
Zkopru zk-SNARK Circuits + Smart Contracts
Security Audit Report

Ethereum Foundation
Final Report Version: 22 June 2021

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

zk-SNARK Circuits

System Design

Code Quality

Scope

Smart Contracts

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

zk-SNARK Circuits

Issue A: The BN254 Curve Provides Insufficient Security

Issue B: Write a Proper Accompanying zk-SNARK Statement

Issue C: Previously Correct Ownership Proof Disabled via Code Changes

Issue D: Define the Desired zk-SNARK Properties and Write Proper Proofs

Issue E: Circuit Does Not Check the ERC-20 Sum Correctly (Known Issue)

Suggestion 1: Increase Code Comments

Smart Contracts

Issue F: Front Running of Challenge Transactions

Issue G: Front Running of Fees in Withdraw Transactions

Issue H: Reentrancy Attacks

Issue I: Fix Reentrancy Code Patterns

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 1
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue J: No Nullifier Uniqueness Check

Issue K: No Withdrawal Note Validity Check (Out of Scope)

Issue L: SNARK Validation Missed in On-chain/Off-chain Validation (Out of Scope)

Issue M: No Caller Fee When Withdrawing Only Non-ETH Assets (ERC-20 Token and NFTs)
(Known Issue)

Issue N: Front Running of Burn Auction Bids

Issue O: Old ERC-20 Token Interfaces May Lead to Stuck Tokens or Be Blocked from Use

Issue P: Operator Has Total Authority Over State Verification

Issue Q: Deposit Does Not Check For Registered Token

Issue R: Coordinator's URL/IP Address is Exposed in Auction Process, Which Can Be Exploited For
a DDoS Attack

Suggestion 2: Increase Test Coverage

Suggestion 3: Expand System Documentation

Suggestion 4: Remove Duplicate Code

Suggestion 5: Update Compiler Version

Suggestion 6: Add Address Input Sanitization

Suggestion 7: Address TODO Comments

Suggestion 8: Audit Off-Chain Components

About Least Authority

Our Methodology

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 2
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Ethereum Foundation has requested that Least Authority perform a security audit of the Zkopru
(zk-optimistic-rollup) zk-SNARK Circuits and Smart Contracts.

Zkopru, a Zcash-Style privacy solution, is a layer-2 scaling solution for private transactions using
zk-SNARK and optimistic rollup on the Ethereum Blockchain. It supports private transfer and private
atomic swap within the layer-2 network between ETH, ERC-20, and ERC-721 at a low cost. In addition, with
the pay-in-advance feature, it aims to allow users to withdraw assets from the layer-2 before the
finalization.

Project Dates
● January 11 - February 22: Code review (Completed)
● February 25: Delivery of Initial Audit Report (Completed)
● June 17 - 21: Verification (Completed)
● June 22: Delivery of Final Audit Report (Completed)

Review Team
● Dominc Tarr, Security Researcher and Engineer
● Nathan Ginnever, Security Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer
● Jan Winkelmann, Cryptography Researcher and Engineer
● Rai Yang, Security Researcher and Engineer
● Steve Thakur, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Zkopru (zk-optimistic-rollup)
zk-SNARK Circuits and Smart Contracts followed by issue reporting, along with mitigation and
remediation instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● zk-SNARK Circuits and Smart Contracts:

https://github.com/zkopru-network/zkopru/releases/tag/audit-v1

Specifically, we examined the Git revisions for our initial review:

4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4

For the verification, we examined the Git revision:

1e0883138b7348b7a230fb07f753ffac5ba7adae

For the review, this repository was cloned for use during the audit and for reference in this report:

https://github.com/LeastAuthority/zkopru

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 3
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/zkopru-network/zkopru/releases/tag/audit-v1
https://github.com/LeastAuthority/zkopru

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Zkopru Documentation: https://docs.zkopru.network/v/burrito/
● Zkopru (zk-optimistic-rollup) for Private Transactions:

https://ethresear.ch/t/zkopru-zk-optimistic-rollup-for-private-transactions/7717

In addition, this audit report references the following documents:
● T. Kim, and R. Barbulescu, 2015, “Extended Tower Number Field Sieve: A New Complexity for the

Medium Prime Case.” IACR Cryptol. ePrint Arch 2015/1027 [KB15]
● A. Menezes, P. Sakar, and S. Singh, 2016, “Challenges with Assessing the Impact of NFS

Advances on the Security of Pairing-based Cryptography.” IACR Cryptol. ePrint Arch 2016/1102
[MSS16]

● R. Barbulescu, and S. Duquesne, 2017, “Updating key size estimations for pairings.” IACR Cryptol.
ePrint Arch 2017/334 [BD17]

● T. Perrin, 2016, “Curves for pairings.” [P16]
● Y. Sakemi, Ed. Lepidum, T. Kobayashi, T. Saito, NTT, R. Wahby, 2020, “Pairing-Friendly Curves.”

[SLK+20]
● E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, 2014, “Zerocash:

Decentralized Anonymous Payments from Bitcoin (extended version).” [BCG+14]
● S. Bowe, K. Gurkan, and E. Tromer, 2018, “ZKProof Standards. Implementation Track

Proceedings.” [BGT18]
● D. Hopwood, 2018 “Zcon0 Circuit Optimisation handout.” [H18]
● D. Hopwood, 2019 “Designing Efficient R1CS Circuits.” [H19]
● J. Groth, 2016, “On the Size of Pairing-based Non-interactive Arguments.” IACR Cryptol. ePrint Arch

2016/260 [G16]
● E. Baker, 2020 “Recommendation for Key Management: Part 1 – General.” NIST Special

Publication 800-57 [B20, Table 4]

Areas of Concern
Our investigation focused on the following areas:

● General
○ Correctness of the implementation;
○ Resistance to Distributed Denial of Service (DDoS), Reentrance, and similar attacks;
○ Inappropriate permissions and excess authority;
○ Performance problems or other potential impacts on performance;
○ Data privacy, data leaking, and information integrity;
○ Confidentiality of which coins have been spent or created;

● zk-SNARK Circuits
○ Common and case-specific implementation errors in the circuit code;
○ Requirement for the private key of a coin in order to spend it;
○ Possibility to construct a transaction pair where either both or neither transactions can be

executed;
○ Limitation that coins cannot be created and can only be deposited;
○ Limitation that coins cannot be destroyed and can only be withdrawn;

● Smart Contracts

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 4
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.zkopru.network/v/burrito/
https://ethresear.ch/t/zkopru-zk-optimistic-rollup-for-private-transactions/7717
https://eprint.iacr.org/2015/1027
https://eprint.iacr.org/2016/1102
https://eprint.iacr.org/2017/334.pdf
https://moderncrypto.org/mail-archive/curves/2016/000740.html
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-09
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
https://docs.zkproof.org/pages/reference/versions/zkproof-implementation-20180801.pdf
https://www.zfnd.org/zcon/0/workshop-notes/Zcon0%20Circuit%20Optimisation%20handout.pdf
https://github.com/daira/r1cs/blob/master/zkproofs.pdf
https://eprint.iacr.org/2016/260.pdf
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final

○ Adversarial actions and other attacks on the smart contracts;
○ Potential misuse and gaming of the smart contracts;
○ Attacks that impacts funds, such as the draining or the manipulation of funds;
○ Mismanagement of funds via transactions;
○ Alignment of incentive mechanisms to help prevent unwanted or unexpected behavior;
○ Vulnerabilities in the smart contracts code as well as secure interaction between the

contracts and with related network components;
○ Proper management of encryption and signing keys;

■ Coins deposited by a user may only be moved by the holder of that user’s private
key;

■ Coins withdrawn from the circuit by a user may only be moved by the holder of
that user’s private key;

○ Protection against malicious attacks and other ways to exploit contracts;
○ For any invalid state transition, a fraud proof can be constructed that reverts that state

transition;
○ Impossible to construct a state transition that does not reveal the state of the whole

system after that state transition; and
● Anything else as identified during the initial analysis phase.

