
Vanilla Smart Contracts
Security Audit Report

Equilibrium
Final Report Version: 23 March 2021

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Malicious Token Attack

Suggestions

Suggestion 1: Pin Dependencies to Specific Versions

Suggestion 2: Improve Project Documentation

Suggestion 3: Improve Developer Documentation

Suggestion 4: Increase Test Coverage

Suggestion 5: Check that Property-Based Testing Works as Intended

Suggestion 6: Conduct Formal Verification

About Least Authority

Our Methodology

Security Audit Report | Vanilla Smart Contracts | Equilibrium 1
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Equilibrium requested that Least Authority perform a security audit of the Vanilla smart contracts. Vanilla
is implemented in three Solidity contracts where all user-facing calls happen via VanillaRouter, which
inherits trading functionality from UniswapTrader. Profitable trading is rewarded with
VanillaGovernanceToken ERC-20s.

Project Dates
● February 16 - 26: Code review (Completed)
● March 2: Delivery of Initial Audit Report (Completed)
● March 16 - 17: Verification Review (Completed)
● March 18: Final Audit Report delivered (Completed)
● March 23: Updated Final Audit Report delivered (Completed)

Review Team
● Alex Lewis, Security Researcher and Engineer
● David Braun, Security Researcher and Engineer
● Bryan White, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Vanilla smart contracts followed by
issue reporting, along with mitigation and remediation instructions outlined in this report.

The following code files are considered in-scope for the review:
● VanillaRouter.sol: https://github.com/vanilladefi/contracts/blob/main/contracts/VanillaRouter.sol
● UniswapTrader.sol:

https://github.com/vanilladefi/contracts/blob/main/contracts/UniswapTrader.sol
● VanillaGovernanceToken.sol:

https://github.com/vanilladefi/contracts/blob/main/contracts/VanillaGovernanceToken.sol

Specifically, we examined the Git commit for our initial review:

9bf4f09a447fa846e8a8586da45c0745ef0896d9

For the verification, we examined the Git revision:

c3392b9400fbbf142dee0c1cd2d43520532ebac0

For the review, this repository was cloned for use during the audit and for reference in this report:

https://github.com/LeastAuthority/equilibrium-vanilla-smart-contracts-audit

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Security Audit Report | Vanilla Smart Contracts | Equilibrium 2
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vanilladefi/contracts/blob/main/contracts/VanillaRouter.sol
https://github.com/vanilladefi/contracts/blob/main/contracts/UniswapTrader.sol
https://github.com/vanilladefi/contracts/blob/main/contracts/VanillaGovernanceToken.sol
https://github.com/LeastAuthority/equilibrium-vanilla-smart-contracts-audit

Supporting Documentation
The following documentation was available to the review team:

● README.md
● contracts/README.md
● Uniswap V2 Audit Report
● Uniswap Documentation

In addition, we reference the following material in this report:
● D. Que, 2018, "What we learned from auditing the top 20 ERC20 token contracts"

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Adversarial actions and other attacks on the smart contracts;
● Potential misuse and gaming of the smart contracts;
● Attacks that impacts funds, such as the draining or the manipulation of funds;
● Mismanagement of funds via transactions;
● Economic incentives: ensure token economics (monetary incentives to punish bad behavior and

reward good behavior) are functional;
● Denial of Service (DoS) and other security exploits that would impact the smart contracts

intended use or disrupt execution;
● Vulnerabilities in the smart contracts code;
● Protection against malicious attacks and other ways to exploit smart contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments

System Design
The Equilibrium development team has taken a minimal approach to the system design of the Vanilla
smart contracts. This design demonstrates a clear and concise separation of concerns, facilitating a
more efficient review for potential security issues. The smart contracts rely heavily on functionality
provided by Uniswap and avoid the introduction of unnecessary or unused features into the codebase.
The design is robust in its consideration for security, which is evident both in the code and at a protocol
level.

