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1 Executive Summary 
The Private Periodic Payment Protocol (P4) aims to define the way in which subscription services can be 
funded using end-to-end private cryptocurrency payments.​ ​This protocol introduces periodicity to 
cryptocurrency payments through an ongoing relationship between the merchant and the customer 
without unintentionally disclosing personally identifiable information (PII). Least Authority is creating this 
protocol to integrate a truly end-to-end private subscription data storage solution, built using Tahoe-LAFS 
(for data storage) and Zcash (for payments).  

At Least Authority, we believe people should be able to use Internet services while retaining control over 
their own data. We are building an ethical, usable, and lasting data storage solution with end-to-end 
cryptography and user-friendly interfaces. We hope to give more humans a real alternative for control of 
their own data. By allowing users a more private option for payments, Least Authority can further its 
mission of giving people the freedom to control their own data. P4 is a technical specification describing 
how users will be enabled to privately pay for S4, Least Authority's hosted Tahoe-LAFS service, or the 
“Simple Secure Storage Service.”  

By utilizing a cryptocurrency like Zcash with privacy features, Least Authority can facilitate an online 
exchange of value while gathering minimal personal data. The novel characteristic of the described 
system is the ability for users to supply periodic payments (i.e., on a “subscription” basis) while revealing 
no further identifying information about themselves than they would do in a one-time payment method.  

The initial version of P4 is considered a “MVP” (Minimum Viable Product) and is intended to be iteratively 
improved in the future. So although this specification is for a fully functioning implementation, there are 
also details of future areas for improvement that should be a part of the consideration. 

Since online subscription services are an increasingly common approach to business, Least Authority 
recognizes that the work done with cryptocurrency periodicity in P4 will be useful to the greater 
community. Additionally, by incorporating privacy-by-design in creating the protocol, Least Authority 
hopes to help cryptocurrency usage better adhere to the principle of privacy as a human right was well as 
to regulations such as the EU’s ​General Data Protection Regulation​ (GDPR). Explanations of 
privacy-focused considerations are incorporated throughout the document to provide insight about these 
design decisions. 

By sharing P4 openly, Least Authority hopes that other subscription services will implement a version of 
the protocol to advance the adoption of cryptocurrency payments in real world retail use cases that also 
incorporate privacy by design. 
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2 Project Details 
2.1 Background 
Currently, Least Authority offers S4: Simple Secure Storage Service as a hosted and managed version of 
Tahoe-LAFS. One of the primary features of Tahoe-LAFS is that it greatly limits what a service provider 
(such as Least Authority), knows about the data being stored via the service. The data is client-side 
encrypted and accessed by capabilities, not personal accounts. This means no personal information is 
stored in Tahoe-LAFS itself.  

However, in offering a service such as S4, Least Authority needs to accept payments. This requires using 
existing online payment-processing tools to manage the subscriptions to the S4 service. Currently, Least 
Authority uses ​Stripe​ for payment processing and ​Chargebee​ to allow customers to manage their 
subscription payments.  

In addition to the above payment method, Least Authority would like to offer a method that processes 
payments similar to how data is stored​—​the keys to the transactional data are stored on the user’s device 
and not shared with third-party services. This also helps to minimize the collection of ​Personally 
Identifiable Information (PII)​—​information which can be used on its own or with other information to 
identify, contact, or locate a single person, or to identify an individual in context. 

2.2 Specification Goals 
Although Least Authority utilizes industry standard products for online service subscription payments, 
these products require Least Authority to collect personal information only for the payment processing 
activities and share this personal information with third-party companies for the convenience of online 
payment processing. By removing customers’ personal information from the payment process, Least 
Authority can reduce the liability of keeping those data sufficiently secured. Least Authority strives to 
both respect individuals’ right to privacy while seeking to limit the liabilities of obtaining customer data. 

2.3 Requirements 
The transfer of a value-carrying instrument is one obvious requirement for a payment system. An equally 
important requirement is for a particular instrument to unambiguously correlate with a particular 
subscription. This correlation must not extend beyond the subscription itself. For example, it must not be 
tied to financial information which is itself tied to an identity. 
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3 Scope of Effort 
3.1 Payments: Zcash Shielded Transactions 
Zcash​ is a privacy-protecting digital currency that can shield transaction data from the public while 
allowing users to selectively disclose that data with third-parties. Zcash supports two kinds of addresses: 
shielded (also referred to as z-addresses and start with a “z”) and transparent (also referred to as 
t-addresses and start with a “t”).  

A Z-to-Z transaction (or shielded transaction) is recorded on the public blockchain such that it is known to 
have occured, but does not reveal specific transaction details like addresses, value transferred, and 
associated memo. The owner of an address may choose to disclose the z-address and transaction 
details to trusted third parties for certain purposes—such as audits and compliance 
requirements—through the use of view keys and payment disclosure.  1

3.1.1 Zero Knowledge Proofs 
Zero knowledge proofs​ are a scientific breakthrough in the field of cryptography. They allow you to prove 
knowledge about hidden information without revealing that information. The property of allowing both 
verifiability and privacy of data makes for a strong use case in all kinds of transactions, and Zcash 
integrates this concept into a blockchain for protecting transaction data. 