Findings
zk-SNARK Circuits

System Design

SNARK Statement

The Zkopru team’s initial approach to the design of the zk-SNARK circuits was absent of a SNARK
statement, which is a critical part of circuit design best practices and methodologies and should be a
prerequisite to the coded implementation. Furthermore, a comprehensive and rigorous statement should
adhere to the conventions of proper statement design, as recommended by [H19]. In this particular
instance, the SNARK statement that was developed after the beginning of the audit contributed
significantly to our understanding of how the system works. Without a proper statement, propositions
would need to be extracted from the code, which results in the high likelihood for concluding incorrect
assumptions about the circuit’s function and increased difficulty for reviewers of the code. These factors
introduce a significant risk that vulnerabilities are missed due to misunderstandings of the code’s
intention. We commend the Zkopru team for their quick development of the SNARK statement.

We recommend the Zkopru team further improve their statement to provide a link to the trusted setup
computation, which clearly describes how the used common reference string is computed (e.g., version
identifier, protocol used, number of participants, rounds, etc.). An accompanying theorem should also be
written that proves the desired properties of the SNARK (e.g. [BCG+14], Section 4). Overall, more attention
should be given to the accuracy of the specifications, as well as the mathematical and proofing aspects
of the system design. As a result, we suggest that an extensive and rigorous statement definition be
written describing the reasoning behind the design of the zk-SNARK circuits (Issue B) and providing a
comprehensive list of security assumptions (Issue D).

A statement description should also specify design decisions and the assumptions made by the system
(e.g., what information is revealed, what is hidden, and what information an UTXO owner needs to know in
order to spend the UTXO or to generate a SNARK proof). As a best practice, the implementation of the
code should follow the completion of the statement design or, at a minimum, be done in parallel. It is also
critical that the documentation is maintained and updated regularly as an accurate point of reference for

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 5
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/daira/r1cs/blob/master/zkproofs.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf

the coded implementation, as inconsistency in the documentation and the implementation could result in
confusion or errors. We encourage the Zkopru team to consider starting with the statement description in
future SNARK circuits work.

EdDSA Signature Checks

During our review, we identified a code update that disabled EdDSA signature checks, which were
previously enabled. This change likely resulted from a coding error accompanying a larger code
refactoring commit. Disabled EdDSA signature checks allow for attackers to forge valid SNARK proofs,
thus posing a critical security vulnerability. We recommend re-enabling signature checks, in addition to
introducing tests to prevent errors in the existing code upon the introduction of code updates (Issue C).

BN254 Curve

The BN254 curve used by Zkopru is not sufficiently secure. Due to more recent advances in number
theory, the BN254 curve is no longer considered to provide the security we have come to expect from
cryptographic algorithms. As a result, we recommend that the Zkopru team implement the curve
pairing-friendly curve BLS12-381 (Issue A).

Input Variables

The circuit contains several public and private input variables that are currently unused and intended for
future atomic swap features. However, we do not foresee any negative security implications since these
features are solely necessary binders for the trusted setup phase. This is particularly important since it
avoids the need for a new trusted setup ceremony once the circuit has been updated to implement atomic
swap features.

Dependencies

All of the circuit dependencies are widely utilized circom gadgets. The use of trusted and well maintained
dependencies minimizes the potential security risks and malicious code introduced as a result of utilizing
third-party code. We commend the Zkopru team for their selection of gadgets with security in mind and
recommend that they continue to maintain and update dependencies, in addition to checking that they
have been sufficiently audited.

Code Quality
The zk-SNARK circuits code base is organized and the code is well written and easy to read, which can be
attributed to the adherence to development best practices and to the exceptional readability of the Circom
programming language. In addition, the zk-SNARK circuits include some test coverage, which
demonstrate the intended use for the circuits. However, additional tests to account for potential edge
cases would help to further protect against malicious actions and unexpected behavior (Suggestion 2).

It should be noted that because Circom has no type-safety, we type checked the code during our review.
Since this burden of type checking is transferred to reviewers of the code, it should be accounted for in
the planning of future audits. Given that Circom is still in the early stages of development, coding best
practices and style guides are still emerging and have not been firmly established. As a result, we did not
evaluate the code against SNARK development standards for Circom.

Code Comments

We identified some comments in zk_transaction.circom, however, all other parts of the SNARK code
base were absent of, and would greatly benefit from, comments describing their intended functionality,
particularly for the low level gadgets. We recommend that additional comments be incorporated into the
code base to ensure sufficient coverage, which would greatly improve the readability of the gadgets
(Suggestion 1).

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 6
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/iden3/circomlib/tree/master/circuits
https://github.com/LeastAuthority/zkopru/tree/develop/packages/circuits/tests
https://github.com/LeastAuthority/zkopru/blob/develop/packages/circuits/lib/zk_transaction.circom

Scope
The scope of the zk-SNARK circuit audit provided sufficient coverage, encompassing all circuit
components of the Zkopru system, with a few exceptions as suggested in this report. The zk-SNARK
circuits implement a multi-asset commitment-nullifier scheme to achieve privacy in transactions. In order
to verify the correctness of the implementation, we recommended that a SNARK statement be provided
by the Zkopru team to compare the zk-SNARK circuits code against. With some consultation, the current
SNARK statement was created and was subsequently included in the scope of the audit. This facilitated a
successful review by our team and demonstrates their commitment to the security of the protocol.

In addition to performing the SNARK statement to code comparison, we tested the zk-SNARK against
fringe cases and found no discrepancies.

However, validation of the SNARK statement was out of scope for this review. An audit to validate the
SNARK statement can only be done in an accompanying mathematical paper containing a proper proof
for all required properties. We recommend that the Zkopru team prepare a mathematical paper for all
required properties and have it validated by a qualified team. In addition, while checking the correctness
of the commitment scheme verifier implementation was out of scope for this audit, our team found it to
be a useful reference in building a better understanding of the circuits’ functions. In reviewing it for
reference and understanding, we identified a critical vulnerability such that the uniqueness of UTXO
nullifiers is not checked, which may potentially result in loss of funds (Issue J). As a result, we
recommend an audit of the commitment scheme verifier (Suggestion 8).

Smart Contracts

System Design
The current centralized way of updating the consensus rules allows the operator to have complete control
over verifications, opening the possibility of malicious state updates. We recommend replacing the
centralized approach with a democratic and transparent solution, so that this attack surface will be closed
to a malicious or compromised operator (Issue P).

The Zkopru smart contracts act as a verification judge on the main Ethereum chain for a Layer 2 UTXO
chain using a combination of zero-knowledge and fraud proofs to provide security against double spends
and privacy. As a result, the smart contracts are required to support challenges and zero-knowledge
verification functions. The combination of systems leads to an extensive verification library containing
both zero knowledge pairing checks and merkle inclusion proofs for challenges. In addition, it results in a
more complex and costly verification process. A potential approach that can be further explored by the
Zkopru team is to aggregate proofs, thus making verification more compact and less expensive. However,
this is an area of active research and remains significantly under-developed.

Potential Attack Vectors

We identified several opportunities for front running attacks (Issue F, Issue G and Issue N). While a
general remediation that can be easily implemented by the Zkopru team does not exist for front running in
Ethereum, we provide specific recommendations for remediating the front running of fees in withdraw
transactions (Issue G) and for front running burn auction bids (Issue N).

Additionally, we have found that a coordinator’s URL/IP address is exposed to all other coordinators in the
auction process, which can be exploited with a DDoS attack. Therefore, we suggest removing the
requirement for coordinators to share their URL/IP information to join an auction, and using an
anonymous routing protocol to keep this data confidential (Issue R).

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 7
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/zkopru-network/protocol-specification/

Caller Fees

Currently, the caller fee is only rewarded on withdrawals that contain ETH assets. The withdrawal fee is
not rewarded for non-ETH assets such as ERC-20 tokens and NFTs. As a result, we recommend adding a
fee transfer to the caller when eth=0 in order to resolve this error (Issue M).

Dependencies

The code uses inherited libraries clearly and we found it easy to navigate through the dependencies. The
code is well written with minimal linting errors. We found some instances of duplicate code, which can
lead to increased costs and human error when writing or reviewing code, which should be removed
(Suggestion 4).

Code Quality
We found the code base to be organized and well written. In addition to manual review of the code, we
examined the code using Solhint, an open source linter for Solidity code and identified no security critical
issues in the results.

We found that the smart contracts generally adhere to Solidity best practices, however, we make note of
several exceptions where deviations exist, as detailed below.