Overflow Checks

The smart contracts make consistent use of OpenZeppelin’s SafeMath, providing wrappers over
Solidity’s arithmetic operations by adding overflow checks. The use of SafeMath is an industry standard
for preventing a class of bugs that may result in the occurrence of overflows, and prompts a revert in the
event of their occurrence.

Security Audit Report | Vanilla Smart Contracts | Equilibrium 3
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vanilladefi/contracts/blob/main/contracts/README.md
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md
https://uniswap.org/audit.html
https://uniswap.org/docs/v2/
https://medium.com/@danielque/what-we-learned-from-auditing-the-top-20-erc20-token-contracts-7526ef3b6fb1
https://docs.openzeppelin.com/contracts/3.x/api/math

Limiting Token Supply

The governance token’s mint function is secured using access control checking, which prevents anyone
but the owner (i.e., VanillaRouter) from minting tokens. Since the value of tokens depends on their
scarcity, restricting the ability to mint tokens is critical and successfully limits the supply. While the
Equilibrium development team’s choice to check for access control exhibits considerations for security, it
relies solely on trusting that the governance token owner will not mint tokens at will. However, given that
the router owns the token and it is non-upgradeable, trust concerns around a human controlling the token
are eliminated.

More generally, restrictions on minting tokens and limiting supply could be further expanded by having the
owner receive a fixed amount of initially minted token when the smart contract is deployed. In addition,
while the governance token is currently owned by the router contract, it could be deployed separately and
owned by a DAO, or a similar governance contract. We recommend that the Equilibrium development team
continue to consider the various security trade-offs resulting from design choices and to prioritize design
decisions with lowest impact on the overall security of the smart contracts system.

Non-Upgradeability

The Equilibrium development team has designed the smart contracts such that they are non-upgradeable,
which reduces the attack surface by avoiding the introduction of additional functionality that increases
the overall complexity of the system. Non-upgradeable smart contracts also consider a longer-term
strategy for their use, which can be relied on to be consistent.

However, while non-upgradability can be beneficial from the perspective of secure design, as it minimizes
attack surface on the smart contract by limiting functionality, it also comes with trade-offs. For example,
in the event that the Equilibrium development team chooses to introduce updated functionality, a new
version of the smart contract would need to be deployed and maintained. This would also raise concerns
around the inability to migrate the original smart contract holding liquidity and, as a result, users would
have to sell tokens and would be unable to transfer them to the new smart contract due to the original
smart contract’s limited function. Furthermore, this would impact governance token payout and introduce
additional complexity, since the new smart contract would have to introduce a new governance token.

As noted previously, while non-upgradeability reduces complexity, thus minimizing the potential for
attacks, the design decisions around functionality present other challenges which should be carefully
considered. The Equilibrium development team has clearly taken these design trade-offs into
consideration and should continue to do so in the future with security in mind.

Mitigating Price Manipulations

The exclusive use of WETH pairs contributes to mitigating the risk of price manipulation. In general,
WETH pairs are expected to have higher liquidity, in comparison to other arbitrary ERC-20 token pairs. The
expected higher liquidity resulting from the exclusive use of WETH pairs, the incorporation of time into the
_calculateReward function, and the buy and sell functions being restricted from the same block are all
contributing factors to mitigating flash loan attacks, or similar price manipulations.

Malicious Token Attack

We identified a malicious token vulnerability in which a maliciously designed token can trick
UniswapTrader into allowing more tokens to be sold than were bought, rewarding the attacker with
VanillaGovernanceTokens, since UniswapTrader trusts the balanceOf and transfer methods of
ERC-20 tokens to behave correctly. However, an attacker can execute and repeat the attack at low costs in
order to obtain an unlimited number of tokens. This may result in the decreased value for other token
holders since the supply of VanillaGovernanceTokens in circulation will increase. In order to
immediately mitigate this vulnerability, we recommend allowing only whitelisted tokens to be traded,
which would protect VanillaRouter from this type of attack. In order to explore a potential remediation,

Security Audit Report | Vanilla Smart Contracts | Equilibrium 4
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/VanillaRouter.sol#L80

we suggest that the Equilibrium development team investigate further whether it is possible to reduce
exposure to the trusted balanceOf method by utilizing the return value of Uniswap’s
swapExactETHForTokens instead of using swap when buying token (Issue A).

