the
program would panic upon reaching the out of range messages index.

Remediation

We recommend checking the length of the return message against the length of the requested tipsets
(leftChain) before processing the messages of each tipset (zipTipSetAndMessages). If the length
of the return message is less than the length of the requested tipset, process the partially returned
messages from requested tipsets and put the unfetched tipset back in the tipset to be requested
(leftChain) and refetch it from another peer.

Status

The Venus team has added a condition which returns an error if the length of the messages and tipset are
not equal. We recommend implementing a change, which would add the unfetched tipset back to the
queue to refetch from another peer, in order to fully resolve the issue.

Verification

Partially Resolved.

Issue G: Target Queue Size Exceeds the Preset Maximum Size

Location

chainsync/types/target_tracker.go#L124

Synopsis

When adding a target tipset to the target queue, an extra target will be added to the queue when queue
size already reaches the preset max size (bucket size).

Security Audit Report | Venus | Filecoin Foundation 13
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/filecoin-project/venus/pull/4415
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/chainsync/types/target_tracker.go#L124

Impact

This would result in minimal impact to the functioning of the program, but it would cause confusion and
inconsistency in the code.

Technical Details

In add():

if len(tq.q) <= tq.bucketSize {

tq.q = append(tq.q, t)

}

When len(tq.q)== tq.bucketSize, a new target will still be added to the queue.

Remediation

We recommend replacing .len(tq.q) <= tq.bucketSize with len(tq.q) < tq.bucketSize.

Status

The Venus team has resolved the off-by-one error.

Verification

Resolved.

Suggestions

Suggestion 1: Increase Code Comments and Disable Linting Exemption

Location

build/main.go#L119

Non-exhaustive examples:
pkg/chain/store.go#L443

pkg/messagepool/gas.go#L217

Synopsis

Functions that have a single call are documented, however, more complex functions are missing code
comments. Without proper code comment coverage, the intended functionality of the code can be unclear
to users and security researchers, which may result in misunderstanding the intended behavior of the
system. In addition, the exemption of missing comments is enabled in the linter.

Mitigation

We recommend increasing code comment coverage with specific attention to complex functions and
disabling the exemption of missing comments in the linter.

Status

The Venus team has added code comments to most exported types, functions, and variables.

However, instead of disabling the linting exemption, the Venus team has reconfigured the linter to make
more exceptions instead of less. As a result, in addition to missing or malformed comments, it now
ignores a collection of other issues. When disabling the exceptions in our test, our team found that all

Security Audit Report | Venus | Filecoin Foundation 14
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/filecoin-project/venus/pull/4409
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/build/main.go#L119
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/chain/store.go#L443
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/messagepool/gas.go#L217
https://github.com/filecoin-project/venus/pull/4467

suppressed issues were related to missing or malformed comments, and not the newly added exceptions.
As a result, we recommend that the Venus team fully disable the linting exemptions.

Verification

Partially Resolved.

Suggestion 2: Reduce Syncing Time

Location

chainsync/syncer/syncer.go

Synopsis

At present, a new node joining the network syncing with mainnet will take 2-3 seconds per tipset (22-30
days for a full sync and counting). Most of this time is spent on validating and executing messages in the
block, which greatly reduces the syncing efficiency of the node in terms of time cost.

Mitigation

We recommend investigating and implementing an alternative syncing algorithm (e.g. parallel sync, snap
sync) to reduce syncing time.

Status

The Venus team has responded that mitigating this suggestion requires protocol level changes to
implement a fast syncing algorithm, which is complex to implement. At the time of this verification, there
have not been any improvements in syncing time and the suggested mitigation remains..

Verification

Unresolved.

Suggestion 3: Increase Test Coverage

Location

Filecoin-Venus

Synopsis

A significant number of packages consisted of low or no test coverage. A robust test suite helps to
identify errors and bugs that may lead to potential vulnerabilities.

Mitigation

We recommend increasing test coverage to include all packages, with tests for success and failure cases
to account for edge cases, unexpected, and unintended behavior.

Status

The Venus team has added additional tests, but large parts of the code base remain under-tested. We
recommend further increasing test coverage such that it includes all parts of the code base.