The check effects interaction pattern is not being adhered to, which may lead to re-entrancy attacks
resulting in loss of funds (Issue H). We recommend addressing re-entrancy code patterns in several
locations of the code, which results in the contract state being updated after, as opposed to before, calling
external functions (Issue I).

Another potential attack surface is the missing uniqueness check of commitment nullifiers, which should
be added when the proposer generates blocks. Without this, an attacker can claim the slash reward by
submitting a double spend transaction, which results in the block proposer getting slashed if there is a
redundant nullifier, causing a double spend when the transaction is challenged (Issue J).

At present, Zkopru smart contracts make use of outdated ERC-20 token interfaces, which are missing a
safe transfer wrapper to anticipate the event that a token interface does not adhere to the standard of
reverting in the case of failure. This can lead to older tokens being locked on the smart contract without
the ability for Zkopru to interact with the tokens to make withdrawals (Issue O).

Finally, we recommend increasing the compiler version to at least 0.7.0 to incorporate newer fixes
(Suggestion 5), adding address input sanitization (Suggestion 6), and addressing outstanding TODO
comments (Suggestion 7).

Tests

The smart contracts include test coverage that is limited to success cases, and does not incorporate
failures and errors. Furthermore, each validator should have corresponding tests, which are currently
insufficient. We recommend increasing test coverage to help detect and prevent unintended behavior and
edge cases, which may result in potential vulnerabilities (Suggestion 2).

Code Comments

The code is well commented and follows NatSpec guidelines for Solidity comments, which helps code
reviewers and users easily understand the inputs and functionality of every method present, and therefore
aid in identifying any potential issues. However, there are several functions that are difficult to follow and
do not have comments describing their functionality or inputs. For example, BurnAuction.sol is
insufficiently commented and, as a result, the Burn Auction consensus mechanism required considerable
time and effort to examine and understand in depth. Increasing code comment coverage would help to

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 8
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/protofire/solhint
https://docs.soliditylang.org/en/v0.7.4/natspec-format.html
https://github.com/LeastAuthority/zkopru/blob/13942ebd95c4a2da220ad4ea7014707fe57083b6/packages/contracts/contracts/consensus/BurnAuction.sol

explain the intended functionality and facilitate easier review and more efficient review of the code
(Suggestion 1).

Documentation
The project documentation provides an overview of the Zkopru system and the intended functionality for
the smart contracts. However, the smart contracts interact with many off-chain components of the circuit
system (e.g. coordinator, validator, SNARK verifier, wallet client, fullnode, etc.) and these interactions are
not comprehensively documented. Furthermore, build and test documentation is missing and would
provide a clear description of the setup process, which would avoid the potential for mistakes. As a result,
we recommend creating detailed documentation of how the entire system interacts, which would provide
a deeper appreciation and understanding of Zkopru. In addition, providing build and test documentation
would prevent the potential for issues to arise during the initial setup phase (Suggestion 3).

Scope
The scope of the smart contracts audit included all security critical components of the smart contracts
system. However, during our review of the smart contracts and their integration with the Layer 1
blockchain, we discovered issues in the client code, which was out of scope for this audit. In particular, we
found no withdrawal note validity check when a prepayer receives an instant withdrawal request, which
could result in loss of funds for the prepayer. This can be remediated by having the coordinator or
prepayer add a validity check for the withdrawal note when receiving an instant withdrawal request (Issue
K).

In addition, SNARK validation, which validates the SNARK proof in the transaction, is missed in
on-chain/off-chain validation. This can result in invalid transactions passing the validation, thus allowing
an attacker to generate a transaction resulting in the loss of funds in the smart contracts (Issue L). Since
Zkopru is a Layer 2 blockchain, the security of the Layer 1 integration points and off-chain components,
should be considered a priority. While we did not uncover any dependency concerns in the smart
contracts, we recommend that off-chain components (i.e., coordinator, wallet client, validator, SNARK
verifier, and synchronizer) be followed up with a security audit (Suggestion 8).

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

zk-SNARKS Circuits

Issue A: The BN254 Curve Provides Insufficient Security Unresolved

Issue B: Write a Proper Accompanying zk-SNARK Statement Resolved

Issue C: Previously Correct Ownership Proof Disabled via Code Changes Resolved

Issue D: Define the Desired zk-SNARK Properties and Write Proper Proofs Partially Resolved

Issue E: Circuit Does Not Check the ERC-20 Sum Correctly (Known Issue) Resolved

Suggestion 1: Increase Code Comments Resolved

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 9
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.zkopru.network/v/burrito/

Smart Contracts

Issue F: Front Running of Challenge Transactions Unresolved

Issue G: Front Running of Fees in Withdraw Transactions Unresolved

Issue H: Reentrancy Attacks Resolved

Issue I: Fix Reentrancy Code Patterns Resolved

Issue J: No Nullifier Uniqueness Check Resolved

Issue K: No Withdrawal Note Validity Check (Out of Scope) Resolved

Issue L: SNARK Validation Missed in On-chain/Off-chain Validation (Out of Scope) Resolved

Issue M: No Caller Fee When Withdrawing Only Non-ETH Assets (ERC 20 Token
and NFTs) (Known Issue)

Resolved

Issue N: Front Running of Burn Auction Bids Partially Resolved

Issue O: Old ERC-20 Token Interfaces May Lead to Stuck Tokens Stuck Tokens Or
Be Blocked From Use

Resolved

Issue P: Operator Has Total Authority Over State Verification Resolved

Issue Q: Deposit Does Not Check For Registered Token Partially Resolved

Issue R: Coordinator's URL/IP Address is Exposed in Auction Process, Which Can
Be Exploited For a DDoS Attack

Partially Resolved

Suggestion 2: Increase Test Coverage Unresolved

Suggestion 3: Expand System Documentation Unresolved

Suggestion 4: Remove Duplicate Code Resolved

Suggestion 5: Update Compiler Version Resolved

Suggestion 6: Add Address Input Sanitization Resolved

Suggestion 7: Address TODO Comments Resolved

Suggestion 8: Audit Off-Chain Components Unresolved

zk-SNARK Circuits

Issue A: The BN254 Curve Provides Insufficient Security

Location

circuits/script/powers_of_tau_phase_1.sh

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 10
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/13942ebd95c4a2da220ad4ea7014707fe57083b6/packages/circuits/script/powers_of_tau_phase_1.sh

Synopsis

Zkopru uses a variant of the BN254 curve, also called BN128. In 2016, advances in number theory led to a
lower security estimate of that curve. Specifically, its security is now considered to be around 96 bits. This
is significantly lower than the 112 bits currently required by NIST for new products.

Impact

Use of the BN254 curve reduces the security of the zk-SNARK scheme, such that the feasibility of
computing valid, forged proofs cannot be ruled out. Such proofs would pass validation, yet violate the
constraints imposed by the circuit. For example, a valid, forged proof could spend UTXOs arbitrarily.

Feasibility

Although the exact feasibility is difficult to estimate, the potential gains from a successful attack are high.
This suggests that an attacker would have incentive to invest significant resources resulting in an
increased risk that the feasibility is reasonable.

Technical Details

Attacks based on the Tower Number Field Sieve (TNFS) and the derivative exTNDS and SexTNFS have led
to a reduced estimate of the security level of BN254. Consensus on the new estimate has not been
reached by scholars and practitioners working on this issue, however, opinions range from 96 bits to 110
bits [KB15, MSS16, BD17, P16]. Regardless of where on this spectrum the real value falls, it is still too low.
Even for applications that only need to remain secure until 2030, NIST requires a security level of at least
112 bits [B20, Table 4], which BN254 does not achieve.

Remediation

We recommend using the curve BLS12-381. According to the draft RFC on pairing-friendly curves
[SLK+20], it has a security level of ~128 bits, which is above the 112 bits considered sufficient by NIST
until 2030.

Status

The Berlin hard fork upgrade will no longer contain EIP-2537 and, as a result, 384 bit arithmetic in the EVM
(i.e. EVM-384) is currently unavailable. Given this change, there is currently no efficient method for secure
pairing based cryptography that is able to achieve at least 112 bits of security, as required by NIST for new
products. Thus, a long-term remediation is not currently possible and we recommend that the Zkopru
team continue to monitor developments with EIP-2537.

Verification

Unresolved.