Code Quality
The code is well organized and generally adheres to Solidity best practices. In addition, the code is
sufficiently commented according to the NatSpec guidelines for Solidity comments, which helps
reviewers and users of the code to easily understand the inputs and functionality of every method present,
and aid in identifying potential issues.

Tests

We encourage the Equilibrium development team to adopt Test Driven Development (TDD), a development
approach in which the code’s behavior and intended functionality are specified and verified by test cases.
The Equilibrium development team currently utilizes industry standard tools for writing smart contract
tests, including Hardhat's ethers.js and Waffle. However, test coverage is currently insufficient in that it
does not test the existing functionality to verify that the code is behaving as intended and may result in
the introduction of potential vulnerabilities. We strongly recommend increasing test coverage to detect
and prevent unintended behavior and edge cases, allowing future contributors, maintainers, and reviewers
of the codebase a degree of confidence that the existing code functions properly. In doing so, the
Equilibrium development team should adopt TDD practices, which should be applied in writing functional
tests that provide complete coverage of the smart contract code (Suggestion 4).

During the audit, the Equilibrium development team issued a commit that introduced improvements to the
smart contracts, which included the addition of property-based testing. However, given that the tests were
introduced following the start of the review, an in depth analysis of the test suite, including the use of
property-based tests, was considered out of scope. We recommend that the property-based tests be
further evaluated to check that they work as intended. In particular, a broad range of invariants should be
tested (e.g. users should always be able to sell and receive their balance from Vanilla’s custody; VNL
governance tokens should be minted in correlation with the reward function) to ensure comprehensive
coverage of the property-based test cases (Suggestion 5).

Documentation
The Vanilla smart contracts use the Uniswap protocol and, as a result, some prior knowledge of Uniswap
is assumed in the Vanilla documentation. However, references are provided to Uniswap’s documentation
where appropriate, contributing to the usability and understanding of the system.

The current project documentation adequately explains the smart contract’s core design concepts,
providing examples and safety considerations within each section. The documentation of safety
considerations (e.g. noting that the use of limits does not completely protect users from front running
attacks; links to the Uniswap V2 Audit Report) clearly exhibits transparency about the risks associated
with these types of DeFi smart contracts. However, there are several areas where the documentation can
be improved, as detailed below.

The inconsistent use of terminology found in the documentation may lead to confusion, increase difficulty
in understanding how the systems work, and result in misinterpretations. For example, Weighted Average
Price of Purchases and Average Price of Purchases are used interchangeably throughout the
documentation. We recommend defining all terminology and using it consistently throughout the
documentation, in addition to consistent use of formatting. Improved consistency will help to avoid
confusion for users and developers, as well as misuse of the smart contracts or misunderstanding by
security reviewers in their effort to identify security vulnerabilities (Suggestion 2).

Security Audit Report | Vanilla Smart Contracts | Equilibrium 5
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.soliditylang.org/en/v0.7.4/natspec-format.html
https://hardhat.org/guides/waffle-testing.html#testing-with-ethers-js-waffle
https://github.com/vanilladefi/contracts/tree/release-improvements
https://uniswap.org/
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/README.md
https://uniswap.org/audit.html

The current developer documentation on the public API and events for the VanillaRouter is sufficient
for developers who intend to use the vanilla router (i.e. calling it from another smart contract) by defining
what the smart contracts do. However, the documentation would benefit from information for developers
who intend to contribute to the project and need to better understand how the smart contracts work.
Given that the smart contracts are able to handle significant amounts of value, additional developer
documentation explaining the implementation is critical and would help to increase public confidence in
the security and integrity of the smart contracts. As a result, we recommend improving the
documentation, which can be further aided by utilizing solidity-docgen to generate developer
documentation from the existing code comments (Suggestion 3).