3.1.2 zk-SNARKs in Zcash 
Zcash shielded transactions use a particular type of zero-knowledge proof called ​zk-SNARKs​ (or 
“zero-knowledge Succinct Non-interactive ARguments of Knowledge”). Within a shielded transaction, 
there exists a string of data that the sender of a transaction provides–the “zero-knowledge proof”–which 
cryptographically proves the properties of said hidden transaction data to transaction verifying network 
nodes. This process includes proving that the sender couldn’t have generated that particular string unless 
they had ownership over the spending key and unless the input and output values are equal. The proof 
also guarantees creation of a unique nullifier which is used to mark tokens as spent when they are, in fact, 
spent. These assurances allow for verification that the transaction is valid, while preserving privacy of the 
transaction details. 

3.1.3 Payments with Shielded Addresses 
The transfer of funds from the user to another user or merchant using Zcash shielded addresses is not 
believed to reveal any PII directly, unless the user purposefully includes PII in the ​encrypted memo field​. 
However, network analysis may reveal indirect information about the customer’s IP address (see ​"Zcash 
Over Tor" § 3.1.4​). The use of shielded addresses is of particular importance for this design because it is 
known that when even one address in a transaction is transparent, transaction metadata ​may reveal 
patterns​ leading to eventual PII exposure. 

Wallet support for shielded addresses is currently limited. See ​this table​ on the official Zcash website for 
some available options. 

1 ​https://z.cash/technology/ 
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3.1.4 Zcash Over Tor 
Zcash is a global network using IP addresses over Transmission Control Protocol (TCP) for maintaining 
connections between nodes, and does not obfuscate users’ IP addresses. As a result, it is possible for 
correlations to be made using IP addresses between transactions sent ​from​ shielded addresses and 
other network traffic including transactions sent from transparent addresses. 

Advanced users may opt to connect through Tor to obfuscate their node’s IP address, however, further 
exploration is needed on a vulnerability combining Bitcoin’s Denial of Service mitigations (inherited into 
Zcash) and anonymous communication networks like Tor.  2

3.2 Data Storage Service: Simple Secure Storage Service 
(S4) 
Simple Secure Storage Service (S4)​ is Least Authority's hosted and managed data storage service offered 
for individual use and built with ​Tahoe-LAFS​. Data can be stored with S4 utilizing the command line 
interface (CLI) or a desktop client, ​Gridsync​. Both utilize Tahoe-LAFS client-side encryption before storing 
the data online on designated servers. 

3.2.1 Tahoe-LAFS 
Tahoe-LAFS (Least Authority File Store​) is a free and open, secure, decentralized, fault-tolerant, 
distributed data store and distributed file system. It can be used as an online backup system, or serve as 
a file or web host. Tahoe-LAFS encrypts data on the client side. Tahoe-LAFS doesn’t operate on Access 
Control Lists (ACL, or user accounts) but instead works using the object-capability model (OCAP, or 
key-based access). The key is stored on the device and access to the data is given by sharing the 
capability, which allows the user complete control over who can see the content. 

Tahoe-LAFS itself is highly oriented towards privacy preservation. Administrators of the system, like Least 
Authority with S4, can not see the contents of the encrypted data because the keys are not stored with the 
company, but with the user. However, Least Authority, as the administrator of the system, can see 
uploads and downloads of ciphertext to the grid, which is a collection of storage nodes.   3

Further investigation of Tahoe-LAFS for other possible PII leakage should be undertaken, as it has not 
undergone audits focusing on these privacy-preserving behaviors. However, Tahoe-LAFS is the service 
being offered and distinct from the payment protocol being proposed. If Tahoe-LAFS has 
privacy-compromising issues, they will not void the privacy-preserving properties of the rest of the 
system. 

3.2.2 Gridsync 
Gridsync is a cross-platform desktop application that provides a graphical user interface (GUI) for end 
users of Tahoe-LAFS, making it easier to understand and use. Through several iterations of user testing in 
partnership with ​Simply Secure​ and ​Internews​, Gridsync has been greatly improved on the client side for 

2 ​https://z.cash/support/security/privacy-security-recommendations#network  
3 ​https://tahoe-lafs.readthedocs.io/en/tahoe-lafs-1.12.1/running.html?highlight=grid#introduction 
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non-technical users and across various operating systems. For P4, Gridsync will be extended to offer 
invoice management features. 

3.2.3 Magic Wormhole 
Magic Wormhole​ allows Least Authority to send configuration information from our Simple Secure 
Storage Service (S4) to the Gridsync application with the invite code and supports sharing files and 
folders in Gridsync. Gridsync uses the magic-wormhole library to provide human-pronounceable “​invite 
codes​” for joining storage grids and sharing folders with other users. 

3.2.4 Grid Configuration 
Tahoe-LAFS offers flexible cloud architecture that can provide for the multiple needs of diverse 
organizations. For instance, it can be used in a RAID-like fashion using multiple disks to make a single 
large RAIN pool of reliable data storage. This makes it possible to distribute the risk to data between 
particular groups of people working on them, instead of keeping all information in a single, centralized 
place (which can have catastrophic consequences in case of a data compromise). 

S4 is the Least Authority implementation of Tahoe-LAFS offered as a hosted and managed service for 
data storage. The current S4 service has a single grid per user. For P4, Tahoe-LAFS will be configured as 
one grid for all users who pay subscriptions with Zcash shielded transactions. So, having all users share a 
single deployment of storage nodes, this grid configuration makes it harder to identify whose encrypted 
shares belong to a particular payment account. As a result, all Tahoe-LAFS interactions with a particular 
subscription will not be easily identified. 