Issue B: Write a Proper Accompanying zk-SNARK Statement

Location

zkopru-network/protocol-specification/

Synopsis

zk-SNARKS are short and computationally sound proofs for the existence of witnesses to given
statements, able to hide parts of the witness from any verifier. In order to correctly perform a security
audit on a zk-SNARK implementation, it is therefore fundamental to start with a clear and formal definition
of the associated zk-SNARK statement.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 11
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2015/1027
https://eprint.iacr.org/2016/1102
https://eprint.iacr.org/2017/334.pdf
https://moderncrypto.org/mail-archive/curves/2016/000740.html
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-09
https://github.com/zkopru-network/protocol-specification/

Impact

A well written SNARK statement improves the security of the SNARK by making it easier to reason
abstractly about the security properties of the zk-SNARK itself. Statements that are not well designed
carry the risk of unintended solutions, which will enable a malicious prover to find valid proofs for
unintended system behavior. Since zero-knowledge is involved, those proofs, that are valid but malicious,
would be potentially very difficult to detect. In addition, statements are the foundation for writing security
proofs for zk-SNARK properties.

Additionally, when lacking a statement, there is no foundation to compare the implementation against. It
is insufficient to have the statement implicit in the code, as this would force a circular approach for
reviewers, consisting of comparing the code against a statement that is implicit in the code.

Remediation

We recommend that the Zkopru team write an extensive and rigorous statement definition, adhering to
the best practices of SNARK development as outlined for example in [BGT18], section “Correctness and
Trust / Considerations”, [H18], or [H19]. In addition, we suggest instituting regular documentation reviews
to ensure the documentation remains up to date and consistent with the implementation. The statement
should contain a list of all assumptions made by the system. In addition, a clear description of how the
common reference string was or will be computed should be given, and reference all data known related
to the trusted setup accordingly.

The statement documentation created by the Zkopru team during the course of this audit is helpful, and
we identified no deviations in comparison to the actual functionality of the gadgets apart from Issue C
and Issue E.

Status

The Zkopru team developed a specification for the protocol, which included a zk-SNARK statement. This
aided their efforts in identifying and resolving new critical vulnerabilities.

Verification

Resolved.

Issue C: Previously Correct Ownership Proof Disabled via Code Changes

Location

circuits/lib/ownership_proof.circom#L10

Synopsis

Zkopru is supposed to check the ownership of any UTXO, by enforcing a valid EdDSA check on the
BabyJubJub curve. To do so, it utilizes Circom’s EdDSAPoseidonVerifier() gadget, which has an
input variable that is used to enable or disable EdDSA signature checks during proof generation. In
Zkopru, the intended mode is to always enable the signature check, but in the commit we audited, we
found this variable to be set in such a way that signature checks were always disabled.

On inspection of the commit history, we discovered that previous commits correctly enabled the signature
check as expected. The vulnerability was introduced in a commit, most likely due to a need for large code
refactoring, since Circom and snarkjs both underwent prior major changes.

Impact

Severe. Without enabled signature checks, the ownership proof will always be valid, regardless of the
correctness of the signature. A malicious proofer might use this vulnerability to forge valid zk-SNARK

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 12
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.zkproof.org/pages/reference/versions/zkproof-implementation-20180801.pdf
https://www.zfnd.org/zcon/0/workshop-notes/Zcon0%20Circuit%20Optimisation%20handout.pdf
https://github.com/daira/r1cs/blob/master/zkproofs.pdf
https://github.com/zkopru-network/protocol-specification/blob/main/SPEC.md
https://github.com/LeastAuthority/zkopru/blob/develop/packages/circuits/lib/ownership_proof.circom#L10
https://github.com/iden3/circomlib/blob/master/circuits/eddsaposeidon.circom
https://github.com/zkopru-network/zkopru/commit/7595cf7c69e137b976d170f7df8a122a29baec4c

proofs. As the signature is private data and hence not revealed to the public, this kind of behaviour would
be potentially very difficult to detect.

Feasibility

Forging an ownership proof with the signature check disabled is a trivial effort. Whether this can be used
to transfer value from UTXOs that are not owned by the attacker is not easy to estimate, as this depends
on the ability of the attacker to provide all the other private data required to generate a valid proof.

Technical Details

In the gadget OwnershipProof(), the EdDSAPoseidonVerifier() subgadget’s input signal
eddsa.enabled is defined as the constant 0, whereas it should be defined as 1. We note that the
correct setting is used in commits preceding the commit under investigation for this audit.

Remediation

Set eddsa.enabled to 1 so that the ownership proof works as intended. In addition, extend test
coverage, to ensure that no future code update can re-introduce this vulnerability.

Status

The Zkopru team changed eddsa.enabled to 1 and added an ownership test catching the issue upon
reintroduction.

Verification

Resolved.

Issue D: Define the Desired zk-SNARK Properties and Write Proper Proofs

Location

zkopru-network/protocol-specification/

Synopsis

In SNARK statement design, attention should be given to the accuracy of the specifications, as well as the
mathematical and proofing aspects of system design. In doing so, a comprehensive list of security
assumptions should be clearly specified that can then be compared against the coded implementation.

Zkopru uses the zk-SNARK Groth16 to provide a range proof while hiding the account balance. The
Groth16 SNARK hinges on certain cryptographic assumptions about elliptic curve pairings and requires a
trusted setup. The common reference string (CRS) is usually constructed through a secure multi-party
computation (MPC). In our audit, we found that the documentation did not explicitly mention the
cryptographic assumptions. Details about the construction of the CRS were also missing.

Technical Details

During our review, we first audited the zk-SNARK implementation for coding errors and then compared it
to the statement that the Zkopru team provided to us upon request (see the section System Design).
However, we identified four problems with the statement provided:

1. The assumptions that the system relies on are not explicit.
2. The properties that the SNARK is intended to guarantee are not explicit.
3. There are no proper proofs for the guaranteed properties.
4. There is not any reference to the common reference string that is used in the system and there is

not a description about how that CRS was computed, or why it can be trusted.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 13
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/zkopru-network/zkopru/commit/6458fe4ef384d2f2198aae00e719a7f94c30f090
https://github.com/zkopru-network/zkopru/commit/13091de2fe87e543b8405fd474f9749845ca938f
https://github.com/zkopru-network/protocol-specification/
https://github.com/LeastAuthority/zkopru/tree/develop/packages/circuits/lib

In the Zkopru transaction documentation, the following is stated:

“Zkopru achieves privacy using the commitment-nullifier scheme. It means that a zk transaction
spends a UTXO while not revealing which note has been used.”

However, from a security point of view, this is too vague. For example, exactly what is guaranteed to stay
private and under what assumptions is unclear. Additionally, it is unknown to which commitment-nullifier
scheme the documentation refers to and there is not a proof for the claimed properties.

Mitigation

If writing a proper proof is untenable at this point in the Zkopru project, we recommend that at least the
statement description is expanded by providing a clear list of assumptions, referencing the common
reference string trusted setup phase and making the claimed guarantees as explicit as possible. At
minimum, some high level reasoning should be given about why it is impossible to unreveal any spent
UTXO.

Remediation

In [BCG+14], the authors defined their version of what they called a “decentralized anonymous payment
scheme [DAP scheme]”, and then proved its critical properties like ledger indistinguishability, transaction
non-malleability and balance invariance (Section 3.4, [BCG+14]).

We recommend to first make the Zkopru adaptation of a DAP scheme explicit, then derive an analog to
theorem 4.1 in [BCG+14] and prove equivalent properties, which could be called something like contract
state indistinguishability, transaction non-malleability and multi-asset-balance invariance. In contrast to
[BCG+14], more than one asset type is involved, so a proper definition of something we could call a
multi-asset commitment-nullifier scheme is needed.

Status

The Zkopru team developed a specification for the protocol, which includes a zk-SNARK statement.
However, a formal specification of the SNARK properties and security proofs is still missing. The trusted
setup has been completed on the Zkopru website and they have noted that a verification script will soon
be published.

Verification

Partially Resolved.

Issue E: Circuit Does Not Check the ERC-20 Sum Correctly (Known Issue)

Location

circuits/lib/zk_transaction.circom#L255

Synopsis

The current circuit only checks the sum of ERC-20 tokens for the token addresses included in the input
notes, but not for others, which could enable a malicious actor to drain funds.