Scope
The scope of the audit is sufficient and covered all the core components of the Vanilla smart contracts
system.

Our team manually reviewed the Solidity code in addition to running the code against Slither, an open
source static analysis framework for Solidity. Slither runs a suite of vulnerability detectors against the
codebase, looking for common mistakes and known exploitable vulnerabilities. The results contained
some issues, which we further investigated and confirmed to be false positives.

Dependencies

When the dependencies in package.json, including vanilla-contracts, are published, npm
install will ignore the package-lock.json file. This will result in automatically updating the installed
package to newer minor or patch versions of the dependency. We recommend pinning dependencies to
exact versions to retain more control over when and where upgrades take place. This will prevent
unwanted versions from being inadvertently installed, thus increasing the attack surface. In addition, this
will help both developers and reviewers to identify new vulnerabilities discovered in dependencies, which
is paramount to the security of the codebase (Suggestion 1).

As previously noted, both Uniswap and OpenZeppelin are utilized by the Vanilla smart contracts and are
both well-known and widely used dependencies. The use of trusted and maintained dependencies
minimizes the potential security risks and malicious code introduced as a result of utilizing third-party
code. However, we recommend that the Equilibrium development team continue to maintain and update
dependencies, in addition to checking that they continue to be regularly audited.

Formal Verification

Concurrent distributed systems benefit from formal verification, which is less prone to human error in
identifying potential vulnerabilities in the core logic of the smart contracts. We recommend that the
Equilibrium development team explore opportunities to conduct formal verification of the smart contracts
and the high-level logic (Suggestion 6). While Uniswap has conducted a formal verification, it would
demonstrate due diligence to conduct an independent formal verification of the Vanilla smart contracts.

Security Audit Report | Vanilla Smart Contracts | Equilibrium 6
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/OpenZeppelin/solidity-docgen
https://github.com/crytic/slither

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Malicious Token Attack Resolved

Suggestion 1: Pin Dependencies to Specific Versions Resolved

Suggestion 2: Improve Project Documentation Unresolved

Suggestion 3: Improve Developer Documentation Unresolved

Suggestion 4: Increase Test Coverage Unresolved

Suggestion 5: Check that Property-Based Testing Works as Intended Unresolved

Suggestion 6: Conduct Formal Verification Unresolved

Issue A: Malicious Token Attack

Location

An attack demonstrating the vulnerability is found in test/Issue A.ts.

Synopsis

UniswapTrader trusts the balanceOf and transfer methods of ERC-20 tokens to behave correctly. A
maliciously designed token can trick UniswapTrader into allowing more tokens to be sold than were
bought, rewarding the attacker with VanillaGovernanceTokens.

Impact

An attacker can execute the attack at low cost, repeating as often as desired to obtain an unlimited
number of VanillaGovernanceTokens. This will increase the supply of VanillaGovernanceTokens
in circulation and potentially lower their value for other token holders.

Preconditions

The attacker must create a malicious token and list it on Uniswap before executing trades via
VanillaRouter.

Feasibility

The attack is straightforward and can be carried out easily.

Technical Details

In order to receive VanillaGovernanceTokens,a trader must make a profitable trade. The degree to
which a trade is judged profitable is dependent on the number of tokens sold. The profitability of a trade in
which the number of tokens sold is greater than the number previously bought (i.e. at a comparable price)
increases as the delta between the number of tokens bought and sold increases.

