
vodozemac
Security Audit Report

Matrix
Final Audit Report: 30 March 2022

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Incorrect Implementation of Zeroing Sensitive Data

Issue B: Weak Input Validation in bytes_raw Function

Issue C: Erroneous key_id Calculation in from_libolm_pickle if Number of One-Time Keys is Zero

Issue D: Potential Overflow of OneTimeKeys.key_id

Issue E: Potential Integer Underflow in advance in megolm/ratchet.rs

Issue F: Potential Integer Underflow in advance_to in megolm/ratchet.rs

Issue G: Invalid Inbound Session can be Created Causing Unused One-Time Keys Removal

Issue H: Cannot Permanently and Explicitly Remove Old Ratchet State in the Megolm Inbound
Group Session

Issue I: Keys in Memory Not Secure Against Swap Access and Side-Channel Attacks

Issue J: MAC Tag Truncated to Insufficient Length

Suggestions

Suggestion 1: Update and Maintain Dependencies

Suggestion 2: Use Clippy to Automatically Detect forget

Suggestion 3: Use ReusableSecret Instead of StaticSecret

Suggestion 4: Validate OlmMessage’s inner Vector Length When Extracting Payload

Suggestion 5: Use Strict Version of Ed25519 Signature Check

Suggestion 6: Validate inner length in append_mac_bytes

Suggestion 7: Increase Test Coverage

Security Audit Report | vodozemac | Matrix 1
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 8: Make Number of Chain and Message Keys Configurable

About Least Authority

Our Methodology

Security Audit Report | vodozemac | Matrix 2
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Matrix has requested that Least Authority perform a security audit of vodozemac, the Rust
implementation of the libolm cryptographic library. libolm implements the Olm and Megolm ratchets, and
is originally written in C/C++.

Project Dates
● December 20 - January 25: Code Review (Completed)
● January 28: Delivery of Initial Audit Report (Completed)
● March 28 - 29: Verification (Completed)
● March 30: Delivery of Final Audit Report (Completed)

Review Team
● Anna Kaplan, Cryptography Researcher and Engineer
● Ann-Christine Kycler, Cryptography Researcher and Engineer
● Denis Kolegov, Security Researcher and Engineer
● Jan Winkelmann, Cryptography Researcher and Engineer
● Rai Yang, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the vodozemac implementation,
followed by issue reporting, along with mitigation and remediation instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● vodozemac: https://github.com/matrix-org/vodozemac

Specifically, we examined the Git revisions for our initial review:

7c11a501bc316a0bf92a5fe06fee8582aad24897

For the verification, we examined the Git revision:

57d8d87a747653d6d7b7a53acb9a8d8f8de48285

For the review, this repository was cloned for use during the audit and for reference in this report:

https://github.com/LeastAuthority/Matrix_Vodozemac

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third party code, including the Android/Java, Python, and JavaScript
bindings, unless specifically included above, are considered out of scope.

Supporting Documentation
The following documentation was available to the review team:

● vodozemac README.md: https://github.com/matrix-org/vodozemac/blob/main/README.md

Security Audit Report | vodozemac | Matrix 3
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/matrix-org/vodozemac
https://github.com/LeastAuthority/Matrix_Vodozemac
https://gitlab.matrix.org/matrix-org/olm/-/tree/master/android
https://gitlab.matrix.org/matrix-org/olm/-/tree/master/python
https://gitlab.matrix.org/matrix-org/olm/-/tree/master/javascript
https://github.com/matrix-org/vodozemac/blob/main/README.md

● Megolm Specification: https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/megolm.md
● Olm Specification: https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
● Short Authentication String (SAS) Specification:

https://spec.matrix.org/unstable/client-server-api/#short-authentication-string-sas-verification
● Rendered Crates Documentation: https://matrix-org.github.io/vodozemac/vodozemac/index.html
● The Double Ratchet Algorithm: https://signal.org/docs/specifications/doubleratchet/

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation, including cryptographic constructions and primitives;
● Common and case-specific implementation errors;
● Networking and communication with external data;
● Secure key storage and proper management of encryption, ratchet, Diffie-Hellman, and signing

keys;
● Performance problems or other potential impacts on performance;
● Data privacy, data leaking, and information integrity;
● Resistance to DDoS (Distributed Denial of Service) and similar attacks;
● Issues resulting from manual memory management;
● Vulnerabilities in the code leading to adversarial actions and other attacks;
● Protection against malicious attacks and other methods of exploitation;
● Performance problems or other potential impacts on performance;
● Inappropriate permissions and excess authority; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team performed a broad and comprehensive review of vodozemac, a Rust implementation of the
libolm cryptographic library that can be used to create an end-to-end encrypted communication channel.
The library consists of an implementation of Olm, which is a double ratchet algorithm that is used for
peer-to-peer, end-to-end encryption and provides its users the benefit of forward secrecy and
post-compromise security. The library also includes an implementation of Megolm, a single ratchet
algorithm that is used to secure a group communication channel.