Impact

Severe. An attack could result in token loss, with the attacker potentially draining funds. Moreover, an
attack of this type would be potentially undetectable, since tokens would only be seen on the smart
contract side. The amount of tokens that can be potentially stolen is limited to the tokens that are rolled
up.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 14
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.zkopru.network/how-it-works/transaction
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
https://github.com/zkopru-network/protocol-specification/blob/main/SPEC.md
https://mpc.zkopru.network
https://github.com/LeastAuthority/zkopru/blob/develop/packages/circuits/lib/zk_transaction.circom#L255

Preconditions

Some amount of tokens need to be rolled up in order to be stolen.

Technical Details

The following is an input that works as intended:

inputs: [{ token: DAI, amount: 10 }, {token: WETH, amount: 1}],

outputs: inputs: [{ token: DAI, amount: 5 }, { token: DAI, amount: 5 },
{token: WETH,amount: 1}],

However, this also returns true in the following, unintended case:

inputs: [{ token: DAI, amount: 10 }, {token: WETH, amount: 1}],

outputs: inputs: [{ token: DAI, amount: 5 }, { token: DAI, amount: 5 },
{token: WETH, amount: 1}, { token: USDC, amount: 1000000 }],

Remediation

Modify the circuit to enforce that outputs do not contain ERC-20 addresses that are not part of any spend
note.

Status

This issue was found and resolved by the Zkopru team in writing the zk-SNARK statement during the
audit.

Verification

Resolved.

Suggestion 1: Increase Code Comments

Location

Some examples, although not an exhaustive list:
packages/circuits/lib

contracts/consensus/BurnAuction.sol

Synopsis

Circuits

Code comments within the codebase are critical for developers and reviewers, as they help to define and
explain the purpose of each gadget and provide a description of the intended functionality. Furthermore,
code comments can highlight other key information, such as which areas are vulnerable to potential
failure, which is critical in making sure the system is implemented correctly. A comprehensive description
of the intended functionality of each gadget is missing. The lack of sufficient code comments hinders the
readability and auditability of the code. For example, in if_else_then.circom, a helpful comment
would say the following:

The gadget IfTHenElse(n) is satisfied if and only if:
((For all n: obj1[n] == obj2[n]) AND out == if_v) OR (There is a n: obj1[n] =!= obj2[n] AND out == else_v))

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 15
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/tree/develop/packages/circuits/lib
https://github.com/LeastAuthority/zkopru/blob/develop/packages/contracts/contracts/consensus/BurnAuction.sol
https://github.com/LeastAuthority/zkopru/blob/develop/packages/circuits/lib/if_else_then.circom

Smart Contracts

Additionally, the smart contracts lack sufficient comments. For example, the lack of sufficient comments
on the Burn Auction contract made the consensus mechanism particularly time-consuming to examine
and understand in detail. Thorough and clear code comments make the system easier to use and review.

Mitigation

Circuits

We recommend the Zkopru team expand code comment coverage so that each gadget is accompanied
by a code comment describing what it is intended to prove.

Smart Contracts

Additionally, expand smart contract code comments to include comments describing the intended
behavior.

Status

The Zkopru team has added descriptive code comments to the circuits and smart contracts.

Verification

Resolved.

Smart Contracts

Issue F: Front Running of Challenge Transactions

Location

zkopru/controllers/Challengeable.sol#L48

Synopsis

Ethereum uses gas auction to order transactions in the mempool: the transaction with the higher gas
price or gas limit gets into the mempool first and will be included in the block. A front runner bot which
scans the mempool of Ethereum may front run the challenge transaction with higher gas price and gas
limit and, as a result, gets the slash rewards.

Impact

A front runner can steal the slash rewards from original validators, which is ⅔ of the proposer staked (32
ETH) in the burn auction, and weakens the incentivization of performing the validation work.

Preconditions

Anyone can front run a transaction using a higher gas price/limit as long as the profit it gains is higher
than gas cost.

Feasibility

A front runner bot that constantly scans the mempool looking for profitable transactions can front run the
challenge transaction. These kinds of bots are known to exist and have carried out attacks of this type in
the past.

Technical Details

The challenger sends a challenge transaction to the Zkopru.sol contract, then it redirects the call to the
fallback function of Challengeable.sol, which redirects it to the validators contract for validation. If

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 16
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/develop/packages/contracts/contracts/zkopru/controllers/Challengeable.sol#L48
https://github.com/LeastAuthority/zkopru/blob/develop/packages/contracts/contracts/zkopru/Zkopru.sol
https://github.com/LeastAuthority/zkopru/blob/develop/packages/contracts/contracts/zkopru/controllers/Challengeable.sol#L48

the challenge is successful, it will trigger the slash function, the bad block proposer will be slashed and
the challenger will be rewarded. The front runner who front runs the challenge transaction will get the
reward instead of the real challenger.

Mitigation

There is no known mitigation, for such front running attacks, at this point. Since front running attacks are
the natural consequence of the Ethereum mempool, the possibility of such attacks is a known
disadvantage of optimistic rollups. We recommend that the Zkopru team monitor the progress of front
running research for future potential mitigation strategies. In the interim, we also suggest that the
validators be warned of this possible attack.

Remediation

There is no known effective protection against front running. Sending the transaction to a trustworthy
miner which includes it in the block without broadcasting it to the network would block the attack,
however, this is not practically implementable since mining is currently too costly to make this worthwhile.

Status

The Zkopru team has acknowledged and responded to the front running concern on slashing rewards. At
present, they have chosen to keep the system as simple as possible. Our team considers this to be a
reasonable choice, particularly given the nature of this issue and that introducing complexity at this stage
may introduce additional harm. In addition, we note that this could reduce the incentives for validation.
Nonetheless, the issue remains unresolved at the time of this verification.

Verification

Unresolved.

Issue G: Front Running of Fees in Withdraw Transactions

Location
zkopru/controllers/UserInteractable.sol#L256

Synopsis

An attacker can front run the withdraw transaction and steal the caller fee.

Impact

If the fee is being front run, the withdraw caller would lose the incentive to withdraw for other users.

Preconditions

When a withdraw caller calls withdraw() for another user and there is a caller fee in the withdrawal
note, a front runner can front run the fee in the transaction. When user A does not have sufficient ETH to
pay the transaction fee to withdraw, user B can call withdraw for user A. In this case, user A would attach
a fee for the withdrawal caller (user B).

Feasibility

The incentive of a profit is difficult to estimate, and would depend on how high the fees are in comparison
to the gas costs.

Technical Details

When the attacker front runs the withdraw transaction, the fee will be transferred to the message sender
(the front runner) as the front runner is not the note owner.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 17
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/UserInteractable.sol#L256

(bool success,) = msg.sender.call{ value: fee }("");

Remediation

Although there is no known effective protection against front running in general, this issue can be
remediated by removing the use of msg.sender, and explicitly using signed state as the receiver of the
fee payment.

Status

The Zkopru team has acknowledged and responded to the front running concern on withdrawal fees and,
at present, have chosen to keep the system as simple as possible. Our team considers this to be a
reasonable choice, particularly given the nature of this issue and that introducing complexity at this stage
may introduce additional harm. Nonetheless, the issue remains unresolved at the time of this verification.

Verification

Unresolved.

Issue H: Reentrancy Attacks

Location

zkopru/controllers/UserInteractable.sol#L269

zkopru/controllers/Coordinatable.sol#L183

Synopsis

An attacker can commit a reentrancy attack using the withdraw() function to drain all the Ether funds
from the contract. We also found the reward withdraw function will transfer before decrementing the
award state and may also be reentered.

Impact

The attacker could drain all the Ether funds from the contract.

Preconditions

The attacker can make a contract as the destination address of to.call(value: eth) and call back
into the withdraw function in its fallback function, which would withdraw all the funds in the contract.

Feasibility

Highly feasible, as it’s easy to carry out and highly profitable since the only costs for the attacker are gas
costs.

Technical Details

The withdrawn state update (set to true) is done after the fund transfer call, the attacker can call the
withdraw() function repeatedly to withdraw all funds before the withdrawn state is updated.

