

ethdo
Security Audit Report
Ethereum Foundation
Final Report Version: 17 November 2020

Table of Contents

Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Review Scope

Code Quality + Documentation

Specific Issues

Issue A: Scrypt Parameters are Swapped

Issue B: Using Unencrypted Connection to Ethereum Endpoint

Suggestions

Suggestion 1: Warn Users Choosing Weak Passphrases

Suggestion 2: Explore the Use of Property Based Tests

Suggestion 3: Increase Test Coverage

Recommendations

About Least Authority

Our Methodology

Manual Code Review

Vulnerability Analysis

Documenting Results

Suggested Solutions

Responsible Disclosure

Security Audit Report | ethdo | Ethereum Foundation 1
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Ethereum Foundation has requested a security audit of ​ethdo​, a command-line tool for managing
common operations on Ethereum 2.0, including creating wallets and accounts, generating data for
deposits, and sending exit transactions.

Project Dates
● September 21 - October 14​: Initial Review ​(Completed)
● October 20​: Initial Audit Report delivered ​(Completed)
● November 12 - 16:​ Verification Review ​(Completed)
● November 17:​ Final Audit Report delivered ​(Completed)

Review Team
● Ramakrishnan Muthukrishnan, Security Researcher and Engineer
● Jehad Baeth, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of ethdo followed by issue reporting,
along with mitigation and remediation instructions outlined in this report.

The following functions are considered ​in-scope​ for the review:

Wallet Management
These functions cover wallet creation, import and export, display, etc. The specific in-scope
functions are:

● wallet accounts​: in-scope due to accessing files according to the EIP-2386 and
EIP-2680 standards.

● wallet create​: in-scope due to creating files according to the EIP-2386 and EIP-2680
standards.

● wallet delete​: in-scope due to accessing files according to the EIP-2680 standard.
● wallet export​: in-scope due to creating data that should be cryptographically secure

and suitable for import.
● wallet import​: in-scope due to importing data from wallet export.
● wallet info​: in-scope due to accessing files according to the EIP-2386 and EIP-2680

standards.
● wallet list​: in-scope due to accessing files according to the EIP-2386 and EIP-2680

standards.

Account Management
These functions cover account creation, import, display, etc. The specific functions are:

● account create​: in-scope due to creating files according to the EIP-2335 and EIP-2680
standards.

● account import​: in-scope due to creating files according to the EIP-2335 and EIP-2680
standards.

Security Audit Report | ethdo | Ethereum Foundation 2
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/wealdtech/ethdo/blob/master/cmd/walletaccounts.go
https://github.com/wealdtech/ethdo/blob/master/cmd/walletcreate.go
https://github.com/wealdtech/ethdo/blob/master/cmd/walletdelete.go
https://github.com/wealdtech/ethdo/blob/master/cmd/walletexport.go
https://github.com/wealdtech/ethdo/blob/master/cmd/walletimport.go
https://github.com/wealdtech/ethdo/blob/master/cmd/walletinfo.go
https://github.com/wealdtech/ethdo/blob/master/cmd/walletlist.go
https://github.com/wealdtech/ethdo/blob/master/cmd/accountcreate.go
https://github.com/wealdtech/ethdo/blob/master/cmd/accountimport.go

● account info​: in-scope due to accessing files according to the EIP-2335 and EIP-2680
standards.

● account key​: in-scope due to displaying cryptographic data.

Signature Operations
These functions cover creation and verification of signatures. The specific in-scope functions are:

● signature aggregate​: in-scope due to carrying out cryptographic operations
● signature sign​: in-scope due to carrying out cryptographic operations
● signature verify​: in-scope due to carrying out cryptographic operations

Validator Operations
These functions cover creation, monitoring and operations for validators. The specific in-scope
functions are:

● validator depositdata​: in-scope due to carrying out cryptographic and hashing
operations that are required to meet the Ethereum 2 phase 0 specification.