We performed a close investigation of the areas of concern, in addition to possible attack vectors such as
Olm and Megolm session management, partial forward secrecy in Megolm, and interaction with higher
level applications. Our team reviewed the double ratchet algorithm cryptographic implementation,
including the ratchet state change in Olm (active/inactive). In addition, we examined the implementation
of key creation, storage, deletion, and verification for the ratchet key, root key, chain key, and message key,
in addition to investigating their potential compromise. In general, we found that the vodozemac system
design and implementation considers security, as demonstrated by the design choices that are driven by
trade-offs between security, availability, and functionality.

System Design
In our review of the system design, we identified a number of issues and suggestions, as detailed below.
Resolving the issues and suggestions will result in a more robust implementation and benefit the overall
security of the library.

Security Audit Report | vodozemac | Matrix 4
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/megolm.md
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://spec.matrix.org/unstable/client-server-api/#short-authentication-string-sas-verification
https://matrix-org.github.io/vodozemac/vodozemac/index.html
https://signal.org/docs/specifications/doubleratchet/

We identified a vulnerability by which an attacker can use a victim’s one-time key to create an invalid Olm
session, which results in disabling other users from using the same key to establish a valid inbound
session with the victim. We recommend implementing a check verifying that the ciphertext in the pre-key
message is successfully decrypted before the one-time key is removed when creating inbound sessions
(Issue G).

In the current implementation, the compromise of the initial_ratchet value in Megolm inbound
group sessions would enable an attacker to decrypt all messages encrypted from that ratchet, and in all
subsequent ratchets. This would lead to the compromise of historical messages in the inbound group
sessions. We recommend enabling the user of Megolm library to set the initial_ratchet to a more
recent ratchet value (Issue H).

We found that the cleartext keys that are used in the vodozemac library are susceptible to leaks as a
result of insufficient safeguards against Swap access and side-channel attacks, which could
consequently undermine the confidentiality and authenticity properties of Olm and Megolm. We
recommend that more secure use be made of Swap access, and that secret keys be encrypted when not
in use (Issue I).

In addition, our team noted that the implementation of the message authentication code (MAC) tag does
not adhere to best practices (i.e. it is truncated to 64 bits, while 128 bits is specified as the minimum),
which undermines the security assumptions of the authentication. We recommend adhering to best
practice recommendations for MAC tag length (Issue J). Furthermore, we found that a strict version of the
Ed25519 signature scheme is not used. We recommend performing group malleability checks in order to
prevent abuse of signatures and decrease the attack surface (Suggestion 5).

Security/Functionality of Retained Keys

In order to encrypt out-of-order messages, Olm currently keeps a maximum of 5 previous receiving chains,
and 40 message keys in each receiving chain. This limit is set as a protection against DoS attacks
resulting from an attacker causing a user to store too many skipped message keys. However, any stored
keys are vulnerable such that if compromised, the attacker could have the ability to decrypt previous
messages for all stored keys. This is a design trade-off of functionality over security.

Given that the maximum number of skipped message keys is set to 40, we identified a concern that it is
within reason that a user can receive a sufficient amount of out-of-order messages to fill up that limit,
afterwhich the user would no longer be able to decrypt out of order messages because they are no longer
able to hold on to additional skipped message keys. As a result, we recommend enabling users of the
library to configure the number of chain keys and message keys stored, with the current configuration set
as the default (Suggestion 8).

Given that the security of the chain and message key depends on the ratchet advancing, we also identified
a concern such that if a party’s ratchet is not advancing (as a result of not receiving the new ratchet from
the counterparty or no reply), this will cause the receiving chain key to be predictable once the old
receiving chain keys are compromised. As a result, this will enable the derivation of the message key. The
out-of-order messages received can be decrypted indefinitely. As a result, we recommend that the Matrix
team conduct additional research on securing chain keys. Furthermore, we suggest removing previous
chain keys as soon as possible, and setting limits for sending messages with the same sending chain key.

Code Quality
The vodozemac codebase is well written and organized, and generally adheres to Rust development best
practices. We identified several issues and suggestions in the coded implementation relating to the

Security Audit Report | vodozemac | Matrix 5
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/olm/session/mod.rs#L52
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/7c11a501bc316a0bf92a5fe06fee8582aad24897/src/olm/session/receiver_chain.rs#L25

deviation from recommended best practices, implementation errors, and input validation that could affect
the security and the functionality of the library, as detailed below.