Verification

Partially Resolved.

Security Audit Report | Venus | Filecoin Foundation 15
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/chainsync/syncer/syncer.go
https://github.com/ethereum/devp2p/blob/master/caps/snap.md
https://github.com/ethereum/devp2p/blob/master/caps/snap.md
https://github.com/LeastAuthority/Filecoin-Venus
https://github.com/filecoin-project/venus/tree/fix/unit_test

Suggestion 4: Correct Inaccurate and Misleading Names

Location

pkg/wallet/backend.go#L27-L29

pkg/wallet/dsbackend.go#L241

pkg/wallet/dsbackend.go#L272

pkg/wallet/wallet.go#L36

pkg/wallet/passphrase.go#L33

pkg/wallet/passphrase.go#L52

pkg/wallet/passphrase.go#L107

pkg/wallet/passphrase.go#L133

chainsync/syncer/syncer.go#L525

cmd/message.go#L123

Synopsis

In multiple instances in the code, the variable and function naming convention results in increased
complexity in understanding the intended functionality of the code.

For example:

● Locked/UnLocked: These are adjectives and intuitively imply that they return whether the wallet
is in locked or unlocked state.

● Kind: A “kind” is a technical term in Go’s reflect terminology, and in wallet.go it refers to a
reflect type. This is not the same and is therefore misleading.

● Auth: In the encryption and decryption functions in passphrase.go, the password is referred to
as “auth”. “Auth” is commonly used as a function name but not as a variable name for “password”.

Remediation

We recommend implementing and adhering to a single naming convention for variables and functions
that is descriptive and accurate, and that is consistent with generally accepted best practices.

In reference to the examples above, we recommend:

● Using LockWallet/UnlockWallet instead of Locked/UnLocked. Don’t use Lock/Unlock so
it can be easily distinguished from the sync.Locker interface.

● Using the variable names tipe or typ to refer to types because “type” is a Go keyword, and can
not be used.

● Using password or passphrase as a variable name when referring to passwords or passphrases.

Additionally, we found an instance of a wrong error message, “invalid gas limit”. We recommend
correcting this to “invalid nonce option”.

Status

The Venus team has improved the naming conventions.

Security Audit Report | Venus | Filecoin Foundation 16
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/wallet/backend.go#L27-L29
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/wallet/dsbackend.go#L241
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/wallet/dsbackend.go#L272
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/wallet/wallet.go#L36
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/wallet/passphrase.go#L33
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/wallet/passphrase.go#L52
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/wallet/passphrase.go#L107
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/wallet/passphrase.go#L133
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/chainsync/syncer/syncer.go#L525
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/cmd/message.go#L123
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/cmd/message.go#L123
https://github.com/filecoin-project/venus/pull/4417

Verification

Resolved.

Suggestion 5: Remove Duplicate Code

Location

pkg/crypto/bigint.go

pkg/types/bigint.go

pkg/crypto/bigint_test.go

pkg/types/bigint_test.go

Synopsis

The repository contains duplicate code that was updated inconsistently. Duplicate code may lead to
confusion and possible errors when updating and reviewing the code.

Remediation

We recommend removing instances of duplicate code by merging the features of the two versions and
using only a single instance of the duplicate code.

Status

The Venus team has removed duplicate code from the pkg/crypto package and instead uses the code
with equivalent functionality from pkg/types.

Verification

Resolved.

Suggestion 6: Use 32 Random Bytes as HMAC JSON Web Token Secret

Location

pkg/jwtauth/jwt.go#L62-L68

Synopsis

A Random RSA public key is used as an HMAC secret.

Technical Details

Message authentication codes (MACs) are a class of primitives that can be used to verify the authenticity
of data in the presence of a shared secret. They could be seen as symmetric signatures. HMAC is a MAC
algorithm often used by JSON Web Tokens (JWTs). RSA is an asymmetric cryptosystem that can be used
to construct signatures and encryption. The code in question uses an RSA public key as an HMAC secret.

Remediation

We recommend using read 32 bytes from “crypto/rand” and use as key instead of generating a new RSA
key pair.