Security Audit Report | Vanilla Smart Contracts | Equilibrium 7
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/equilibrium-vanilla-smart-contracts-audit/blob/IssueA/test/Issue%20A.ts
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/VanillaRouter.sol#L245-L246

With honest tokens, this attack is not possible. The strategy for tricking VanillaRouter with a
malicious token consists of the following steps:

1. Buy a certain number (n) of tokens normally.
2. Change the behavior of the ERC-20 token so that before the next trade the balanceOf method

will return 0.
3. Buy more tokens. The UniswapTrader._buyInUniswap method computes the number of

tokens purchased as the difference between the post-trade balance and the pre-trade balance. In
normal conditions, the pre-trade balance will be n but the attack has artificially set it to 0, inflating
the perceived number of tokens to be the equal to the post-trade balance.

4. Change the behavior of the ERC-20 token so that, during the next trade, it will allow a transfer
amount that exceeds the balance.

5. Sell the inflated perceived number of tokens and receive unearned
VanillaGovernanceTokens.

Mitigation

VanillaRouter can protect itself immediately from this attack by allowing the trade of only whitelisted
tokens. It is worth considering to audit tokens for whitelisting in a similar way that Bskt has implemented
for their platform.

Remediation

It may be possible to reduce exposure to the trusted balanceOf method by utilizing the return value of
Uniswap’s swapExactETHForTokens instead of using swap when buying tokens. Further investigation
would be required in order to determine whether this eliminates the vulnerability.

UniswapTrader._sellInUniswap should perform its own check to make sure that no more tokens
are being sold in a transaction than have been previously purchased rather than relying on the ERC-20
token to enforce this.

Status

The Equilibrium team has addressed the vulnerability by amending the contract to only issue rewards for
whitelisted tokens, in accordance with the recommended mitigation.

Verification

Resolved.

Suggestions

Suggestion 1: Pin Dependencies to Specific Versions

Location

package.json

Synopsis

The dependencies are listed in package.json in the following way:

"dependencies": {

"@openzeppelin/contracts": "^3.3.0",

"@uniswap/v2-core": "^1.0.1",

Security Audit Report | Vanilla Smart Contracts | Equilibrium 8
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://medium.com/@danielque/what-we-learned-from-auditing-the-top-20-erc20-token-contracts-7526ef3b6fb1
https://github.com/vanilladefi/contracts/commit/7bb1931b3b1665c191584d10a1d58a95f3653441
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/main/package.json

"@uniswap/v2-periphery": "^1.1.0-beta.0"

}

As a result, if vanilla-contracts is published, npm install will ignore the package-lock.json
file and allow the automatic updating of the installed package to newer minor or patch versions of the
dependency.

Pinning dependencies to exact versions is a sound approach to retaining more control over when and
where upgrades take place. This will prevent unwanted versions from being inadvertently installed, thus
minimizing the attack surface. In addition, this will help both developers and reviewers to identify new
vulnerabilities discovered in dependencies, which is paramount to the security of the codebase.

Mitigation

We recommend pinning dependencies to exact versions by choosing one of the alternatives options
below.

1. Pin package.json dependencies to specific versions.

This option has the effect that all dependency upgrades will go through version control, which has
the benefit of making dependency upgrades explicit and transparent. However, it also adds
overhead to the development process as it relates to dependency management.

2. Pin package.json dependencies to specific versions for the release version only.

This option leaves the development process unchanged and, instead, imposes a change on the
release process, thus moving the overhead of pinning versions to each release.

Status

The Equilibrium team has pinned package.json dependencies to specific versions, in accordance with
the first option (#1) in the mitigation section.

Verification

Resolved.

Suggestion 2: Improve Project Documentation

Location

contracts/README.md

Synopsis

We have identified several examples where the project documentation can be improved. In particular,
there are instances throughout the documentation of terms being used inconsistently or without rigorous
definitions. We describe some examples below:

1. “Weighted Average Price of Purchases” and “Average Price of Purchases” are used
interchangeably. In addition, the structure of the document is not always consistent, as “Weighted
Average Price of Purchases” is discussed both under Price Calculations and Profit. This
introduces additional complexity in understanding how the system works and may lead to
misiterpretations.