Remediation

Use the check effects interaction pattern. Update the state right after the state check:

require(!Storage.chain.withdrawn[withdrawalHash], "Already withdrawn");

Storage.chain.withdrawn[withdrawalHash] = true;

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 18
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/UserInteractable.sol#L269
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/Coordinatable.sol#L183

Status

The Zkporu team has moved the state that marks the withdrawal boolean to before the transfer function,
correcting the possible reentrancy attack.

Verification

Resolved.

Issue I: Fix Reentrancy Code Patterns

Location

zkopru/controllers/Coordinatable.sol#L184

zkopru/controllers/Coordinatable.sol#L59

Synopsis

There are a few other locations where the contract state is only updated after calling external functions,
which make the system susceptible to reentrancy attacks in which an attacker repeatedly calls certain
functions to extract profit.

Impact

The different invocations of the function may change contract data in destructive ways, which could
expose other vulnerabilities.

Preconditions

A call to an external function before finishing internal work, e.g. state change, in the contract.

Feasibility

Highly feasible as long as an attacker can gain profits from the external calls (e.g., withdrawing funds
repeatedly).

Technical Details

The attacker can call the involved functions repeatedly, before the first invocation of the function is
finished. This may cause the different invocations of the function to interact in destructive ways. For
example:

payable(proposerAddr).transfer(amount);

proposer.reward -= amount;

The attacker can use an external contract as the proposer address to call back the involved function
which repeatedly transfers funds, before the reward is deducted. Only here the attack is not exploitable as
the transfer function is only forwarded with a limited amount of gas (2300 wei), the call back is not
possible with this amount of gas.

Remediation

Call external functions before finishing internal work (e.g. state updates), update the state right after
state check.

require(proposer.reward >= amount, "You can't withdraw more than you
have");

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 19
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/Coordinatable.sol#L184
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/Coordinatable.sol#L59

proposer.reward -= amount;

payable(proposerAddr).transfer(amount);

Status

The Zkopru team has issued a commit that contains a list of smart contracts and functions where the
correct check effects interaction pattern has been applied, eliminating the possibility for reentrance
attacks on these functions.

Verification

Resolved.

Issue J: No Nullifier Uniqueness Check

Location

middlewares/default/block-generator.ts#L44

Synopsis

The Zkopru SNARK implements a commitment nullifier scheme that requires each revealed nullifier to be
unique, in order to prevent double spending. It is therefore the burden of any verifier to not only check the
correctness of the Groth16 proof [G16], but also the uniqueness of any revealed nullifier. Since the
proposer includes the transactions to generate blocks, each spent UTXO should therefore have its unique
nullifier checked.

Impact

The block proposer will get slashed if there is a redundant nullifier, causing a double spend issue when
someone challenges the transaction. An attacker who submits a double spend transaction can challenge
the block which includes the invalid transaction later to claim the slash reward.

Preconditions

The block producer/coordinator does not check the uniqueness of the spending note.

Feasibility

Highly feasible, as there is very high profit from this attack. An attacker can double spend if no one
challenges the invalidate transaction or get a slash reward by challenging the bad block, since they know
it’s invalid.

Remediation

Add a transaction nullifier uniqueness check when the proposer generates blocks.

Status

The Zkopru team has responded noting that this is not an issue as they have client code that will ensure
that the identifier is unique in a dry run.

Verification

Resolved.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 20
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/zkopru-network/zkopru/commit/0d375852738e08caa196f4d249ba8d8e9736af3c
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/coordinator/src/middlewares/default/block-generator.ts#L44
https://eprint.iacr.org/2016/260.pdf

Issue K: No Withdrawal Note Validity Check (Out of Scope)

Location

coordinator/src/api.ts#L111

zkopru/controllers/UserInteractable.sol#L92

Synopsis

There is no withdrawal note validity check when the prepayer receives an instant withdraw request. If the
withdrawal note is invalid and the block which includes it is slashed later by a validator challenge, the bad
block will not be finalized and the withdrawal note becomes non-withdrawable. This would result in the
prepayer who bought this note taking the loss.

Impact

The prepayer will lose the funds they prepaid to the user who requests instant withdrawal with an invalid
withdrawal note, which could be caught by a challenger before it is finalized, as they cannot withdraw.

Preconditions

This attack is possible if the withdrawal note is not valid, the prepayer does not verify it and pays the
instant withdrawal. In this case, the note is transferred to the prepayer, the block which includes the invalid
withdrawal note gets challenged later and cannot be finalized, and the prepayer cannot withdraw the
prepaid withdrawal note they bought.

Feasibility

This is feasible as an attacker can forge an invalid withdrawal note and request instant withdrawal from a
prepayer as long as the prepayer doesn’t check the validity of the withdrawal note.

Remediation

When receiving an instant withdraw request, we recommend that the coordinator or prepayer should add a
validity check for the withdrawal note that it is correctly included in the block.

Status

The Zkopru team has introduced verification checks in the API that may resolve this issue. However, we
recommend that this out of scope code be further reviewed and evaluated, as it has not been thoroughly
reviewed by our team.

Verification

Resolved.

Issue L: SNARK Validation Missed in On-chain/Off-chain Validation (Out of
Scope)

Location

src/validator/validator.ts#L398

Synopsis

When the validator validates a transaction, it runs a couple of validations on-chain/off-chain. One of the
validations is SNARK validation, which validates the SNARK proof in the transaction and it is missed in the
called validations.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 21
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/coordinator/src/api.ts#L111
https://github.com/LeastAuthority/zkopru/blob/13942ebd95c4a2da220ad4ea7014707fe57083b6/packages/coordinator/src/api.ts#L111
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/UserInteractable.sol#L92
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/core/src/validator/validator.ts#L398

Impact

Invalid transactions can pass the validation, and an attacker can generate a transaction which outputs an
invalid note of arbitrage amount, then withdraw it to L1, draining all the funds in the contract.

Feasibility

Highly feasible, as an attacker can gain huge profit just by making an invalid transaction.

Technical Details

The validateTx() function of the validator, returns an array of on-chain/off-chain validator functions in
the array fnCalls, validateSNARKCalls (which validates SNARK proofs) is missed.

Remediation

Add the missed validateSNARKCalls in the array (fnCalls).

Status

This issue was reported to the Zkopru team and fixed during the audit and prior to the delivery of the
Initial Audit Report.

Verification

Resolved.

Issue M: No Caller Fee When Withdrawing Only Non-ETH Assets (ERC-20
Token and NFTs) (Known Issue)

Location

zkopru/controllers/UserInteractable.sol#L246

Synopsis

When withdrawing L2 assets to L1 for other users, the withdraw caller can get a caller fee as a reward.
When there are only ERC-20 tokens and NFTs (and no ETH assets) in the withdrawal, the caller will not get
a caller fee.

Impact

Withdraw caller will not get the caller fee.

Preconditions

The withdraw note only contains ERC-20 tokens and NFTs and the withdrawal fee is not zero.

Technical Details

In the withdraw function, when eth is not 0, the contract transfers the fee to the caller (whether the
caller is the owner or not). When eth=0, there is no fee transfer logic, only the ERC-20 tokens and NFTs
are transferred to the owner.

Remediation

Add fee transfer to the caller when eth=0.

Status

The addition of the fee logic has been moved out of the conditional statement, thus resolving this issue.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 22
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/UserInteractable.sol#L246

Verification

Resolved.

Issue N: Front Running of Burn Auction Bids

Location

contracts/consensus/BurnAuction.sol

Synopsis

Staked coordinators may claim block proposal rights by winning a "burn auction". They make bids that
must increase by 10% each accepted bid, until a time limit. But a front runner can submit the same bid
with a slightly higher gas price to get their transaction moved to the start of the next block and considered
the first bid, and thus winning that price.

Impact

A front runner can win burn auctions and force honest bidders to increase bids, possibly making
coordinating Zkopru unprofitable for honest participants.

Preconditions

An honest coordinator is making a burn auction bid to gain block submission rights and then make a
profit from transaction fees.

Technical Details

For coordinating to be profitable, the amount spent in burn auctions must be less than the average
amount gained in fees. This means that the burn auction is a competition about who can most accurately
model the distribution of fees. The requirement that a bid be 10% more than the previous bid actually
makes coordinating quite profitable. Assuming accurate expected fees are known, then it is possible to
make a bid slightly below the average fee, such that the next bid will be above it. For example, if 109 in
fees is expected, and then 100 is bid, the next bid would be 110, which would lose 1 unit. Since fees are
public information, it's expected that all coordinators know the averages. However, a front runner can
submit the same bid, but at a slightly higher gas price, this forces the honest coordinator to make a bid at
least 10% more, which may be unprofitable.