Deviations from Best Practice

We identified two areas where the code deviates from recommended best practices. First, we found that a
check is not implemented for the forget function. Rust development best practice recommends against
the use of the forget function for secure environments, in order to reduce the risk of making critical
memory resources unreachable and preventing sensitive data being removed from the memory. As a
result, we recommend implementing a check to detect and process the use of the forget function
(Suggestion 2). In addition, we recommend using the struct ReusableSecret instead of
StaticSecret type for the one-time keys, in accordance with the x25519-dalek documentation. This
would help prevent the leakage or reuse of secret keys, which could decrease the security level of
cryptographic protocol (Suggestion 3).

Implementation Errors

We identified several implementation errors that could impact the security and functionality of the library.
In multiple instances, zeroization of sensitive data is not implemented correctly. Ineffective or missing
zeroization could make sensitive data, such as cleartext private keys, accessible to an attacker. As a
result, we recommend implementing zeroization more consistently and effectively (Issue A). In addition,
an implementation error in the function from_libolm_pickle exists whereby a missing assertion could
cause the system to behave unexpectedly. In particular, a legacy pickle that contains zero key_id’s is
decrypted using from_libolm_pickle. We recommend that the function be corrected to return 0
instead of 1 (Issue C). Furthermore, there are several instances of variables susceptible to integer
underflows or overflows in the current implementation of vodozemac, which could result in unexpected
behavior and potentially lead to a denial of service. As a result, we recommend implementing appropriate
overflow and underflow protections (Issue D; Issue E; Issue F).

Input Validation

Finally, we identified an instance of insufficient input validation, which could result in unintended behavior
leading to denial of service. We recommend appropriately validating all function inputs (Issue B). We also
recommend verifying that the inner vector length of the implementation block OlmMessage is equal to or
greater than 8 bytes, in order to prevent the function from panicking and causing the system to behave
unexpectedly (Suggestion 4). Finally, we suggest that the inner vector length be validated when computing
the starting index of a slice in order to prevent unexpected behavior that may lead to errors and security
vulnerabilities (Suggestion 6).

Tests

The vodozemac implementation contains some test coverage. However, there are cases that are not
covered by the existing tests. Tests help with the detection of implementation errors and unintended
behavior that may lead to security vulnerabilities, in addition to providing users and reviewers of the library
a better means to understand the intended functionality of the code. As a result, we recommend
expanding the test suite such that coverage is comprehensive and includes success, failure, and edge
cases (Suggestion 7).

Documentation
The vodozemac project documentation was accurate and helpful in describing each of the components of
the system and the interactions between those components. This aided our team in understanding the
system’s design and intended behavior, and evaluating the correctness of the implementation. Robust
project documentation is an important part of security due diligence.

Security Audit Report | vodozemac | Matrix 6
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.rs/x25519-dalek/1.2.0/x25519_dalek/struct.ReusableSecret.html

Code Comments

The documentation within the code is sufficient and clearly describes the intended behavior of each of the
components that are critical to the functionality and security of the system.

Scope
The in-scope repository was sufficient and included all the security critical components of vodozemac.
However, the code’s interactions with high level applications (e.g. Matrix) was out of scope for this review.
In addition, the cryptographic design of Olm and Megolm was considered out of scope and presumed to
function as intended for this review. We recommend that the Matrix team pursue further cryptographic
analysis of these libraries by an independent security auditing team to further strengthen the ability to
reason about the security characteristics of vodozemac. This is particularly important since some areas
of concern can only be reflected when understanding the larger cryptographic design on which the
vodozemac implementation depends.

Use of Dependencies

The vodozemac implementation utilizes several outdated dependencies, which can introduce known and
unknown vulnerabilities into the codebase. We recommend using well maintained and up to date
dependencies, in addition to closely monitoring dependencies using available tools for updates and
security developments (Suggestion 1).

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Incorrect Implementation of Zeroing Sensitive Data Resolved

Issue B: Weak Input Validation in bytes_raw Function Resolved

Issue C: Erroneous key_id Calculation in from_libolm_pickle if Number of One
Time Keys is Zero

Resolved

Issue D: Potential Overflow of OneTimeKeys.key_id Resolved

Issue E: Potential Integer Underflow in advance in megolm/ratchet.rs Resolved

Issue F: Potential Integer Underflow in advance_to in megolm/ratchet.rs Resolved

Issue G: Invalid Inbound Session can be Created Causing Removal of Unused
One-Time Keys

Resolved

Issue H: Cannot Permanently and Explicitly Remove Old Ratchet State in the
Megolm Inbound Group Session

Resolved

Issue I: Keys in Memory Not Secure Against Swap Access and Side-Channel
Attacks

Unresolved

Security Audit Report | vodozemac | Matrix 7
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue J: MAC Tag Truncated to Insufficient Length Unresolved