2. The excerpt below contains two facts without a clear logical link. The first half of the second
sentence in the quote does not contribute to the explanation and may confuse the reader with

Security Audit Report | Vanilla Smart Contracts | Equilibrium 9
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vanilladefi/contracts/commit/c3392b9400fbbf142dee0c1cd2d43520532ebac0
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/main/contracts/README.md
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md#price-calculations
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md#profit

unrelated information and without additional context.

“Profit is calculated whenever a user sells tokens. Knowing the selling price and the average
purchasing price (ethSum/tokenSum), the profit is calculated as receivedEth -
expectedEth where expectedEth = ethSum*tokensSold/tokenSum. Basically, if the user
received more Ether than was expected, a profit was made.”

3. “Profit” is referenced as a defined term in formulae, with the definition described as multiple
formulae combined in a prose paragraph. We recommend consistently defining terms using a
consistent format including a complete formula and a separate description.

4. Several terms (e.g. ethSum, tokenSum) are used in examples, and then later referenced in other
definitions. These should be clearly defined terms in their own right and then referenced by both
the examples and other terms.

5. The term “reserve limit” is used without definition. For example:

“L is the immutable WETH reserve limit that is set when the VanillaRouter is
deployed.”

6. The variable P is used in both the Tokens and Value Protection Coefficient sections. Both of these
section reference the same section for the definition of “Profit”, but they provide slightly different
descriptions in context:

“P is the absolute profit, which sets the theoretical maximum reward for any single trade.”
(Tokens).
vs.
“P is the absolute profit in Ether.” (Value Protection Coefficient)

In the Tokens section, “reward” is understood to be in terms of VNL. The use of “maximum
reward” in the definition of P (which is in terms of ETH), as in the subsequent usage, is confusing
without stating this explicitly .

Mitigation

We recommend using terms consistently throughout the documentation. In addition, we suggest
re-structuring the text by grouping related terminology together. In addition, every term and variable
should be defined, preferably in an unambiguous and formal way.

Status

The Equilibrium team has acknowledged that the documentation can be improved and have stated their
intention to focus a specific iteration on making updates to the documentation as suggested, including
improving the consistency of the terminology and the structure of the text. These changes were not
implemented at the time of this verification.

Verification

Unresolved.

Suggestion 3: Improve Developer Documentation

Location

contracts/README.md#api

Security Audit Report | Vanilla Smart Contracts | Equilibrium 10
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md#tokens
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md#value-protection-coefficient
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md#tokens
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md#value-protection-coefficient
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md#tokens
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md#api

Synopsis

The current developer documentation on the public API and events for the VanillaRouter is lacking
important information for developers who intend to contribute to the project.

For example, several references are made to internal APIs in prose explanations in the documentation
(e.g. _executeBuy, _executeSell, _tokenPriceData). However, these functions are not
documented in the developer documentation of the APIs:

“Using this formula, Vanilla can keep track of average prices in a gas-efficient and fair way.
VanillaRouter implements the price calculation logic in internal functions _executeBuy and
_executeSell and keeps track of the exchange volumes in a _tokenPriceData mapping.”

Furthermore, the documentation is missing information on the deployment process, both for the router
and the system as a whole. This leads to difficulty in understanding and using the system, and increases
the likelihood of human error.

Given that the smart contracts are able to handle significant amounts of value, additional developer
documentation explaining the implementation is critical and would help to increase public confidence in
the security and integrity of the contracts.

Mitigation

We recommend improving the developer documentation, such that all functions are described
consistently in the API documentation, and the deployment process is thoroughly documented. This effort
can be further aided by utilizing solidity-docgen to generate developer documentation from the
existing code comments.

Status

The Equilibrium team has responded that they agree with the recommendation to improve the developer
documentation. However, they believe that the internal functions should be described in the technical
documentation, in order to point out how specific algorithms are implemented in Solidity, as opposed to
the API documentation.