Mitigation

Bids should be submitted with very high gas prices as close to the end of the block as possible, to reduce
the chance that a front runner will have time to get their transaction in.

Remediation

Bids could be made with a commit-and-reveal pattern, or use a different consensus mechanism that is not
threatened by front running, such as having all coordinators take turns.

Status

The 10% increment step has been removed, making the profitable bid less obvious for front runners.
However, since front running may still occur, we consider the issues partially resolved. We recommend
implementing a different auction or consensus mechanism not threatened by front running to fully resolve
the issue.

Verification

Partially Resolved.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 23
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/consensus/BurnAuction.sol

Issue O: Old ERC-20 Token Interfaces May Lead to Stuck Tokens or Be
Blocked from Use

Location

zkopru/controllers/UserInteractable.sol#L263-L266

zkopru/controllers/UserInteractable.sol#L135

Synopsis

All instances of ERC-20 token transfer and transferFrom calls do not have a wrapper to anticipate the
event that a token interface does not adhere to the standard of reverting in the case of failure. A missing
return value bug may arise, leading to older tokens becoming locked on the contract when Zkopru needs
to interact with them to withdraw. The Zkopru contract uses IERC20.sol, and if it interacts with a token
that does not match IERC20 return values, there is a potential for the tokens to be locked in the contract.

To combat this possibility, the registration of a token in Zkopru must return a successful transfer trial.
This can add a small amount of extra gas consumption and will block any older tokens that have a bad
standard interface.

Impact

Tokens may become locked in the Zkopru contract and will be destroyed if this is not prevented in a
standard way. Ensuring that tokens must transfer before registering them should reduce the possibility of
this incident happening but will block bad interface tokens.

Preconditions

A token that does not conform to the standard that Zkopru expects is deposited and is unable to be
withdrawn after. This token must get registered by passing the transfer checks so this may just result in
the token being blocked from use in Zkopru.

Feasibility

Some tokens that are in use still adhere to a standard that does not return a value. A list of them is
provided in the documentation on the missing return value bug.

Remediation

We recommend using a standard safe transfer wrapper, such as the one used by Uniswap or provided by
OpenZeppelin, which will anticipate these interfaces with no return value and allow them to still be used.

Status

The safe transfer wrapper has been added to the Coordinatable.sol controller, thus eliminating the
possibility of bad tokens being stuck.

Verification

Resolved.

Issue P: Operator Has Total Authority Over State Verification

Location

contracts/zkopru/Zkopru.sol#L31

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 24
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/UserInteractable.sol#L263-L266
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/UserInteractable.sol#L135
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/Coordinatable.sol#L199
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/LeastAuthority/zkopru/blob/13942ebd95c4a2da220ad4ea7014707fe57083b6/packages/contracts/contracts/zkopru/Zkopru.sol#L31

Synopsis

In the current implementation, the Zkopru contracts allow for the centrally owned operator to replace the
SNARK circuit or the associated common reference string at any time. This SNARK circuit is used to verify
shielded transactions. If this verification circuit is replaced with a malicious one, it will allow state updates
that are malicious.

Impact

Severe. If the operator of the SNARK circuit becomes malicious or compromised, they are able to control
all state updates. This can lead to the users losing all funds in the system.

Feasibility

In the early stages of the Layer 2 chain, it is against the self interest of the owner to commit fraud.
However, this is a single point of failure that could become compromised through other attack methods.

Mitigation

While the SNARK circuits are still being finalized, it is favorable to be able to switch a broken circuit out
quickly. Once the SNARK circuits have been finalized, the update function should be immediately switched
to one controlled by a multisig contract.

Remediation

A democratic and transparent approach to the update of the consensus rules would be an ideal
alternative to the currently centralized design. One way to do this would be to place a proposed circuit
update on-chain where it could be voted on by the users of the system, or by those qualified to ensure that
the new circuit is correct. SNARK circuits are complicated protocols and not easily reviewed by most
people, so votes should be only placed on circuits that have been thoroughly audited by reliable and
ethical sources.

Status

The setup phase of the smart contracts now renounces ownership on the OpenZepplen ownership smart
contract.

Verification

Resolved.

Issue Q: Deposit Does Not Check For Registered Token

Location

zkopru/controllers/UserInteractable.sol#L146

Synopsis

There is a registration process for tokens where they must be able to transfer tokens. This is a precaution
for tokens that want to use Zkopru but do not adhere to the ERC-20 standard interface. The deposit
function here should check that the tokens entering the Layer 2 chain have been registered and conform
to ERC-20 standards.

Impact

Tokens deposited with an incorrect standard may become stuck on the contract.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 25
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/UserInteractable.sol#L146

Feasibility

This is possible if tokens do not adhere to standards and this has happened in other systems.

Remediation

Add a requirement that the token being deposited, is in the registered tokens storage.

require(Storage.chain.registeredERC20s[token] != address(0));

Status

The tokens entering now use the safe transfer wrapper to ensure that there is no return value bug and that
the transfer interface exists on the tokens. However, the fix now introduces redundant code, which should
be removed:

zkopru/controllers/UserInteractable.sol#L185-L186

zkopru/controllers/UserInteractable.sol#L192-L193

As _checkNoteFields already performs the check.

Verification

Partially Resolved.

Issue R: Coordinator's URL/IP Address is Exposed in Auction Process,
Which Can Be Exploited For a DDoS Attack

Location

contracts/consensus/BurnAuction.sol#L108

coordinator/src/auction-monitor.ts#L207

Synopsis

In a burn auction, coordinators are required to set the URL when they join the auction. This URL/IP
information is open to all coordinators. This enables a possible Distributed Denial of Service attack, in
which a malicious coordinator can prevent the legitimate block proposer from proposing blocks and
snatch the block proposing right without winning the burn auction.

Impact

A malicious coordinator can gain the block proposing right without being the winner in the burn auction or
an attacker can prevent coordinators from proposing blocks to disrupt the system.

Preconditions

Assuming there are not many coordinators at the beginning of the system launch, an attacker can launch
a DDoS attack against all coordinators during the block proposing round.

Feasibility

Highly likely, as winning the block proposal rights can be very competitive. The feasibility increases when
there are fewer coordinators in an auction.

Technical Details

The coordinator is required to set their URL/IP with the auction smart contract when they join an auction.
The smart contract will emit an event UrlUpdate once the coordinator sets the URL, and all coordinators

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 26
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/zkopru-network/zkopru/blob/246b937ef2a712284ac323eef7b07a5df868c6fd/packages/contracts/contracts/zkopru/controllers/UserInteractable.sol#L185-L186
https://github.com/LeastAuthority/zkopru/blob/develop/packages/contracts/contracts/consensus/BurnAuction.sol#L108
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/coordinator/src/auction-monitor.ts#L207

who join the auction will have access to the coordinator URL/IP by subscribing to the UrlUpdate event.
A malicious coordinator can use this information to launch a DDoS attack against the winning coordinator
during the block proposing round (10 minutes at 15 sec/block), thus preventing them from proposing
blocks. After half of the round passes then any other coordinator can propose, but an attacker could
launch a DDoS attack against the other coordinators, especially when there are not many of them. As a
result, the malicious coordinator gains the proposal rights without winning the auction.

Mitigation

Implement an incentive mechanism that can attract enough coordinators to participate in the system, and
have multiple coordinators propose the block during the block proposing round to ensure that, if one block
proposer is attacked, another coordinator can still proceed with proposing the block. After half of the
round has passed, any other coordinator can propose a block (since it is harder for the attacker to attack
all other proposers). Additionally, we recommend that the Zkopru team investigate possible DDoS
protections for coordinators to implement.

Remediation

Remove the URL/IP information requirements for coordinators to join the auction, using some anonymous
routing protocol (Tor, I2P, Raven e.g.) to protect coordinator network metadata privacy (IP and its link to
on-chain ID) from deanonymization attacks.