Suggestion 1: Update and Maintain Dependencies Resolved

Suggestion 2: Use Clippy to Automatically Detect forget Resolved

Suggestion 3: Use ReusableSecret Instead of StaticSecret Resolved

Suggestion 4: Validate OlmMessage’s inner Vector Length When Extracting
Payload

Resolved

Suggestion 5: Use Strict Version of Ed25519 Signature Check Resolved

Suggestion 6: Validate inner Length in append_mac_bytes Resolved

Suggestion 7: Increase Test Coverage Resolved

Suggestion 8: Make Number of Chain and Message Keys Configurable Unresolved

Issue A: Incorrect Implementation of Zeroing Sensitive Data

Location

Examples (non-exhaustive):

src/utilities.rs#L106-L109

src/olm/session/chain_key.rs#L33-L36

src/cipher/key.rs#L54-L60

src/megolm/inbound_group_session.rs#L221

src/sas.rs#L289

src/olm/account/mod.rs#L326

Synopsis

An attacker that is able to access memory (e.g. accessing core dump, using debuggers, and exploiting
vulnerabilities such as Heartbleed) may be able to retrieve non-zeroized sensitive information in cleartext,
including, but not limited to, private keys, chain keys, and AES keys.

While the zeroize crate is currently used for the main data structures of the library, zeroization is missing
in a number of locations for arrays or is ineffective for types with value semantics.

Impact

The leakage of cryptographic keys could result in loss of security properties such as confidentiality and
privacy.

Security Audit Report | vodozemac | Matrix 8
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/utilities.rs#L106-L109
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/5512a8887c5050b768931ab17e163d57dd63d788/src/olm/session/chain_key.rs#L33-L36
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/5512a8887c5050b768931ab17e163d57dd63d788/src/cipher/key.rs#L54-L60
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/42b130a0cfcdf8431d604d38056e8fe87282d57a/src/megolm/inbound_group_session.rs#L221
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/77dab30810c9439eb52b2be3224fdd4f9a96ea5e/src/sas.rs#L289
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/7c11a501bc316a0bf92a5fe06fee8582aad24897/src/olm/account/mod.rs#L326
https://crates.io/crates/zeroize
https://benma.github.io/2020/10/16/rust-zeroize-move.html

Preconditions

An attacker must be able to read memory regions that contain sensitive data.

Mitigation

We recommend first identifying all instances where sensitive data must be zeroized, and then verifying
that the data in each instance is appropriately zeroized. In addition, we recommend that attention be paid
to peculiarities in several types in Rust, particularly to stack-allocated values, which require appropriate
methods for zeroing data.

Status

The Matrix team has addressed the issue by adding Box wrappers as well as by putting secrets behind a
Box to minimize the number of copying.

Verification

Resolved.

Issue B: Weak Input Validation in bytes_raw Function

Location

src/sas.rs#L247

Synopsis

The function bytes_raw will panic if the value of count argument is more than USIZE * 255.

Impact

This could result in a DoS attack.

Preconditions

An attacker must be able to set count to a value more than USIZE * 255.

Mitigation

We recommend propagating the error from the HKDF’s expand function to the caller of the bytes_raw
function.

Status

The Matrix team has propagated the error from HKDF’s expand function.

Verification

Resolved.

Issue C: Erroneous key_id Calculation in from_libolm_pickle if Number of
One-Time Keys is Zero

Location

src/olm/account/mod.rs#L398

Synopsis

An implementation error in the function from_libolm_pickle exists such that a missing assertion
could cause the system to behave unexpectedly. In particular, a legacy pickle that contains zero key_id’s

Security Audit Report | vodozemac | Matrix 9
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.rs/zeroize/1.4.3/zeroize/#stackheap-zeroing-notes
https://github.com/matrix-org/vodozemac/pull/43
https://github.com/matrix-org/vodozemac/pull/46
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/77dab30810c9439eb52b2be3224fdd4f9a96ea5e/src/sas.rs#L247
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/77dab30810c9439eb52b2be3224fdd4f9a96ea5e/src/sas.rs#L243
https://github.com/RustCrypto/KDFs/blob/master/hkdf/src/lib.rs#L265
https://github.com/RustCrypto/KDFs/blob/master/hkdf/src/lib.rs#L299
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/7c11a501bc316a0bf92a5fe06fee8582aad24897/src/olm/account/mod.rs#L398

is decrypted using from_libolm_pickle. In the case where there are no one-time keys in a pickle, the
key_id value will be 1 instead of 0.

Impact

After deserializing an input libolm pickle, an incorrect value of key_id is returned in the one_time_keys
type. This could impact the logic of the system and cause unintended behavior leading to security
vulnerabilities.

Mitigation

We recommend implementing an assertion that key_id must be equal to 0 if there are no one-time keys
in the libolm pickle.

Status

The Matrix team has added an assertion to check if the number of one-time keys in the pickle is zero and
increment the key_id only if the number of the keys is not zero.