● validator exit​: in-scope due to carrying out cryptographic operations that are
required to meet the Ethereum 2 phase 0 specification.

Deposit Operations
These functions cover validation of deposit data. The specific in-scope functions are:

● deposit verify​: in-scope due to carrying out verification of cryptographic and hashing
operations that are required to meet the Ethereum 2 phase 0 specification

Exit Operations
These functions cover validation of exit operations. The specific in-scope functions are:

● exit verify​: in-scope due to carrying out verification of cryptographic and hashing
operations that are required to meet the Ethereum 2 phase 0 specification

Store Type
ethdo​ allows multiple backend stores of encrypted information. These are as follows:

● filesystem​: in-scope due to being a commonly-used method to access wallets and
accounts.

● remote​: in-scope due to being a commonly-used method to access wallets and
accounts.

Dependencies
A considerable amount of the work in ​ethdo​, especially the cryptographic work, is carried out by
other go modules. The following modules are in-scope for the audit:

● go-eth2-types
● go-eth2-util
● go-eth2-wallet-encryptor-keystorev4
● go-eth2-wallet
● go-eth2-wallet-types
● go-eth2-wallet-hd
● go-eth2-wallet-nd
● go-eth2-wallet-store-filesystem

In addition to the above modules, many EIPs define standards that ​ethdo​ implements.
Adherence to the following standards is in-scope, where applicable:

Security Audit Report | ethdo | Ethereum Foundation 3
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/wealdtech/ethdo/blob/master/cmd/accountinfo.go
https://github.com/wealdtech/ethdo/blob/master/cmd/accountkey.go
https://github.com/wealdtech/ethdo/blob/master/cmd/signatureaggregate.go
https://github.com/wealdtech/ethdo/blob/master/cmd/signaturesign.go
https://github.com/wealdtech/ethdo/blob/master/cmd/signatureverify.go
https://github.com/wealdtech/ethdo/blob/master/cmd/validatordepositdata.go
https://github.com/wealdtech/ethdo/blob/master/cmd/validatorexit.go
https://github.com/wealdtech/ethdo/blob/master/cmd/depositverify.go
https://github.com/wealdtech/ethdo/blob/master/cmd/exitverify.go
https://github.com/wealdtech/go-eth2-types
https://github.com/wealdtech/go-eth2-util
https://github.com/wealdtech/go-eth2-wallet-encryptor-keystorev4
https://github.com/wealdtech/go-eth2-wallet
https://github.com/wealdtech/go-eth2-wallet-types
https://github.com/wealdtech/go-eth2-wallet-hd
https://github.com/wealdtech/go-eth2-wallet-nd
https://github.com/wealdtech/go-eth2-wallet-store-filesystem

● EIP-2335
● EIP-2386
● EIP-2680

The following functions are considered ​out of scope​ for the review:

Account Management
These functions cover account creation, import, display, etc. The specific out of scope functions
are:

● account lock​: Out of scope due to only being used with remote signers.
● account unlock​: Out of scope only being used with remote signers.

Validator Operations
These functions cover creation, monitoring and operations for validators. The specific out of
scope functions are:

● validator info​: Out of scope due to being purely informational, non-critical, and likely
to change with the standardised API.

Node and Chain Information
These functions cover fetching and displaying information from an active beacon node. Due to
the lack of a standard API at time of writing, they only support the ​prysm​ beacon node. The
specific out of scope functions are:

● block info​: Out of scope due to being purely informational, non-critical, and likely to
change with the standardised API.

● chain info​: Out of scope due to being purely informational, non-critical, and likely to
change with the standardised API.

● chain status​: Out of scope due to being purely informational, non-critical, and likely to
change with the standardised API.

● node status​: ​Out of scope​ due to being purely informational, non-critical, and likely to
change with the standardised API.

Store Type
ethdo​ allows multiple backend stores of encrypted information. These are as follows:

● s3​: Out of scope due to being unused to access wallets and accounts by validator clients.