Status

The Zkopru team has responded stating that a browser wallet will be deployed on a subdomain of
zkopru.network and the coordinators will only accept HTTP requests from the whitelisted domains.
However, DDos attacks can still send non HTTP requests/data (e.g. SYN) to flood the coordinator’s
bandwidth. As a result, we consider this issue to be partially resolved.

Verification

Partially Resolved.

Suggestion 2: Increase Test Coverage

Location

packages/circuits/tests

test/validators/tx-validator.soltest.js#L93-L97

test-cases/test/validators

Synopsis

Circuits

The zk-SNARK circuits include some test coverage, which demonstrate the intended use for the circuits.
However, additional tests to account for potential edge cases would help to further protect against
malicious actions and unexpected behavior

Smart Contracts

The smart contracts include test coverage that is limited to success cases (when the slash condition is
false), and does not incorporate failures and errors. Furthermore, each validator should have
corresponding tests (e.g. withdrawtreeValidator, NullifierTreeValidator,
DepositValidator and UtxoTreeValidator), which are currently insufficient.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 27
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/tree/develop/packages/circuits/tests
https://github.com/LeastAuthority/zkopru/blob/develop/packages/contracts/test-cases/test/validators/tx-validator.soltest.js#L93-L97
https://github.com/LeastAuthority/zkopru/tree/develop/packages/contracts/test-cases/test/validators
https://github.com/LeastAuthority/zkopru/tree/develop/packages/circuits/tests

Increasing test coverage with specific attention to fail cases will help identify simple errors and prevent
functionality from breaking when new code changes are introduced. In addition, tests help to detect and
prevent unintended behavior and edge cases, which may result in the potential vulnerabilities.

Mitigation

Circuits

We recommend increasing test coverage to account for potential edge cases and unexpected behavior.

Smart Contracts

We recommend increasing test coverage for fail cases (e.g. slashable condition) and for all validator
contracts.

Status

The Zkopru team has responded that they have provided additional tests and are currently onboarding
new developers so they expect test coverage to increase in the near term. At the time of this verification,
test coverage continues to be insufficient.

Verification

Unresolved.

Suggestion 3: Expand System Documentation

Location

https://docs.zkopru.network/v/burrito

Synopsis

The project documentation provides an overview of the Zkopru system and the intended functionality for
the smart contracts. However, the smart contracts interact with many off-chain components of the circuit
system (e.g. coordinator, validator, SNARK verifier, wallet client, fullnode, etc.) and these interactions are
not comprehensively documented.

Furthermore, build and test documentation is missing and would provide a clear description of the setup
process, which would avoid the potential for mistakes.

Insufficient documentation of this nature leads to difficulty understanding, reviewing, and using the
system effectively.

Mitigation

We recommend creating detailed documentation of how the entire system interacts, which would provide
a deeper appreciation and understanding of Zkopru. In addition, we recommend providing build and test
documentation, which would prevent the potential for issues to arise during the initial setup phase.

Status

The Zkopru team has responded that the documentation would be updated before their launch to
mainnet. At the time of this verification, this suggestion remains unresolved.

Verification

Unresolved.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 28
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.zkopru.network/v/burrito
https://docs.zkopru.network/v/burrito/

Suggestion 4: Remove Duplicate Code

Location

Example 1:
zkopru/controllers/Challengeable.sol#L69

zkopru/controllers/Challengeable.sol#L66

Example 2:
zkopru/libraries/MerkleTree.sol#L265

zkopru/libraries/MerkleTree.sol#L289

Synopsis

Example 1 demonstrates an instance of code duplication, where two identical lines of code exist in the
system. Example 2 demonstrates an instance of two lines of code that are different but perform an
identical function.

Code duplication should be avoided, as it increases storage costs and can lead to misunderstandings
when making changes to and reviewing code.

Mitigation

We recommend performing a code review to identify and remove all duplicated lines of code.

Status

The Zkopru team has removed the duplicate code.

Verification

Resolved.

Suggestion 5: Update Compiler Version

Location

zkopru/controllers/Challengeable.sol

Synopsis

The compiler version is set to version 0.6.12, which does not incorporate newer compiler fixes and
updates.

Mitigation

We recommend updating the compiler version to 0.7.0–0.7.4. While more recent versions exist, we advise
against their use as they may contain a higher probability of unknown issues.

Status

The compiler has been updated to v0.7.4. Since the time of the original report, there has been more time
for compiler versions to settle. We recommend going as high as 0.8.0 if desired to achieve the new
features such as EVM safe math and to regularly update the compiler to up to date, stable versions.

Verification

Resolved.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 29
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/develop/packages/contracts/contracts/zkopru/controllers/Challengeable.sol#L69
https://github.com/LeastAuthority/zkopru/blob/develop/packages/contracts/contracts/zkopru/controllers/Challengeable.sol#L66
https://github.com/LeastAuthority/zkopru/blob/develop/packages/contracts/contracts/zkopru/libraries/MerkleTree.sol#L265
https://github.com/LeastAuthority/zkopru/blob/develop/packages/contracts/contracts/zkopru/libraries/MerkleTree.sol#L289
https://github.com/zkopru-network/zkopru/commit/05ce60f09238ab4ea65403015f92e8aba1b36de3
https://github.com/LeastAuthority/zkopru/blob/develop/packages/contracts/contracts/zkopru/controllers/Challengeable.sol

Suggestion 6: Add Address Input Sanitization

Location

zkopru/controllers/Coordinatable.sol#L41

Synopsis

There are two ways to enter stake to the coordinator contract. If calling register(), the address will be
hardcoded to be msg.sender and there will be no issue. However, if stake() is called directly, the
address input is never examined for format correctness.

Mitigation

We recommend adding a check to the address coordinator input for at least NULL address with
require(coordinator != address(0));.

Status

The Zkopru team has issued an update and a check for the zero address supplied for the coordinator is
now present.

Verification

Resolved.

Suggestion 7: Address TODO Comments

Location

zkopru/controllers/UserInteractable.sol#L166

zkopru/controllers/Coordinatable.sol#L192

zkopru/libraries/Types.sol#L370

contracts/consensus/BurnAuction.sol#L170

Synopsis

The TODOs listed in the code may impact the security of the system. In the event that they are not
planned to be implemented, a comment associated with each TODO explaining the rationale would benefit
from security review.

Mitigation

Complete TODOs or add documentation as to why they are unnecessary.

Status

The Zkopru team has responded that most of the TODO comments were outdated and have removed
them where necessary.

Verification

Resolved.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 30
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/Coordinatable.sol#L41
https://github.com/zkopru-network/zkopru/pull/206/commits/31c457f2d3c6da2c73fd9c41e7f86466287bcdc9
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/UserInteractable.sol#L166
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/controllers/Coordinatable.sol#L192
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/zkopru/libraries/Types.sol#L370
https://github.com/LeastAuthority/zkopru/blob/4236fc8a5cbf73b7f3860d87a1a447eea8d7abd4/packages/contracts/contracts/consensus/BurnAuction.sol#L170

Suggestion 8: Audit Off-Chain Components

Location

packages/coordinator

packages/core

packages/account

packages/transaction

packages/zk-wizard

Synopsis

Off-chain components (coordinator, wallet client, validator, SNARK verifier, synchronizer, transaction
builder) were out of scope for this audit. To check the security of the system as a whole, these would
require a security audit.

Mitigation

We recommend that audits of the off-chain components, including the coordinator, wallet client, validator,
SNARK verifier, transaction builder and synchronizer, are undertaken to check for potential vulnerabilities
and to ensure that the interaction of the components function as intended.

Status

The Zkopru team has responded that, given that Zkopru is an optimistic rollup protocol, everything should
be guaranteed on-chain. Off-chain components are only the implementation and they do not have any
plans to have them audited.

Verification

Unresolved.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 31
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkopru/tree/develop/packages/coordinator
https://github.com/LeastAuthority/zkopru/tree/develop/packages/core/
https://github.com/LeastAuthority/zkopru/tree/develop/packages/account
https://github.com/LeastAuthority/zkopru/tree/develop/packages/transaction
https://github.com/LeastAuthority/zkopru/blob/13942ebd95c4a2da220ad4ea7014707fe57083b6/packages/zk-wizard

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 32
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Zkopru zk-SNARK Circuits + Smart Contracts | Ethereum Foundation 33
22 June 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