Verification

Resolved.

Issue D: Potential Overflow of OneTimeKeys.key_id

Location

src/olm/account/one_time_keys.rs#L81

Synopsis

The self.key_id variable of the u64 type is used to store and calculate the identification numbers of
one-time-keys. While generating new one-time keys, each next identifier is calculated as self.key_id
+= 1. This operation could potentially cause an overflow.

Impact

An overflow would most likely impact the logic of the system or cause a panic, which could lead to a
denial of service.

Preconditions

To be successful, this would require the misuse of the generate function or a malicious initial key_id
set by the untrusted server.

Mitigation

We recommend implementing appropriate safeguards, such as the wrapping addition.

Status

The Matrix team has added the wrapping addition.

Verification

Resolved.

Security Audit Report | vodozemac | Matrix 10
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Matrix_Vodozemac/blob/7c11a501bc316a0bf92a5fe06fee8582aad24897/src/olm/account/one_time_keys.rs#L81
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/7c11a501bc316a0bf92a5fe06fee8582aad24897/src/olm/account/one_time_keys.rs#L69
https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_add

Issue E: Potential Integer Underflow in advance in megolm/ratchet.rs

Location

src/megolm/ratchet.rs#L131

Synopsis

If h == 0 at the starting point of the loop, then unsigned i will be underflowed. This could lead to
attempts to access unallocated memory.

Impact

An underflow or overflow issue would most likely impact the logic of the system or cause a panic, which
could lead to a denial of service.

Preconditions

Any set of circumstances where self.counter & mask == 0 would result in h == 0.

Mitigation

We recommend using the wrapping addition and reimplementing the logic of the loop such that the only
allocated parts of memory are accessed.

Status

The Matrix team has reimplemented the loop logic as suggested.

Verification

Resolved.

Issue F: Potential Integer Underflow in advance_to in megolm/ratchet.rs

Location

src/megolm/ratchet.rs#L194

Synopsis

In the current implementation, unsigned k will be underflowed if the value of the loop variable j is equal to
0, which could lead to attempts to access unallocated memory.

Impact

An overflow would most likely affect the logic of the system or cause a panic, which could cause a denial
of service.

Preconditions

The value of variable j is equal to 0.

Mitigation

We recommend using wrapping subtraction and reimplementing the logic of the loop such that the only
allocated parts of memory are accessed.

Status

The Matrix team has reimplemented the loop logic as suggested.

Security Audit Report | vodozemac | Matrix 11
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/ratchet.rs#L131
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/ratchet.rs#L146
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/ratchet.rs#L150
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/ratchet.rs#L73
https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_add
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/ratchet.rs#L146
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/ratchet.rs#L148
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/ratchet.rs#L194
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/ratchet.rs#L192
https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_sub
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/ratchet.rs#L190
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/ratchet.rs#L191

Verification

Resolved

Issue G: Invalid Inbound Session can be Created Causing Unused
One-Time Keys Removal

Location

src/olm/account/mod.rs#L226-L228

src/olm/account/mod.rs#L207

Synopsis

In the function create_inbound_session, an invalid inbound session can be created by sending a
pre-key message with an invalid ciphertext. Since authentication of the ciphertext inside the pre-key
message is not performed, an attacker can create an invalid inbound session with the victim’s one-time
key, which results in the removal of the unused one-time key after the session’s creation.

Impact

If the victim’s one-time key is used by an attacker thus removing it, an unsuspecting user using the same
one-time key will not be able to communicate with the victim (e.g. create an inbound session).

Preconditions

An attacker creates a session with a victim’s one-time key and sends a pre-key message containing an
invalid encrypted ciphertext.

Technical Details

In create_inbound_session, the receiving party receives a pre-key message, in which it looks for the
private part of its one-time key and decodes the remote one-time key, the remote identity key, from which
together with the private part of its one-time key derives a shared secret which computes the root key and
chain key. Finally, the one-time key is removed.

However, the ciphertext in the pre-key message is not decrypted in accordance with the Olm specification.
Consequently, an attacker can create a pre-key message with an invalid ciphertext (e.g. encrypted with an
incorrect message key derived from an incorrect chain key).

This would allow the receiving party to create an invalid inbound session without correctly decrypting the
ciphertext (derive the message key from the chain key, and correctly decrypt the ciphertext) and the
one-time key would be removed unused. As a result, an unsuspecting user using the same one-time key
will not be able to communicate (create an inbound session) with the victim because the one-time key is
already removed.

Remediation

We recommend decrypting the ciphertext in the pre-key message when creating an inbound session, and
only removing the one-time key if the ciphertext is decrypted successfully.

Status

The Matrix team has resolved the issue by decrypting the pre-key message at session creation and
subsequently removing the one-time key that was used to create the inbound session.