In addition, third party code that is not stated above is considered out of scope.

Specifically, we examined the Git revisions for our initial review (Git tag v1.5.8):

0746fa304851f0c63955911270447fe2257b7cd0

The versions of dependencies for ethdo that are in scope for the audit were picked up from the contents
of go.mod file contained in the above repo at that specific revision.

For the verification, we examined the Git revision:

 ​7391dbe6fba2245023854ac6e9eefb2629534d11

All file references in this document use Unix-style paths relative to the project’s root directory.

Supporting Documentation
The following documentation was available to the review team:

Security Audit Report | ethdo | Ethereum Foundation 4
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eips.ethereum.org/EIPS/eip-2335
https://github.com/ethereum/EIPs/pull/2386/files
https://github.com/ethereum/EIPs/pull/2680/files
https://github.com/wealdtech/ethdo/blob/master/cmd/accountlock.go
https://github.com/wealdtech/ethdo/blob/master/cmd/accountunlock.go
https://github.com/wealdtech/ethdo/blob/master/cmd/validatorinfo.go
https://github.com/prysmaticlabs/prysm
https://github.com/wealdtech/ethdo/blob/master/cmd/blockinfo.go
https://github.com/wealdtech/ethdo/blob/master/cmd/chaininfo.go
https://github.com/wealdtech/ethdo/blob/master/cmd/chainstatus.go

● README: ​https://github.com/wealdtech/ethdo/blob/master/README.md
● ethdo​ Docs: ​https://github.com/wealdtech/ethdo/tree/master/docs
● Ethereum 2.0 Specifications: ​https://github.com/ethereum/eth2.0-specs

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Random number generation (HD seeds, ND private keys);
● Creation of hierarchical deterministic accounts from a well-known seed are protected against

relevant test vectors;
● Key management: secure private key storage and proper management of encryption and signing

keys;
● Adherence to the Ethereum 2.0 specification regarding generation of deposit data (each

individual component of the deposit);
● Attacks that impacts funds, such as the draining or the manipulation of funds;
● Mismanagement of funds via transactions;
● Adversarial actions and protection against malicious attacks;
● Vulnerabilities within each component as well as secure interaction with related components;
● Denial of Service (DOS) attacks;
● Protection against malicious attacks and other methods of exploitation;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments

Review Scope
The ​ethdo​ implementation adheres to the Ethereum 2.0 Specification for managing common operations
on Ethereum 2.0. Ethereum 2.0 presents new concepts and has yet to be tested in production, and as a
result, there may be unforeseen challenges and risks following launch. As noted in our ​audit report for the
Ethereum 2.0 Specifications​:

“Ethereum 2.0 is one of the first PoS projects planned for production and will likely have the greatest market
cap value and the largest number of users at launch. As a result, there have not been many opportunities to
study the impacts of design decisions on real world uses of such blockchain implementations, and none at
the same scale. Although aspects of the design can be reviewed by comparing them to similar
implementations, the collective system may not behave as intended due to the complexity.”

The scope of this audit sufficiently covered all security critical components of ​ethdo​, including key
dependencies from ​Go Standard Library​ and internal dependencies written by the ​ethdo​ development
team.

Code Quality + Documentation
The code is very well organized into a number of smaller modules, allowing for easier comprehension and
review and limiting the attack surface for potential vulnerabilities. In addition, the ​ethdo​ implementation

Security Audit Report | ethdo | Ethereum Foundation 5
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/wealdtech/ethdo/blob/master/README.md
https://github.com/wealdtech/ethdo/tree/master/docs
https://github.com/ethereum/eth2.0-specs
https://leastauthority.com/static/publications/LeastAuthority-Ethereum-2.0-Specifications-Audit-Report.pdf
https://leastauthority.com/static/publications/LeastAuthority-Ethereum-2.0-Specifications-Audit-Report.pdf
https://golang.org/pkg/

includes comprehensive and substantial code comments, thus adequately explaining the purpose and
intended behavior of various functions in the codebase. This proved to be very helpful during the review
and minimized confusion or lack of understanding about the intended functionality. And adherence to
these development and security best practices, in addition to thorough code reviews, helps to minimize
the potential for security vulnerabilities.