3.2.5 Tahoe-LAFS Over Tor 
Tahoe-LAFS has native Tor and I2P support and Gridsync 0.4 introduces support for Tor. By requiring 
users to make use of these features, the most obvious PII leak (a user’s IP address) is avoided and thus 
provides network location privacy. Additionally, the network addresses supplied in the Tahoe-LAFS 
configuration will be Tor “.onion” addresses which can ​only​ be used over Tor, further limiting the chances 
of an accidental privacy violation. 

Because S4 customers who choose to pay with Zcash shielded transactions will be required to use Tor, 
Least Authority will be able to tell which S4 instance they are utilizing. Additionally, Least Authority could 
correlate interactions within the S4 instance to be one user. However, Least Authority will not know who 
the user is because of the Zcash shielded transactions and will not be able to link the encrypted shares 
themselves to any one user of Tahoe-LAFS. 
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4 Functional Design 
4.1 Subscription Workflow 

Tor Network  Customer Client-side Applications  Merchant Server  Payment 
Network 

Tor Browser  Gridsync  Zcash Wallet  Least Authority’s 
S4 

Zcash 

Step 1: 
Subscription 
Initiation 

Visit webpage and 
complete 
subscription 
request 

        

Step 2: 
Subscription 
Creation and 
Invite Code 

      Create Zcash 
address and initial 
database entry  

 

      Generate a 
magic-wormhole 
invite code 

 

Step 3: 
Client-Side 
Subscription 
Configuration 

  Connection via 
magic-wormhole 
to receive initial 
S4 configuration 
and invoice 

     

  Update 
configurations 
and interpret 
invoice structure 
and check 
signature 

     

Step 4: 
Payment and 
Server Update 

    Make payment to 
designated 
receiving address 

   

        Process payment 
and write to the 
blockchain 

      Confirm payment 
has been received 
and publish next 
invoice 

 

Step 5: 
Recurring 
Invoice and 
Payment 
Process 

  Check for the 
next invoice, 
interpret invoice 
structure and 
check signature 

     

  Display updated 
invoice 
information 
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4.2 Subscription Initiation (Step 1) 
The Least Authority website and links to web assets are accessible as either Tor addresses 
(​something.onion​) or on the clear Internet (via https).  

4.2.1 Tor-based Signup Webpage  
When a user decides to use Zcash shielded transactions as a payment mechanism, they will be required 
to visit a Tor network address to complete the process. The signup server will operate on a Tor network 
address, avoiding the creation of a metadata link from the subscription to an actual customer-associated 
IP address. Other incidental information that could be collected is the browser's window size and screen 
resolution. Such information may not immediately appear to be PII, but it is metadata which can be used 
to link different activities to an individual together and therefore may potentially de-anonymize certain 
activities by linking them to other non-anonymous activities.  However, Least Authority will not collect this 4

information. 

In the case of the Tor hosted website including one or more https links, the use of Tor would provide 
basic client IP obfuscation from traffic observation leaving the Tor network. However, it may be possible 
to perform time-based correlation of information received from a user while they are browsing the Least 
Authority website and correlated links via their IPv4/IPv6 addresses with requests received at the Tor 
address. The risks of potential correlations could be mitigated by having more users on the site and more 
users creating subscriptions. Such risks could also be mitigated by switching users to the Tor address as 
early as possible in their visit to the site or making sure there are no https links on the Least Authority Tor 
instance. 

4.3 Subscription Creation and Invite Code (Step 2) 
Selection of an actionable button, such as “Create a Subscription”, will return a temporary, one-time-use 
invite code (generated using the magic-wormhole library) to the user for redemption.  

4.3.1 Server Setup  
A subscription is created when a user interacts with the Least Authority S4 signup server by completing 
the Tor-based webform as described above.  

4.3.1.1 Zcash Address Creation 

A Zcash shielded address unique to each subscription will be created. 

4.3.1.2 Initial Database Entry 

The Zcash address and subscription identifier will be inserted into a database that is private to Least 
Authority. The new subscription will be immediately usable and marked as active, although only for a few 
hours if it remains unpaid.  

4 See: 
https://www.researchgate.net/publication/260115377_User_Tracking_on_the_Web_via_Cross-Browser_Fi
ngerprinting 
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4.3.2 Invite Code Generation 
Using Magic Wormhole, the Invite code will be generated and displayed for the user after signing up for 
the S4 service. 

4.4 Client-Side Subscription Configuration (Step 3) 

4.4.1 Gridsync Connection 
Entering the invite code into the Gridsync client will establish a secure connection to Least Authority’s 
servers through which the credentials necessary to connect to and use the S4 service will be delivered. 
Users will be required to complete the magic-wormhole invitation redemption using Tor. The 
magic-wormhole interaction intentionally collects no additional information from the user. The user is 
directed to use Tor so that the incidental information that could be collected does not include the user's 
real IP address. It is not believed that magic-wormhole will incidentally reveal any further information. 

4.4.2 Receiving Initial Configuration and Invoice  
The user will then receive the first invoice (see ​"Invoice Structure" § 4.3.3​) through magic-wormhole that 
instructs how to make the initial subscription payment and includes a link to the location of the next 
invoice. Within a few hours after creation, the initial payment must be received for the subscription to 
remain active (see ​“Checking Payment Status” § 4.3.4​). 

Least Authority will also sign the initial configuration and invoice message with its public key in the 
magic-wormhole to be stored in Gridsync for checking that future invoices are authentic (see ​"Signature 
Verification" § 4.3.4.2​). 

4.4.3 Invoice Structure 
The invoice is made up of a Zcash receiving address (z-addr) suffixed with a query string  which accepts 5

the following keys: 

`c`  (required)  The ​c​urrency/cybercoin name (e.g., “ZEC”). 