Security Audit Report | vodozemac | Matrix 12
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Matrix_Vodozemac/blob/7c11a501bc316a0bf92a5fe06fee8582aad24897/src/olm/account/mod.rs#L226-L228
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/7c11a501bc316a0bf92a5fe06fee8582aad24897/src/olm/account/mod.rs#L207
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md#creating-an-inbound-session-from-a-pre-key-message
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/7c11a501bc316a0bf92a5fe06fee8582aad24897/src/olm/account/mod.rs#L207
https://github.com/matrix-org/vodozemac/pull/8

Verification

Resolved.

Issue H: Cannot Permanently and Explicitly Remove Old Ratchet State in
the Megolm Inbound Group Session

Location

src/megolm/inbound_group_session.rs

Synopsis

In the Megolm implementation inbound group session, the initial ratchet value
(InboundGroupSession::initial_ratchet) can be used to decrypt historical messages (e.g.
received past the corresponding point of time). If this value is compromised, an attacker can decrypt past
messages, which were encrypted by a key derived from the compromised or subsequent ratchet values,
breaking the cryptographic principle of forward secrecy.

There are functions to export and import the InboundGroupSession at a given message index, but
there is no explicit way to remove the old ratchet value in a session.

Impact

An attacker can decrypt past messages that were encrypted by a key derived from the compromised
earliest ratchet value (initial_ratchet) or subsequent ratchet values.

Preconditions

An attacker captures the initial_ratchet in a Megolm inbound group session.

Remediation

We recommend implementing a permanent and explicit way to remove previous ratchet state values in
the Megolm inbound group session. The user of the library should be able to choose to remove or
advance the previous initial ratchet value up to a more recent value.

Status

The Matrix team has added a function, advance_to, in inbound group sessions to permanently advance
the session ratchet value to the given index. This removes the ability to decrypt messages that were
encrypted with a lower message index than what is given as the argument.

Verification

Resolved.

Issue I: Keys in Memory Not Secure Against Swap Access and
Side-Channel Attacks

Synopsis

If the attacker has access to the user’s swap space or can mount side-channel attacks, they may have
access (usually unreliable) to the memory of arbitrary processes, including those making use of
vodozemac. Since keys are not protected while in memory, this may compromise their security.

Security Audit Report | vodozemac | Matrix 13
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/inbound_group_session.rs
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/inbound_group_session.rs#L207
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/inbound_group_session.rs#L110
https://github.com/matrix-org/vodozemac/pull/30

Impact

This could result in leakage of secret keys, including identity keys, ephemeral keys (i.e. one-time keys or
pre-keys), ratchet keys, as well as encryption and authentication keys. This in turn would undermine the
confidentiality and authenticity properties of Olm and Megolm.

Preconditions

The attacker has access to the swap of a user or the machine and operating system (OS) of the user is
susceptible to side-channel attacks that undermine process separation.

Feasibility

The attacker would have to find the keys in the pieces of the memory extracted. A successful attack
depends on the specific system and the amount of data to be extracted. The attack is not straightforward,
but possible in many circumstances.

Technical Details

Swap refers to space on the SSD/HDD reserved to store data that resides in memory while it is not
needed. On some systems, it is also used for keeping the memory contents during hibernation (also
known as suspend-to-disk), which means that memory contents are written to disk, where an adversary
may have access to it.

Side-channel attacks describe a wide range of attacks. In this context, we specifically refer to attacks like
Meltdown and Spectre and Rowhammer, which allow one process to access memory regions allocated to
another process with moderate accuracy.

Mitigation

We recommend the Matrix team further employ the mitigations implemented by OpenSSH. Here, keys are
encrypted while not in use, using a key derived from a 16kB buffer filled with random data, only decrypted
when needed and immediately disposed afterwards (i.e. zeroized). This hinders attackers, because they
not only need to acquire the keys, but also the 16kB pre-key region in order to decrypt them. Since the
probability of a read error increases as the amount of read data grows, having to read significantly more
data effectively reduces the success probability of this class of attacks.

In addition, users of applications using vodozemac should ensure that the operating system they use
employs all available mitigations against attacks from the Spectre and Meltdown families. Additionally,
they should make sure that they either do not use swap at all, or configure their system such that it is
encrypted.

Status

The Matrix team has acknowledged the suggested mitigation would provide enhanced security, however,
they have stated they will not implement the mitigation until a future date.

Verification

Unresolved.

Issue J: MAC Tag Truncated to Insufficient Length

Location

src/cipher/mod.rs#L30-L39

Security Audit Report | vodozemac | Matrix 14
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://meltdownattack.com/
https://en.wikipedia.org/wiki/Row_hammer
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/cipher/mod.rs#L30-L39

Synopsis

In the vodozemac implementation, HMAC-SHA256 tags are truncated to 8 bytes (i.e. 64 bits). However,
according to the HMAC specification, they may only be truncated to half of the length of the underlying
hash (128 bits in this case). Thus, the current implementation violates the recommendations from the
HMAC specification.

