

Ethereum 2.0 Specifications
Security Audit Report
Ethereum Foundation
Final Report Version: 6 March 2020

Table of Contents

Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Overall Specifications

Areas for Further Consideration

Block Proposer Election System

P2P Networking Layer

Small Validator Set Incentives

Specific Issues

Issue A: Block Propagation Restrictions Are Too Loose

Issue B: Attester and Proposer Slashing Message Propagation Attack

Issue C: Distributed Denial of Service (DDoS) Attacks Against Block Proposer

Issue D: Block Proposer Eclipse Attack

Issue E: Misaligned Gossip Incentives

Issue F: Bias in Weighted Random Sampling in Election of Block Proposers

Issue G: Gossipsub Control Message DoS

Suggestions

Suggestion 1: Improve Specification for ENR and P2P Systems

Suggestion 2: Consider Implementing a BAR-Resilient Gossip Protocol

Suggestion 3: Peer Review of Consensus Papers and Proofs

Recommendations

About Least Authority

Our Methodology

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 1
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
The Ethereum Foundation has requested that Least Authority perform a security audit of the Ethereum 2.0
Consensus and Networking specifications. Ethereum 2.0, a Proof of Stake (PoS) / sharded protocol, is a
major network upgrade that is set to take place in 3 distinct phases: Phase 0 - Beacon Chain, Phase 1 -
Shard Chains, and Phase 2 - Execution Environments. This audit is to be performed as in preparation for
the Phase 0 mainnet launch in April 2020.

Project Dates
● January 13 - February 5: Initial Review (Completed)
● February 7: Initial Audit Report delivered (Completed)
● March 2 - 5: Verification Review (Completed)
● March 6: Final Audit Report delivered (Completed)

Review Team
● Nathan Ginnever, Security Researcher and Engineer
● Dylan Lott, Security Researcher and Engineer
● Meejah, Security Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer
● Dominc Tarr, Security Researcher and Engineer
● Jan Winkelmann, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Ethereum 2.0 Specifications
followed by issue reporting, along with mitigation and remediation instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● Core Eth2.0 specifications for Phase 0: https://github.com/ethereum/eth2.0-specs
● The Beacon Chain spec:

https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md
● The Beacon Chain Fork Choice specification:

https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/fork-choice.md
● Networking specification:

https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md
● Honest Validator documentation:

https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/validator.md
● Go Implementation of Eth2.0 specification: https://github.com/protolambda/zrnt/

Specifically, we examined version 0.10.0.

Supporting Documentation
The following documentation was available to the review team:

● Serenity Design Rationale: https://notes.ethereum.org/s/rkhCgQteN#
● Phase 0 for Humans (v0.9.3): https://notes.ethereum.org/@djrtwo/Bkn3zpwxB?type=view
● Compendium of Eth2.0 links: https://eth2.info

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 2
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/fork-choice.md
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/validator.md
https://github.com/protolambda/zrnt/
https://notes.ethereum.org/s/rkhCgQteN#
https://notes.ethereum.org/@djrtwo/Bkn3zpwxB?type=view
https://eth2.info/

Areas of Concern
Our investigation focused on the following areas:

● Denial of Service (DoS) attacks;
● Attacks intending to misuse resources, cause unintended forks and create unwanted or

adversarial chains;
● Any attack that impacts funds, such as draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Network attacks, including flooding of or misusing data and causing inappropriate taxing;
● Key management implementation: secure private key storage and proper management of

encryption and signing keys;
● Exposure of any critical information during user interactions with the blockchain and external

libraries;
● Any potential attacks with high ROI of efforts;
● General use of external libraries;
● Data privacy, data leaking, and information integrity;
● Inappropriate permissions, ambient and excess authority;
● Vulnerabilities within individual components as well as secure interaction between the network

components;
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Ethereum 2.0 is one of the first PoS projects planned for production and will likely have the greatest
market cap value and the largest number of users at launch. As a result, there have not been many
opportunities to study the impacts of design decisions on real world uses of such blockchain
implementations, and none at the same scale. Although aspects of the design can be reviewed by
comparing them to similar implementations, the collective system may not behave as intended due to the
complexity. Additionally, the relevant information about these system components is distributed across a
variety of resources. Furthermore, research on the impacts of certain design decisions, particularly with
incentive mechanisms and collective system interactions, is still in the early stages. The long term
stability of PoS blockchains is an area that will need to be monitored over time and through real world
uses.