`a`  (required)  The ​a​mount due (e.g., “0.1”). 

`d`  (required)  The ​d​ate due of the subscription period, as ISO 8601 (e.g., 
“2018-09-04T12:32:42”). 

`e`  (required)  The ​e​xtension date of the subscription, as ISO 8601 (e.g., 
“2018-10-04T12:32:42”). 

`l`  (required)  The ​l​abel for the service (e.g., “Least Authority S4”). (urlsafe-base64) 

`u`  (required)  The ​U​RL to for the next invoice (e.g., “​http://example.onion/86u4Cx1a​”) . 6

(urlsafe-base64) 

5 Inspired by ​BIP21 
6 ​Onion addresses are self-authenticating​ so HTTP URIs are even safer than non-onion HTTPS URIs. 
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`m`  (optional)  A ​m​essage to the user. Application-specific. Used, e.g., to deliver storage fURLs 
(urlsafe-base64)  7

`r`  (optional)  C​r​edit currently applied to the account as a result of a partial payment or an 
overpayment of a previous invoice. A payment of ​a​ -​ r​ is required for this invoice 
to be paid in full. 

`v`  (optional)  A ​v​ersion identifier. Assumed to be “1” if omitted. 

`p`  (required)  The Ed25519 ​p​ubkey with which the next invoice will be signed. (urlsafe-base64) 

`s`  (required, last)  The Ed25519 ​s​ignature of the current invoice string. (urlsafe-base64) 

4.4.3.1 Example Invoice String 

The following string is an example of what the invoice would look like: 

zs1z7rejlpsa98s2rrrfkwmaxu53e4ue0ulcrw0h4x5g8jl04tak0d3mm47vdtahatqrlkngh9sly?c

=ZEC&a=0.1&d=2018-09-04T12:32:42&e=2018-10-04T12:32:42&l=TGVhc3QgQXV0aG9yaXR5IF

M0&u=aHR0cDovL2V4YW1wbGUub25pb24vODZ1NEN4MWE=&p=9eS4JZwugQmTcAFXDTQ5VKUzkKP01rK

zfB_Soxi4dhU=&v=1&s=GZWwXcxlh6kVUBoT67fudhpnJi1JJT7rZvQ0RCZXMA5LePUdXcq3lmeq_xz

OPdM2nua3kuPT9xPifiSKoc0= 

In this example, a user/customer is being asked to pay 0.1 ZEC by September 4, 2018 for the service 
“Least Authority S4”. If the payment is made by the given deadline, the subscription will be extended until 
October 4, 2018. 

4.4.3.2 Client-Side Invoice Validation 

Upon the receipt of a new invoice, a client-side “P4”-compatible application determines the validity of the 
invoice. In the specific case of Gridsync, the application will verify that the invoice contains the requisite 
payment-related information (i.e., any and all of the required key/value pairs specified above) in the 
expected encodings/format and that its corresponding signature is valid (i.e., the message was 
cryptographically signed by the expected key as specified by the previous invoice). Should any of these 
checks fail, the user will be notified immediately and, depending on the nature of the failure and where 
possible, an appropriate course of action will be suggested. 

4.5 Initial Payment and Server Update (Step 4) 

4.5.2.1 Sending Payment 
The customer will make their initial payment according to the invoice details using their Zcash wallet. 
While it is possible to pay from a transparent address, it is highly recommended to use a shielded address 
for all subscription payments (see ​"Payments with Shielded Addresses" § 3.1.3​ regarding transaction 
linkability considerations for transparent addresses). 

7 This is not to be confused with the embedded Zcash encrypted memo field which is not used in this 
system. 
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The subscription cost will be denominated in Zcash while maintaining parity to the USD/EUR at the time 
of invoice creation. Therefore, the cost in Zcash is likely to change with each invoice due to ongoing price 
volatility. 

4.5.2.2 Receiving Payment 
As part of the S4 infrastructure, Least Authority will operate a Zcash full node using the official ​zcashd 
reference client​. This node will be used to scan the Zcash blockchain for payments to the addresses 
associated with invoices. When such a payment is found, the corresponding subscription is looked up in 
the address→subscription database. Since the z-addr is an identifier for the subscription, the z-addr can 
change from invoice to invoice to facilitate provider-side key rotation. The amount of the transaction is 
then credited to that subscription. If the amount equals or exceeds the balance due, then the subscription 
is transitioned to the ​good standing​ state. It will be the responsibility of users to make these payments on 
a timely basis.  

4.6 Recurring Invoice and Payment Process (Step 5) 

4.5.1 Checking Payment Status  
Upon receiving a message containing an invoice string (​Invoice​1​)​, the customer’s client is expected to 
automatically store both the next-invoice URL (`u`) and the next-invoice pubkey (`p`) contained therein. A 
payment is considered received when it appears on the Zcash blockchain. And this can be considered 
valid after 24 blocks have been written on top of it (which takes approximately one hour).  

It is expected that the client will display the invoice details and overall subscription status to the user. 

4.5.1.1 Payment Status Codes 

Querying the next-invoice URL will be sufficient to inform the customer of their subscription “standing”: if 
the next-invoice URL returns an HTTP error code of ​402​ (“payment required”) and an invoice in the body, 
this signals that the customer’s current invoice has not yet been paid (if an incomplete payment has been 
made the included invoice indicates this with an updated C​r​edit field); once full payment has been 
received, the next-invoice URL shall return an HTTP status code of ​200​ (“OK”) with the next invoice string 
(​Invoice​2​) in the body of the response. When the transaction is seen by Least Authority in the mempool 
but before the transaction has been confirmed by the 24 blocks, the HTTP status code will be set to ​202 
("Accepted") with the number of current and required block-confirmations in the body (e.g., “17/24”). This 
would allow the customer's client/wallet to reflect the state that the transaction has been "seen" by the 
merchant but is not yet considered fully valid/settled (i.e., a "pending" state). 