In addition, they have stated that they intend to improve the developer documentation in an effort to
alleviate any difficulty in understanding and using the system by more thoroughly documenting the
deployment process and experimenting with solidity-docgen. These changes were not implemented
at the time of this verification.

Verification

Unresolved.

Suggestion 4: Increase Test Coverage

Location

/tree/main/test

Synopsis

At the beginning of the audit, the code base only included smoke tests with limited code coverage. For
example, the tests did not cover the complex reward function. Unit tests provide reviewers with a
thorough understanding of the function, as it allows visibility into the values returned for several use
cases. The absence of adequate test coverage decreases the efficiency of a review, as time is spent
writing tests to understand how the system is expected to work.

Security Audit Report | Vanilla Smart Contracts | Equilibrium 11
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts/README.md#api
https://github.com/OpenZeppelin/solidity-docgen
https://github.com/OpenZeppelin/solidity-docgen
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/test

During the audit, the Equilibrium development team pushed a commit that provided improvements to test
coverage, including coverage for the calculate reward function. However, adequate test coverage has
not yet been achieved. Tests should account for all success, failure, and edge case scenarios. This helps
to detect and prevent unintended behavior and edge cases, which may result in the potential
vulnerabilities.

Mitigation

We recommend extending test coverage to account for the entire system. Additionally, we recommend
tests be expanded to include expected failure cases and edge cases in order to help determine
unexpected outcomes. We encourage the Equilibrium development team to adopt TDD, an approach in
which the code’s behavior and intended functionality is specified and verified by test cases. This approach
should be applied in writing functional tests that cover the entirety of the contract code.

Status

The Equilibrium team acknowledges the need for increased test coverage and have stated their intention
to increase tests in the future in order to achieve sufficient coverage. These changes were not
implemented at the time of this verification.

Verification

Unresolved.

Suggestion 5: Check that Property-Based Testing Works as Intended

Location

/tree/main/test

Synopsis

As previously noted (see Suggestion 4), the Equilibrium development team issued a commit during the
audit that introduced testing improvement to the smart contracts, which included the addition of
property-based testing. However, given that the tests were introduced following the start of the review, an
in depth analysis of the property-based tests was considered out of scope.

Mitigation

We recommend that the property-based tests be further evaluated to check that they work as intended. In
particular, a broad range of invariants should be tested (e.g. users should always be able to sell and
receive their balance from Vanilla’s custody; VNL governance tokens should be minted in correlation with
the reward function) to ensure comprehensive coverage of the property-based tests.

Status

The Equilibrium team has responded in agreement with the recommendation to check that
property-based tests work as intended and have stated their intention to continue verifying a wider range
of system properties. These changes were not implemented at the time of this verification.

Verification

Unresolved.

Security Audit Report | Vanilla Smart Contracts | Equilibrium 12
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vanilladefi/contracts/tree/release-improvements
https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/test
https://github.com/vanilladefi/contracts/tree/release-improvements

Suggestion 6: Conduct Formal Verification

Location

main/contracts

Synopsis

In addition to manual code reviews, concurrent distributed systems benefit from formal verification, which
is less prone to human error and is likely to uncover potential security issues.

Mitigation

Create a formal specification and implement formal verification of the Vanilla smart contracts system. For
example, a similar use case for MakerDAO has been implemented in collaboration with Runtime
Verification.

Status

The Equilibrium team has responded in agreement with the recommendation to conduct formal
verification but have not specified plans to have formal verification conducted.

Verification

Unresolved.

Security Audit Report | Vanilla Smart Contracts | Equilibrium 13
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/vanilladefi/contracts/tree/9bf4f09a447fa846e8a8586da45c0745ef0896d9/contracts
https://security.makerdao.com/audit-reports#runtime-verification-specification

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create

Security Audit Report | Vanilla Smart Contracts | Equilibrium 14
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Vanilla Smart Contracts | Equilibrium 15
23 March 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