Since no other large-scale implementations of a PoS system like Ethereum exist in production, auditing
the Ethereum 2.0 Specifications presented challenges. Without other systems to compare and contrast it
against, the Ethereum Foundation team was an indispensable resource throughout the audit. Their time
and effort in answering questions and helping to identify solutions contributed to an improved review
effort, as reflected in this report. We appreciate their openness to engage in discussions about the issues
we raised. We encourage the Ethereum Foundation team to continue to engage in design discussions
with the various stakeholders and the broader community and hope this report will be a basis for them to
do so.

Given that our investigation consisted of reviewing a specification as opposed to a coded
implementation, the attack vectors we identified were necessarily based on certain assumptions and
theory. It should be noted that, in practice, there may be some differences between our models and a
given implementation. Where possible, we tested our assumptions against the suggested Go
implementation of Ethereum 2.0, created by the Ethereum Foundation team. Nonetheless, it will be key for
them to continue to revisit and test past assumptions as more of the design is implemented.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 3
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/protolambda/zrnt
https://github.com/protolambda/zrnt

Overall Specifications
In our review and analysis of the Ethereum 2.0 Specifications, we found the specifications to be very well
thought out and comprehensive. It was readily apparent that security had been a strong consideration
during the design phase, particularly highlighted in the consensys layer, which the specification describes
in great detail.

However, we identified two areas that would benefit from further review and additional documentation.
Specifically, we found that the Peer-to-peer (P2P) networking layer and the ENR system are
underrepresented. These may be elaborated on in later phases, but their significance suggests that Phase
0 would be a good starting point for laying the foundation of a strong network layer.

Areas for Further Consideration

Block Proposer Election System
Due to the nature of PoS systems and the ability of the proposer to change the outcomes of certain
aspects of the chain within the block proposal mechanism, it is often a target for attacks. Our team
discovered two issues within this process and recommend that, in the future, the block proposer election
process be as secretive as possible and reviewed for additional attack vectors. Single Secret Leader
Election surfaced as a remediation for protecting the block proposal and block leader systems in various
parts of our review (Issue C, Issue D & Issue F). This is not due to a deficiency in the specification, but
rather a best practice recommendation for PoS systems and a consequence of this being an area of
active research.

P2P Networking Layer
Another area of potential vulnerability for attack is the P2P networking layer system and its various gossip
topics. We carefully considered the P2P protocol but, given the limited documentation and the early phase
of the project, it is difficult to fully analyze attack vectors and vulnerabilities. We were not able to identify
a clear strategy for making these systems BAR-resilient, which should be taken under consideration. In
general, BAR-resilient protocols eliminate the threat of freeriding rational peers and rational peers that
rewrite the gossip protocol secretly according to their needs. In the early stages of the network, there will
be mostly altruistic nodes experimenting with the new protocol, but as Ethereum 2.0 begins to grow and
later phases are released, the presence of rational actors increase in the network is certain.

Small Validator Set Incentives
Although we found that the small validator set incentives do not pose a security threat, and are therefore
a non issue, we have documented our findings.

Rational validators are incentivised to keep the validator set as small as possible so we searched for
potential attacks along that line. For example, a general strategy would be for rational proposers to
always exclude deposit transactions in their blocks and to always fork altruistic blocks that contain
deposit transactions. In addition, rational validators should never attest to altruistic blocks. The former,
however, is not possible as blocks that do not include pending deposit transactions are recognizable as
invalid, because pending deposit transactions can be checked globally against the latest Eth1 data.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 4
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.cs.utexas.edu/users/dahlin/papers/bar-gossip-apr-2006.pdf

Specific Issues
We list the issues we found in the code in the order we reported them. In most cases, remediation of an
issue is preferable, but mitigation is suggested as another option for cases where a trade-off could be
required.