4.5.1.2 Signature Verification 

Invoices will be digitally signed using the same key provided with the initial configuration and invoice 
message. Signatures will be created by the merchant server using a public-key signature system to 
provide the same properties as a MAC: message integrity and authentication. It proves the message 
content hasn't changed because a change would result in the signature becoming incorrect. In addition, it 
provides authentication because only the holder of the private key can construct the correct signature. 

Before paying ​Invoice​2​, customers’ clients can​—​and should be expected to​—​always verify that the 
signature in ​Invoice​2​ was created using the public key included in ​Invoice​1​ (and, likewise, that ​Invoice​3​ was 
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signed by the public key included in ​Invoice​2​, and so on), thereby preserving a “chain of trust” between the 
customer and merchant throughout the duration of the subscription. The only exception to this should be 
in the first, original invoice which, in the case of S4, is delivered to the user’s client over a magic-wormhole 
message (which is presumed that the user trusts that the same message also contains the credentials 
necessary to use the service). 

4.5.2 Invoice Tracking 
Like the previous invoice, the current invoice will contain a link to the next invoice that will not be 
published until payment for the current invoice is received. This loop will continue for subsequent 
invoices, until an invoice is not paid on time. 

Gridsync​—​or other future “P4”-compatible agents​—​shall keep track of invoices on the client side. In the 
specific case of Gridsync, the application will periodically poll the current next-invoice URL (`u`) as 
described above and maintain a database of past and current invoices both a) locally on the user’s device 
and b) remotely in the grid using Gridsync’s built-in recovery system ). This database will naturally be 8

used to notify users of upcoming payment due dates and to provide access to other information 
pertaining to the current state of the user’s subscription (such as whether and when a previous payment 
was received, the effective term-length of the current subscription period, and so on).  

4.6 Subscription End 

4.6.1 Revocation with Distinct Onion Addresses 
This is a scheme for revoking access from users who have allowed their subscriptions to lapse (i.e., who 
are no longer paying for service). In this scheme, when a customer creates a new subscription they 
receive a response containing one or more storage server fURLs which are not shared by other 
subscriptions. The scheme provides the ability to immediately cancel a subscription. It preserves the 
subscriber’s privacy but correlates all of the subscriber’s actions. This scheme is ​incompatible​ with free 
trials because a trial subscription may access data stored by a previous, now cancelled subscription (or 
even a previous trial subscription) so long as the client retains the file capabilities, and therefore no 
payment is ​ever ​required as a condition of service. 

In this scheme, a commitment is made to enforcing ".onion"-only addresses in storage fURLs. Least 
Authority would need to maintain a database mapping z-addrs to subscription identifiers in order to to 
process payments. This database is used to store a signup-time Tor-generated ".onion" address  (unique 9

to each subscription). That subscription’s ".onion" address is given as the only connection hint of the 
fURLs given to the subscriber. A single collection of storage servers are maintained for all subscribers, 
and all “.onion” addresses are distributed and routed to these servers. So long as that customer remains 
in "good standing", their onion service is kept up and running. If they stop paying, only their onion service 
is closed, denying them access to the grid (until payment is restored) without affecting the connections of 
other customers. This process avoids the need to significantly reconfigure parts of the Tahoe-LAFS grid 
or​ the Tahoe-LAFS client. 

8 https://github.com/gridsync/gridsync/blob/master/docs/recovery-keys.md 
9 ​https://txtorcon.readthedocs.io/en/latest/txtorcon-onion.html#ephemeralonionservice  
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5 S4 Implementation 
5.1 Development Plan 
All development of the implementation is captured in a Least Authority public repository on GitHub: 
https://github.com/LeastAuthority/S4-2.0​. Check the repository online for the latest status of the 
implementation work for Least Authority’s S4 utilizing P4.  

   

P4: Private Periodic Payment Protocol - Page 16 

https://github.com/LeastAuthority/S4-2.0


 

Appendix: Potential Future Work 
The following is some potential future work that could be implemented in addition to or in replacement of 
certain parts of the current specification. Nonetheless, this includes the current assessment of this 
potential work, at this point. This will be the foundation for future analysis and implementation work. 
However, these suggestions need further assessment for both technical value and resulting privacy 
implications. 

It is hoped that by sharing these details, useful insight for alternative implementations is provided. This is 
not a comprehensive list, and it is likely that new ideas for future work will result from community 
feedback. 

A.1 Improvements to the Current Implementation 

A.1.1 Single Tor Onion Address 
S4 customers would have considerably stronger privacy guarantees if they all used the same onion 
address. The distinct onion addresses could be used to correlate user-activities; since service providers 
create/maintain those onion addresses, they ultimately decide what internal IP/port they point to ,and 
thus could, for example, route any or each onion address through a unique forwarding proxy which logs 
requests between the Tor network and our storage nodes. 

Privacy could, however, be improved by using one Tor onion address for all users. For example with S4, 
Least Authority could make all subscriptions due on the same day of the month and then send out the 
same onion address to all paying customers. Although this removes distinguishing features of customer 
accounts, it also removes the flexibility for customers to select subscription activation- and due-dates. 