Furthermore, while most of the repositories have considerable test coverage, others would significantly
benefit from increased testing. In particular, we recommend increasing test coverage for the ​ethdo​ main
repository, ​go-eth2-wallet-types​, and ​go-eth2-wallet​, in order to assist with early bug detection
(​Suggestion 3​).

We found there to be an absence of high level, project specific design documentation. However, given
that most of the codebase implements ​EIP-2335​, ​EIP-2386​ and ​EIP-2680​, adheres to the Ethereum 2.0
Specification, and is very well commented, the lack of high level documentation did not pose an obstacle
during our review or thoroughly understanding the intended behavior and functionality. In particular, we
found the EIPs to be very helpful during the security review.

Specific Issues
We list the issues found in the code, in the order we reported them. In most cases, remediation of an
issue is preferable, but mitigation is suggested as another option for cases where a trade-off could be
required.

Issue A: Scrypt Parameters are Swapped

Location

https://github.com/LeastAuthority/go-eth2-wallet-encryptor-keystorev4/blob/master/encrypt.go#L32-L33

Synopsis

The ​r​ and ​p​ parameters of Scrypt password based key derivation function appear to be swapped. In the
above code, ​r​ is defined as 1 and ​p​ is 8.

Impact

While ​p = 8​ is harmless, ​r = 1​ would result in making the Key Derivation Function (KDF) weak. The
parameter ​r​ is directly proportional to the width of the innermost core hash function’s width and also
determines the iteration count of the core hash function. The memory usage and CPU time is directly
proportional to ​r​. As a result, making ​r​ small increases the Scrypt’s weakness.

Security Audit Report | ethdo | Ethereum Foundation 6
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

ISSUE / SUGGESTION STATUS

Issue A: Scrypt Parameters are Swapped Resolved

Issue B: Using Unencrypted Connection to Ethereum Endpoint Partially Resolved

Suggestion 1: Warn Users Choosing Weak Passphrases Resolved

Suggestion 2: Explore the Use of Property Based Tests Unresolved

Suggestion 3: Increase Test Coverage Resolved

https://eips.ethereum.org/EIPS/eip-2335
https://eips.ethereum.org/EIPS/eip-2335
https://github.com/ethereum/EIPs/pull/2386/files
https://github.com/ethereum/EIPs/pull/2386/files
https://github.com/ethereum/EIPs/pull/2680/files
https://github.com/LeastAuthority/go-eth2-wallet-encryptor-keystorev4/blob/master/encrypt.go#L32-L33

Preconditions

The attacker has access to the wallet files or gains access to the computer running the wallet.

Technical Details

Making ​r​ = 1 instead of the recommended value of 8 result in it requiring less memory and less CPU.
Attackers can employ more memory and CPU to crack passwords derived from such a Scrypt
implementation than on an equivalent function with ​r​ = 8.

Mitigation

Until this is fixed, existing users should choose longer and non-dictionary word passwords.

Remediation

Make ​r = 8​ and ​p = 1​.

It should be noted that both ​x/crypto/scrypt docs​ and ​RFC 7914​ recommend ​r = 8​, ​p = 1​.

Status

The ​ethdo​ team has issued a ​commit​ which changes the scrypt parameters to ​r = 8​ and ​p = 1​, thus
resolving this issue according to the suggested remediation.

Verification

Resolved.

Issue B: Using Unencrypted Connection to Ethereum Endpoint

Location

https://github.com/LeastAuthority/ethdo/blob/0746fa304851f0c63955911270447fe2257b7cd0/cmd/ro
ot.go#L369

Synopsis

Passing ​WithInsecure()​ value to the ​grpc.Dial​ function returns a ​DialOption​ value which
disables transport security for the client connection.