Status

The Venus team updated the code to use 32 random bytes as the JWT key.

Security Audit Report | Venus | Filecoin Foundation 17
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/crypto/bigint.go
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/types/bigint.go
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/crypto/bigint_test.go
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/types/bigint_test.go
https://github.com/filecoin-project/venus/pull/4418
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/jwtauth/jwt.go#L62-L68
https://github.com/filecoin-project/venus/pull/4421

Verification

Resolved.

Suggestion 7: Check That Linting Works as Expected

Synopsis

While golangci-lint claims to run staticcheck, manually running staticcheck reports several
potential issues that are not shown when running build lint.

Technical Details

Linting code consists of running a series of automated code quality checks. The implementation makes
use of the golangci-lint tool, which is meant to run a collection of different linters on the code base.
However, we found that running staticcheck, which appears to be run by golangci-lint, reports a
number of issues that are not reported by golangci-lint, in addition to the issues disabled in the
Venus implementation.

Remediation

We recommend ensuring that golang-ci properly runs staticcheck, or run staticcheck separately
in the Continuous Integration (CI) pipeline. In addition, we recommend verifying that other linters are run
as expected. To set up staticcheck linting in the golangci configuration, enable the linters
staticcheck, unused, gosimple and stylecheck.

Status

The Venus team has enabled all necessary linters in golangci-lint and addressed the issues reported
by the linters.

Verification

Resolved.

Suggestion 8: Switch Away From Deprecated Packages

Location

app/submodule/network/libp2p.go#L15

pkg/testhelpers/test_daemon.go#L25

pkg/metrics/export.go#L10

app/node/node.go#L17

cmd/daemon_daemon_test.go/#L13

cmd/version_daemon_test.go#L13

cmd/main.go#L16

Synopsis

The packages go-multiaddr-net and go-libp2p-crypto have both been deprecated by their
authors and will not receive updates. Using deprecated dependencies that are no longer maintained may
result in security vulnerabilities.

Security Audit Report | Venus | Filecoin Foundation 18
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/app/submodule/network/libp2p.go#L15
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/testhelpers/test_daemon.go#L25
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/pkg/metrics/export.go#L10
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/app/node/node.go#L17
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/cmd/daemon_daemon_test.go/#L13
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/cmd/version_daemon_test.go#L13
https://github.com/LeastAuthority/Filecoin-Venus/blob/f7b073a29b2fb181b8af28e9fe9ca225e1c085bb/cmd/main.go#L16

Remediation

We recommend replacing the existing deprecated packages with the following:

● github.com/libp2p/go-libp2p-core/crypto instead of
github.com/libp2p/go-libp2p-crypto

● github.com/multiformats/go-multiaddr/net instead of
github.com/multiformats/go-multiaddr-net

Status

The Venus team has updated the implementation so that it no longer depends on the deprecated
packages.

Verification

Resolved.

Suggestion 9: Conduct an Audit of the Trusted Setup

Synopsis

The Venus implementation’s Common Reference String (CRS) requires a trusted setup that utilizes a
somewhat centralized MPC ceremony, with limited participants and transparency. While this system
component is out of scope, it is worth noting that it introduces the possibility of collusion and
compromising of the proof system. In addition, the system implements a Groth16 zk-SNARK proof,
creating a one-time and non-updateable CRS.

Mitigation

We recommend that a security audit of the trusted setup be performed by an independent team, in order
to explore ways to protect the network and users from compromise of the proof system.

Status

The Venus team has responded they will ask the Lotus team to provide trusted setup security
documentation. These documents have not been provided at the time of the verification and, as a result,
the suggested mitigation remains unresolved.

Verification

Unresolved.

Security Audit Report | Venus | Filecoin Foundation 19
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/libp2p/go-libp2p-core/tree/master/crypto
https://github.com/libp2p/go-libp2p-crypto
https://github.com/multiformats/go-multiaddr/tree/master/net
https://github.com/multiformats/go-multiaddr-net
https://github.com/filecoin-project/venus/pull/4424

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create

Security Audit Report | Venus | Filecoin Foundation 20
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Venus | Filecoin Foundation 21
29 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