A.1.2 Display Invoice Information on the Website 
However, the invoice/payment-request information could be shown to the user on the website. Doing so 
would likely help to instill user confidence (since the user could, for example, confirm that the zaddr 
shown in their Gridsync window matches the zaddr shown on the website) but could lead to other issues 
(since the user could, for example, pay from the website while an attacker trashes the wormhole mailbox, 
thereby preventing them from using the service even after they pay). 

A.2 Zcash Transactions/EMF-based Subscription Workflow 
In the future, Zcash's encrypted memo field (EMF) and transactions could be utilized for the subscription 
workflow as an alternative to using the Tor Onion addresses.  

A.2.1 Signup via Zcash Transactions 
In this scheme, Least Authority publishes a Zcash shielded address and a list of services and prices. 
When a user wants to sign up, they send an amount of ZEC appropriate for the selected service to the 
published shielded address and includes a return shielded address in the encrypted message field of the 
transaction. Least Authority then sends a (low-value) transaction to the return shielded address with an 
introducer fURL (or other necessary Tahoe-LAFS configuration information) in the encrypted message 
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field. This information is then used by the user to set up a Tahoe-LAFS client. Then, as long as sufficient 
ZEC is received with a matching return shielded address, the service remains accessible. 

A.2.2 Subscription Redemption via Zcash Transactions 
As an alternative to the redemption via invite code described above, it is possible to deliver the same 
credentials by using Zcash’s “encrypted memo field” (EMF).he user may, for example, disclose their own 
z-addr inside the encrypted memo field of their initial transaction to which Least Authority could send an 
additional, small transaction containing the required credentials inside of the EMF. While this alternative 
is advantageous, insofar as it allows the possessor of the z-addr viewing key to retrieve the credentials in 
the future (e.g., in the event of connectivity issues when redeeming the invite code) it may be undesirable 
for other reasons (including leaving a “permanent” record of said credentials on the blockchain, the 
requirement of ​two​ transactions to complete the exchange, and so on). In addition, no tools or 
applications currently exist to watch for the second transaction and automatically load the credentials 
from the EMF into the user’s client. 

A.2.3 Checking Payment Status 
One way to notify payment status would be to provide an option to deliver an additional copy of ​Invoice​2 
via the EMF if the customer includes a "return" z-addr in the EMF of their transaction for ​Invoice​1​. Use of 
the Zcash EMF requires the invoice string to be less than 512 bytes.  

A concern would be revocation/forward-secrecy; with the current planned design of using rolling onion 
services, Least Authority can easily remove old invoices once the new ones have been paid. If, for 
example, a customer is on ​Invoice​4​ and the URL for ​Invoice​3​ is removed, an attacker that learns the URL 
for ​Invoice​2​ they can't follow the chain of payments forward. Whereas with the EMF, the holder of the 
viewing key(s) can always view the contents of a corresponding invoice. This choice depends on what 
sort of durability vs. confidentiality trade-offs people are willing to make. From the perspective of 
confidentiality, a month is a long enough term to allow for time to get service restored in the event of 
downtime. In other words, an unreachable invoice URL probably won't be unreachable for very long from a 
monthly perspective.  

This approach avoids requiring the user to send any information to Least Authority using a browser and 
therefore side-steps any privacy-violating actions that might result from use of a browser. The entire 
signup occurs in shielded Zcash transactions which should maximize privacy compared to other 
schemes. It does require the user to discover the shielded address used by Least Authority for signup but 
this can be done using read-only browser interactions, and because the address is fixed, it may be 
feasible to securely publish it in other ways that do not involve an interaction with Least Authority’s web 
servers. 

This approach requires us to know their z-addr (or t-addr) and is a “push” by us to remind them. The 
storage-provider cannot tell ​when​ the billing information has been "received"/read by the customer. This 
pattern can be "standardized" and generalized to work with and/or be adopted by other "subscription" 
services, benefiting the Zcash ecosystem more broadly. 

 

P4: Private Periodic Payment Protocol - Page 18 



A.3 Tahoe-LAFS-based Improvements 
In the future, more features of Tahoe-LAFS could be utilized for the subscription workflow as an 
alternative to using the Tor Onion addresses.  

A.3.1 Communicating Subscription Status 
A mutable read cap could be sent to the Tahoe-LAFS client and it could periodically read this and find out 
subscription information. One downside is that this communication approach is specific to Tahoe-LAFS. 
As such, there could be issues in communicating if a subscription lapses and the customer could no 
longer access their capability string, but they need to access it to find out what they owe. However, an 
advantage is that this approach could also function as a more general communication channel that could 
be used for lots of other interesting user communications. 

This communication could be done "In-band" via Tahoe-LAFS, whereby the storage-provider periodically 
writes/updates billing information to a machine-readable file​—​a "billing cap"​—​on the customer's grid that 
the customer's client regularly checks/parses. This is probably not too difficult to implement and allows 
some existent privacy/security properties of Tahoe-LAFS/Tor to be leveraged. Also, the same mechanism 
could be generalized for other purposes in the future (e.g., a grid-wide "news cap" informing customers of 
scheduled upgrades, potential downtime, etc.) 

However, service providers like Least AUthority can potentially de-anonymize users since "billing caps" 
would presumably be maintained on a "per-customer" basis (and service providers could, for example, 
log/monitor when shares corresponding to that cap are requested, and thereby determine time zone or 
other behavioral patterns). 