Impact

An insufficient tag length weakens the authentication scheme, which increases the probability of
successfully modifying a ciphertext.

Preconditions

The attacker must be able to impersonate a sender on the underlying insecure channel. In the Matrix
setting, home servers are able to perform such attacks.

Feasibility

The probability of an attacker guessing a tag for which the verification succeeds is , which is a2−64

relatively high probability, compared to those in other cryptographic settings. However, an attacker only
gets one guess per message, so a brute-force attack is not possible with just one message.

Technical Details

A MAC tag allows the receiver to verify that the received data comes from the intended receiver
(assuming the two are the only parties with access to the key). If the MAC tag becomes shorter, it
becomes easier to guess the tag for which the validation succeeds. Typically, in cryptographic operations
the security target of about 128 bits is chosen, and most parts of the system do in fact achieve it.

The truncation of the MAC reduces the security target to only 64 bits, falling short of best practices.

Remediation

We recommend updating the code to truncate to not less than 16 bytes or not at all. We acknowledge that
this would require a protocol change, which is not unilaterally possible by the Matrix team in order to
maintain compatibility with the larger Matrix ecosystem.

Status

The Matrix team responded that while they agree that modern security targets should be met, the
changes in truncation of the MAC are inherited from the libolm implementation and would require a
coordinated effort on the Matrix Protocol level to ensure compatibility between implementations.
Additionally, the Matrix team assesses the probability of an attack resulting from the truncation of a MAC
to 8 bytes as low.

We agree with the assessment by the Matrix team and understand that a change of the Matrix Protocol
would be required for remediation of this issue. Nonetheless, we recommend coordinating a protocol
change within the Matrix ecosystem and updating the MAC truncation.

Verification

Unresolved.

Security Audit Report | vodozemac | Matrix 15
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestions

Suggestion 1: Update and Maintain Dependencies

Synopsis

The rand 0.7, thiserror 1.0.26, serde 1.0.126, serde_json 1.0.64 and zeroize
1.2.23 dependencies are outdated. A robust development process includes the regular maintenance and
updates of dependencies, in order to minimize the risk of introducing known and unknown vulnerabilities
into the codebase.

Mitigation

We recommend updating or replacing the reported dependencies. We suggest updating the relevant
upstream package if a dependency is used by an upstream dependency. In addition, we recommend
regularly running cargo audit and cargo outdated tools.

Status

The Matrix team has updated the outdated dependencies.

Verification

Resolved.

Suggestion 2: Use Clippy to Automatically Detect forget

Synopsis

In secure Rust development, the forget function of std::mem (core::mem) must not be used.
Currently, there is no check for the forget function in the vodozemac codebase. As a result, the usage of
the forget function could go undetected. In addition, using the forget function may result in not
releasing critical resources leading to deadlocks or not erasing sensitive data from the memory.

Mitigation

We recommend using the Clippy function mem_forget to automatically detect any future use of forget.

Status

The Matrix team has added the recommended mem_forget check.

Verification

Resolved.

Suggestion 3: Use ReusableSecret Instead of StaticSecret

Location

src/olm/shared_secret.rs#L113

Synopsis

In the current implementation, StaticSecret is being used for one-time keys, which does not adhere to
recommended best practices and could result in key reuse and leakage. The X25519-dalek
documentation suggests using a special ReusableSecret type key created for protocols such as Noise
and X3DH.

Security Audit Report | vodozemac | Matrix 16
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/matrix-org/vodozemac/commit/412947d54c403d2a13e7fac7a2b4c3f5db337a91
https://anssi-fr.github.io/rust-guide/05_memory.html#MEM-FORGET
https://github.com/matrix-org/vodozemac/pull/13
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/a6eb075c58010c649bec2b2bedeb41bca11f15ae/src/olm/shared_secret.rs#L113
https://docs.rs/x25519-dalek/1.2.0/x25519_dalek/struct.ReusableSecret.html

Mitigation

We recommend using ReusableSecret type one-time keys instead of StaticSecret type where
possible (e.g. in cases where serialization is not necessary).

Status

The Matrix team has implemented the mitigation by using ReusableSecret type for one-time keys.

Verification

Resolved.

Suggestion 4: Validate OlmMessage’s Inner Vector Length When
Extracting Payload

Location

src/olm/messages/inner.rs#L42-L45

Synopsis

If the length of the inner vector is less than 8 bytes, this will cause the function to panic when creating
the slice &self.inner[..end - 8].

Mitigation

We recommend implementing a check to verify that the inner vector length is greater than or equal to 8
bytes when calculating the end of a slice.

Status

The Matrix team has implemented encoding and decoding functions for Olm Message.