Impact

This leaves some of the ​beacon chain​ communications with the Ethereum network vulnerable to
man-in-the-middle (MITM) attacks, thus exposing data to unintended receivers.

Preconditions

In order for the attack to take place, the ​ethdo​ client and the Ethereum beacon node need to run on
separate computers.

Feasibility

Any attacker with network access may be able to sniff the unencrypted data exchange.

Technical Details

Using Golang’s ​grpc​ ​package with the ​DialOption​ ​WithInsecure​()​ for the Client results in an
unencrypted connection.

Security Audit Report | ethdo | Ethereum Foundation 7
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://godoc.org/golang.org/x/crypto/scrypt
https://tools.ietf.org/html/rfc7914#page-3
https://github.com/wealdtech/go-eth2-wallet-encryptor-keystorev4/commit/df969cb24283b9f31fedcc41ea0019277a315a6d
https://github.com/LeastAuthority/ethdo/blob/0746fa304851f0c63955911270447fe2257b7cd0/cmd/root.go#L369
https://github.com/LeastAuthority/ethdo/blob/0746fa304851f0c63955911270447fe2257b7cd0/cmd/root.go#L369
https://godoc.org/google.golang.org/grpc#WithInsecure
https://godoc.org/google.golang.org/grpc#WithInsecure

Mitigation

Users may configure the ​ethdo​ client to only connect to the Ethereum beacon node running on the
localhost​.

Remediation

Utilize Go’s ​gprc​ ​to add a layer of encryption (e.g. Transport Layer Security) compatible with the
Ethereum network for the communication between Ethereum node and ​ethdo​.

Status

The ​ethdo​ team has responded to this issue with an update where ​ethdo​ displays a warning if insecure
http connections are made to a non-localhost computer running the Ethereum beacon node. In addition, a
command line option called ​allow-insecure-connections​ has been introduced to allow user
consent prior to making an insecure connection.

Ethereum 2.0 will soon support a secure REST-based API for beacon nodes. The ​ethdo​ team stated that
they will pursue this issue with the Ethereum team and will implement a fix once secure REST-based API
for beacon nodes usage is available.

Verification

Partially Resolved.

Suggestions

Suggestion 1: Warn Users Choosing Weak Passphrases

Location

https://github.com/LeastAuthority/go-eth2-wallet-encryptor-keystorev4/blob/master/encrypt.go#L44

https://github.com/LeastAuthority/ethdo/blob/master/cmd/passphrases.go

Synopsis

ethdo​ does not accept an empty passphrase, which is a security best practice. However, users are not
warned when choosing weak passphrases, such as dictionary words or simple passphrases.

Mitigation

In order to further optimize security, users should be warned when selecting dictionary words or simple
passphrases that may be easily brute forced by attackers who have access to the wallet files (e.g. files
from stolen computers, disks from old computers, or disks whose past owner stored wallet files but failed
to appropriately clear the file system data). Users should be encouraged to use strong, non-dictionary
passphrases.

Status

The ​ethdo​ team ​implemented changes​ ​so that ​ethdo​ now checks for weak passphrases via the
zxcvbn-go library and warns users if such passphrases are chosen.

Verification

Resolved.

Security Audit Report | ethdo | Ethereum Foundation 8
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/wealdtech/ethdo/blob/7391dbe6fba2245023854ac6e9eefb2629534d11/util/beaconnode.go
https://github.com/LeastAuthority/go-eth2-wallet-encryptor-keystorev4/blob/master/encrypt.go#L44
https://github.com/LeastAuthority/ethdo/blob/master/cmd/passphrases.go
https://github.com/wealdtech/ethdo/blob/7391dbe6fba2245023854ac6e9eefb2629534d11/util/passphrase.go

Suggestion 2: Explore the Use of Property Based Tests

Location

All repositories.