A.3.2 Zero-Knowledge Proof-of-Standing 
 One disadvantage to the current specification is that there is no hiding amidst the mass of all S4 2.0 
users nor even of all Tor users when accessing the service via Tor. This is roughly equivalent to the 
privacy compromise that would come with any identity-based subscription management scheme. An 
accounting scheme has been imagined and even partially implemented (though not accepted in the 
Tahoe-LAFS master branch) which operates exactly in this way and which would therefore noticeably 
improve on the privacy-protecting properties of a Tahoe-LAFS deployment which leveraged it on a single 
shared grid instead of using many small per-subscription grids. 

To avoid this issue, a more sophisticated scheme allowing a Tahoe-LAFS client to prove it has the right to 
access the service would be required. An example would be the presentation of a zero-knowledge proof 
that the client knows ​some​ account identifier (such as a return shielded address) for a subscription in 
good standing. 

This is a scheme for revoking access from users who have allowed their subscriptions to lapse (ie, no 
longer paying for service). The scheme provides cancellation with granularity of the a fixed grace period. 
It preserves the subscribers privacy and provides a configurable level of correlation between a particular 
subscriber’s actions. 

In this scheme, a subscription identifier is generated at signup time and conveyed to the subscriber 
(presumably using the same mechanism as is used to convey the introducer fURL). Subsequently, when 
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making Tahoe-LAFS API calls, the client presents a zero-knowledge proof that it knows a subscription 
identifier for an account in good standing. To construct this proof: 

1. The client asks the server for a MACed and timestamped set of hashes of subscription identifiers 
for accounts currently in good standing. 

2. The client executes a SNARK which proves it knows a subscription identifier which hashes to a 
value included in the set. 

The server will accept proofs performed against sets of up to a certain age (a grace period). A client 
presenting a proof older than this will be denied service and must repeat the proof construction. A client 
may​ repeat the proof construction more frequently than required. The more frequently the proof is 
reconstructed, the more its actions are de-correlated. 

The server will maintain the set of subscriptions in good standing based on Zcash payments it observes, 
adding and removing elements over time as necessary. 

This scheme requires Tahoe-LAFS protocol changes such that a proof is presented with each API call. It 
also requires the creation of a subscriptions-in-good-standing service to provide one of the inputs to the 
proof. The Tahoe-LAFS plugin-based Accounting API may be flexible enough to be used to do this. 

This scheme also makes public information about the number of subscriptions in good standing (it may 
be possible to mitigate this to some degree by quantizing the size of this set by padding it with garbage 
values). 

This scheme also requires the periodic transfer of a non-trivial amount of data. For example, 32 bytes per 
hash multiplied 1e6 subscriptions is around 30 MiB of data for each client to download once per ​Grace 
Period​. It may be possible to mitigate this by partially restricting the size of the set transferred, creating a 
smarter proof construct with something like a merkle tree or private information retrieval scheme. For 
example, if a client knows its identifier hashes to a string beginning with ​A​ then it could request the 
subset of hashes which begin with ​A​. This has the downside of revealing some information to the server, 
but if there are a sufficiently large number of subscribers then this may be a negligible disclosure. The 
length of ​A​ could be dynamically adjusted over time to ensure sufficient privacy (a sufficiently large result 
set) balanced against reasonable download size. 

This scheme has the same privacy-related shortcomings as Zcash shielded transactions in the face of 
few users. If there is only one user on the system, then by presenting this proof, the client reveals exactly 
their identity (in terms of subscription identifier) to the server, regardless of other factors. 

A.3.3 Rolling fURLs for Access Revocation 
This is a scheme for revoking access from users who have allowed their subscriptions to lapse (no longer 
paying for service). In this scheme, payment in full receives a response containing an introducer fURL 
which will be valid for the duration of the period covered by the payment. This scheme provides 
cancellation with granularity of the billing period. It preserves the subscribers privacy without correlating 
all of the subscriber’s actions with each other. This scheme is ​incompatible​ with free trials. 

● Let ​BillingPeriod​ be a time delta giving the billing period. 
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● Let ​Interval​N​ represent the Nth billing interval. 

● Let ​Introducer​N​ represent the Nth introducer. 

● Let ​StorageServer​NK​ represent the Nth instantiation of the storage server having access to the 
underlying storage uniquely identified by K. 

● Let ​StorageServerSet​N​ represent all storage servers from the Nth instantiation. 

● Let ​Grace​ be an integer giving the overdue payment grace period in multiples of ​BillingPeriod​. 

At the beginning of ​Interval​N​, the service provider creates ​Introducer​N​ and ​StorageServerSet​N​. 
Subscribers who remit payment during ​Interval​N​ are given the ​fURL​ of ​Introducer​N​ in response. 

At the end of ​Interval​N​, the service provider destroys ​Introducer​N-Grace​ and ​StorageServerSet​N-Grace​. 

The Tahoe-LAFS ​node id​ is set such that it the value is shared by StorageServer​NK​ for all N. This will cause 
Tahoe-LAFS clients to treat these storage server instantiations as equivalent for the purposes of peer 
selection and share placement, which is important because no data is moving as part of this scheme. 

Either Tahoe-LAFS, Gridsync, or both in combination with a Zcash wallet-type tool is updated to receive 
the service provider’s payment response, extract the updated fURL, rewrite the configuration, and restart 
the client (runtime reconfiguration would be preferable). 

In this way, continuous service is provided to subscribers who are less than ​Grace​ billing periods late on 
their payments while service is discontinued for subscribers who are ​Grace​ or more billing periods late on 
their payments. 