Verification

Resolved.

Suggestion 5: Use Strict Version of Ed25519 Signature Check

Location

src/megolm/inbound_group_session.rs#L189

src/megolm/inbound_group_session.rs#L145

Synopsis

Different implementations of the Ed25519 signature scheme may or may not use malleability checks and
malleable signatures depending on the library’s intended use cases. Using non-malleable Ed25519
implementation prevents abuse of signatures and decreases the attack surface.

Mitigation

We recommend using Ed25519’s verify_strict() function that provides a group malleability check.
Furthermore, we recommend that the group malleability check be made optional and configurable in order
for the implementation to conform to the original Ed25519 specification for compatibility.

Security Audit Report | vodozemac | Matrix 17
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/matrix-org/vodozemac/pull/4
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/3f3250fe13b2675ce985729153976f0893f9b9e0/src/olm/messages/inner.rs#L42-L45
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/3f3250fe13b2675ce985729153976f0893f9b9e0/src/olm/messages/inner.rs#L44
https://github.com/matrix-org/vodozemac/pull/16
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/42b130a0cfcdf8431d604d38056e8fe87282d57a/src/megolm/inbound_group_session.rs#L189
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/42b130a0cfcdf8431d604d38056e8fe87282d57a/src/megolm/inbound_group_session.rs#L145
https://docs.rs/ed25519-dalek/latest/ed25519_dalek/struct.PublicKey.html#method.verify_strict

Status

The Matrix team has implemented the RFC8032 compatible verify method by default for group
malleability check. Additionally, a feature flag has been added to enable users of the library to configure
the recommended strict variant.

Verification

Resolved.

Suggestion 6: Validate inner Length in append_mac_bytes

Location

src/olm/messages/inner.rs#L58

Synopsis

The length of the inner vector that is less than Mac::TRUNCATED_LEN will cause the function to panic.

Mitigation

We recommend implementing a check to verify the inner length vector when calculating the starting
index of a slice.

Status

The Matrix team has implemented a check to verify that there is enough space for MAC bytes and the
length is never too short to panic triggers.

Verification

Resolved.

Suggestion 7: Increase Test Coverage

Location

src/olm/messages/inner.rs#L220

src/sas.rs#L339

src/megolm/mod.rs#L147

Synopsis

The existing test coverage for Olm and Megolm is thorough. However, we identified cases that do not
implement tests. Missing tests can result in inconsistencies in the future development and functionality
testing process, in addition to leading to errors or security vulnerabilities going unnoticed.

Mitigation

We recommend implementing and maintaining comprehensive test coverage. In particular, we suggest
adding tests for the following components:

● Olm: decode Olm message;
● SAS: calculate_mac without input (device key/ed25519 identity key) and info; and
● Megolm: export and import ratchet value test should include success cases.

Security Audit Report | vodozemac | Matrix 18
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/matrix-org/vodozemac/pull/15
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/3f3250fe13b2675ce985729153976f0893f9b9e0/src/olm/messages/inner.rs#L58
https://github.com/matrix-org/vodozemac/pull/16
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/olm/messages/inner.rs#L220
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/sas.rs#L339
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/mod.rs#L147
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/olm/messages/inner.rs#L220
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/sas.rs#L339
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/megolm/mod.rs#L147

Status

The Matrix team has implemented tests for the components mentioned in the mitigation. Additionally,
they started to implement a fuzz testing setup.

Verification

Resolved.

Suggestion 8: Make Number of Chain and Message Keys Configurable

Location

src/olm/session/mod.rs#L52

src/olm/session/receiver_chain.rs#L25

Synopsis

The maximum number of stored skipped message keys is set to 40. It is within reason that a user can
receive a sufficient amount of out-of-order messages to fill up that limit, afterwhich the user would no
longer be able to decrypt out-of-order messages because they are no longer able to hold on to additional
skipped message keys.

Mitigation

We recommend enabling users of the library to configure the number of chain keys and message keys
stored, with the current configuration set as the default.

Status

The Matrix team has responded that they have decided to not make the number of out-of-order messages
configurable at the time of verification. Exposing such an option would increase the probability of misuse
among client authors and, from their practical experience, it is extremely unlikely to encounter a larger
number of skipped messages.

We acknowledge that the mitigation of this suggestion would require some effort and planning to
counteract misuse among client authors. With the practical experience the Matrix team supplied, we
agree with the assessment of the Matrix team regarding this suggestion.

Verification

Unresolved.

Security Audit Report | vodozemac | Matrix 19
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/olm/session/mod.rs#L52
https://github.com/LeastAuthority/Matrix_Vodozemac/blob/master/src/olm/session/receiver_chain.rs#L25

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Security Audit Report | vodozemac | Matrix 20
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | vodozemac | Matrix 21
30 March 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