Synopsis

Property based tests automatically generate tests based on a declarative property of the code. Integration
of a property based testing library can help generate many example inputs and check for specific
properties. For example, there are ​encrypt()​ and ​decrypt()​ functions in
go-eth2-wallet-encryptor-keystorev4​ repository. A property of these functions is that an input
can go round trip and be encrypted and then decrypted to get back the input. Property based testing
libraries can generate a considerable amount of different input and on failure, can shrink the input to the
smallest form to help in debugging the problem.

Mitigation

While this is not a security issue, we recommend exploring the use of property based testing, as it
increases the likelihood of finding bugs in the handling of edge cases.

Status

The ​ethdo​ team has responded with the opinion that the ​ethdo​ codebase is not best suited for
property-based tests and that they intend to add property-based tests to the supporting modules (e.g.
github.com/wealdtech/go-ecodec​).

While updates have not been made at the time of verification, this is not a security critical suggestion.

Verification

Unresolved.

Suggestion 3: Increase Test Coverage

Location

ethdo​: ​https://github.com/LeastAuthority/ethdo

eth2-wallet​: ​https://github.com/LeastAuthority/go-eth2-wallet

eth2-wallet-types​: ​https://github.com/LeastAuthority/go-eth2-wallet-types

Synopsis

Without sufficient test coverage, it is unknown if certain parts of the code will function as intended when a
real-world input is exercised. Code coverage is the minimal requirement to ensure that the code works for
some inputs. In addition, tests should cover several inputs in order to capture potential edge cases of the
code (​Suggestion 2​). Finally, sufficient code coverage allows future contributors and maintainers of the
codebase a degree of confidence that the existing code functions as intended.

The following repositories have sufficient test coverage:

● go-eth2-util​ (~90%)
● go-eth2-types​ (~93%)
● go-eth2-wallet-encryptor-keystorev4​ (~88%)
● go-eth2-wallet-hd​ (~90%)
● go-eth2-wallet-nd​ (~88%)

Security Audit Report | ethdo | Ethereum Foundation 9
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

http://github.com/wealdtech/go-ecodec
https://github.com/LeastAuthority/ethdo
https://github.com/LeastAuthority/go-eth2-wallet
https://github.com/LeastAuthority/go-eth2-wallet-types

● go-eth2-wallet-store-filesystem​ (~85%)

The following repositories have insufficient test coverage:

● ethdo​ (main repository has no test coverage)
● Go-eth2-wallet-types​ (no test coverage)
● go-eth2-wallet​ (~10%)

Mitigation

Increase unit test coverage for ​ethdo​, ​go-eth2-wallet-types and go-eth2-wallet​. Since ​ethdo
manages a wallet, increased test coverage results in increased confidence in the tool.

Status

The ​ethdo​ team has restructured and redesigned the code base for testability.

Verification

Resolved.

Recommendations
We recommend that the unresolved ​Issue ​and​ Suggestion​ stated above are addressed as soon as
possible and followed up with verification by the auditing team.

We recommend the addition of property based tests to the supporting modules, in order to catch edge
cases, ensure that the code functions as intended for all inputs, and future contributions and maintainers
of the code are confident in the quality of the existing code of which they will expand upon. We also
encourage the ​ethdo​ development team to monitor the progress of the implementation of a secure
REST-based API for beacon nodes in Ethereum. Once this is available, we recommend the ​ethdo​ team
update the codebase to reflect this change.

Finally, we commend the ​ethdo​ development team for strongly considering security, as demonstrated
through the quality of the implementation and adherence to the EIPs and specification, in addition to
closely following development best practices.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,

Security Audit Report | ethdo | Ethereum Foundation 10
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/​.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Security Audit Report | ethdo | Ethereum Foundation 11
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | ethdo | Ethereum Foundation 12
17 November 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