If (​Grace​ - 1) * ​BillingPeriod​ is too small then the fURL transition is likely to cause a service interruption. 
Values should be chosen which allow any reasonable in-progress operations to complete (client 
quiescence). 

During the overlap period, the “old” storage servers are put into read-only mode (by setting ​[storage] 
read_only = true​; see ​the docs​). This will cause clients to place shares only on the new servers. 

A possible short-term solution might be to alter the storage server implementation so that it is possible to 
have it gracefully terminate. The listening port would be disabled so that no new connections would be 
accepted but it would continue to service all existing connections until they close normally, only exiting 
when the last such connection has closed. 

A.4 Additional Subscription Features  
Many subscription-based services offer other features that users have come to expect. Some of these 
have not been addressed by the current approach to P4.The following are some ideas on how to add 
these features in. 

A.4.1 Providing Support 
Currently, all support requests for S4 require a user to personally contact us and provide certain 
information to ZenDesk, the support management software. It would be ideal to explore integrating or 
offering as a side channel existing tools that allow for anonymous communications between the service 
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provider and the customer for the purpose of technical or billing support. An identifier would need to be 
used, but the communication channel could help to shield Least Authority from knowing further personal 
information. 

A.4.2 Requesting and Issuing Refunds 
In the EU, refunds are required to be offered.  Another necessary feature would be to explore how to 10

support refunds without learning personal information from the account holder. This could be done via 
the same channel that offers the support (see above), or a special type of transaction with a reply address 
could be enabled to allow for a refund. It would be expected, however, that some number of customers 
will accidentally forget to include a return address or include the wrong return address. This would also 
require a client-side tool, and existing wallets don’t currently support putting in a reply address. 

A.4.3 Trial Periods 
Currently, S4 offers a 30-day trial period for new subscription customers. At the end of the trial period, the 
subscription state transitions to a ​payment needed​ state. If a subscription remains in a "payment needed" 
state for too long, it is discontinued. It would be good to design a method for offering trial periods that 
doesn’t require additional personal information to be shared. This could be done using some of the 
existing methods listed above for other communications and subscription cancellation management, 
such as rolling fURLS. 

A.4.4 Price Adjustments and Predictability 
Currently, users must check the invoice for the next payment amount and due to the volatility of 
cryptocurrency, changing the amount will likely be necessary. This is not in line with fixed-price 
subscription models, and it would be nice to add some predictability for the users. Further research 
should be done to look into other ways to adjust prices for the volatile cryptocurrency markets and 
manage fluctuating exchange-rates. 

For example a) customers could be allowed to pay for multiple months of S4 at a time and/or far in 
advance (i.e., "top-up" style billing), or b) the "amount owing" could be re-calculated/collected at regular 
intervals in order to minimize risk for both parties. This issue is extra complicated for ​subscriptions​ (as 
opposed to single-payment purchases) since cryptocurrencies/Zcash prices can increase/decrease 
significantly both in between billing cycles and within a "grace period". 

A.5 Better Wallets and Clients 
It would be very helpful if wallets and clients were further developed to support subscription payment 
protocols. Management of subscriptions require that an external application periodically query the user's 
”zcashd” and/or "viewing key". While this could be Gridsync, it could also be an entirely 
separate/minimal/lightweight "subscription wallet" made with the purpose to watch for "billing" 
messages to a z-addr/EMF and inform the end-user when a payment is due. This could prove valuable to 
the entire cryptocurrency ecosystem, not just the Zcash ecosystem. 

Wallets can use the protocol to check account standing and handle the payments and to ensure a 
payment experience that does not excessively burden users when compared to conventional systems (i.e. 

10 ​https://europa.eu/youreurope/citizens/consumers/shopping/guarantees-returns/index_en.htm 
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credit cards).The development of tools to assist in making these payments (eg subscription-enabled 
wallets) should be supported. 

A.5.1 Account State Management 
The account-related state machine described in this paper is likely incomplete. However, improvements 
to that state machine should not negatively impact the novel characteristic of this payment system. The 
state machine takes the transaction amount as inputs only. It is expected that amounts will carry almost 
no identifying information because the required amounts are known in advance (namely, the price of the 
subscription). Certain time-based metadata about the payments ​may​ carry additional information. 
Strategies for reducing the possibility of information about a user identify being leaked this way should be 
discussed. 

However, there are limitations to the usability of existing wallets and none of them can "speak"/parse P4 
invoices, at this point in time. Also, there are no tools, yet, to parse out the EMF and alert the customer 
that a new payment is due, of course, but at least it would be available on the blockchain.  

A.6 Incorporate Native Tokens 
Another approach could be to incorporate a native token to assist with managing the cryptocurrency 
exchanges and volatility. On receipt of payment, a token of some sort could be issued and required for 
interaction with the storage server. One further advantage is that tokens can be invalidated or expired, if 
necessary, to require users to pay again. This approach may not require as many operational difficulties 
as rolling fURLS but it does require significant protocol changes to Tahoe-LAFS clients and servers. It 
would also require significant design efforts for the token itself, including the economics of storage, 
incentive design and mechanisms for interactions. There are many questions that would need to be 
answered, such as: Is it purely random and tracked in a database? Or a MAC’d expiration timestamp? Is it 
a pure bearer token, or does it have further restrictions? Can it be a privacy protecting token, or does it link 
all actions by its user? This approach of using tokens has been previously discussed in terms of a “grid 
access token” and in the context of supporting communications across grids—as opposed to within a 
grid, which is already supported by Tahoe-LAFS. 
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