ISSUE / SUGGESTION STATUS

Issue A: Beacon Block Propagation Restrictions Are Too Loose Resolved

Issue B: Attester and Proposer Slashing Message Propagation Attack Resolved

Issue C: Distributed Denial of Service (DDoS) Attacks Against Block Proposer Unresolved

Issue D: Block Proposer Eclipse Attack Unresolved

Issue E: Misaligned Gossip Incentives Unresolved

Issue F: Bias in Weighted Random Sampling in Election of Block Proposers Invalid Issue

Issue G: Gossipsub Control Message DoS Unresolved

Suggestion 1: Improve Specification for ENR and P2P Systems Unresolved

Suggestion 2: Consider Implementing a BAR-Resilient Gossip Protocol Unresolved

Suggestion 3: Peer Review of Consensus Papers and Proofs Unresolved

Issue A: Block Propagation Restrictions Are Too Loose

Synopsis

Block propagation messages do not check for a range in the past, which could allow valid, yet old
messages to be withheld and sent out later.

Impact

This type of attack could cause unnecessary processing by nodes, and in large enough volume, would
slow down the entire network, possibly causing transaction processing to stall entirely. Additionally, the
caches that track attestation aggregation messages would grow unbounded.

Preconditions

Any node participating in the gossip network can mount this attack.

Feasibility

An attacker can inexpensively start several malicious nodes for increasing the harm to the stability of the
network. Although conducting this attack would be inexpensive and repeatable, it is moderately feasible
due to the requirement of having some technical knowledge in order to carry it out successfully.

Technical Details

There is no lower bound on the slot for block propagation, allowing a node to use older block proposal
messages.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 5
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Remediation

Introduction of a lower bound on the slot for block propagation would stop forwarding of old, but valid,
messages and make an attack with this method far less effective.

Status

The specification was updated to include the requirement that received blocks need to be newer than the
latest finalized block before forwarding them to other nodes in the network.

Verification

Resolved.

Issue B: Attester and Proposer Slashing Message Propagation Attack

Location

Global topics

Validations

Synopsis

Attester slashing and proposer slashing messages can be propagated with minimal punishment if they
look valid. This allows nodes to spam these messages and create unnecessary traffic in the network,
creating a DoS attack vector.

Impact

This type of attack would slow down or potentially halt network processing for the duration it was carried
out.

Preconditions

First, a node must create a valid attester or proposer slashing message by signing. Once complete,
however, they can create an unlimited amount of similar, valid-looking messages. Second, the attacker
must have access to bandwidth capable of transmitting the volume of messages necessary to create a
noticeable slow-down of the network. The node must also be able to join the network as a validator,
meaning their 32 ETH stake must be deposited and activated before they can send these types of
messages.

Feasibility

This attack is possible by an individual with experience in the language the client is written in and is able
to work with the protocol. The requirements in computing resources are ordinary and satisfied by most
modern laptops. However, the bandwidth required to carry this out is more substantial. With the
increased availability of fiber lines, home internet connections could possibly transmit the data required
for this attack. Between the required bandwidth, computing power, and skills necessary to carry this
attack out, this attack is moderately feasible, now and more feasible in the near future.

Technical Details

Before a slashing message is propagated by a node in the network, a node must validate that it is
legitimate. However, these validations currently only check that a signature is present and valid. A node
could create a number of valid looking messages and publish them. When other nodes receive these
messages, they will check the signature but nothing else, deem them valid, and forward them to the rest
of their subnet. Given the right volume, this could stall the block proposal and finalization processes.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 6
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md#global-topics
https://github.com/ethereum/eth2.0-specs/blob/v0.10.0/specs/phase0/beacon-chain.md#proposer-slashings

For a specific example, a node could create a slashable message (e.g. a double signed message) and
then propagate it. This would result in them being slashed. Once slashed, however, they can send an
unlimited amount of similar messages without punishment, since slashing is a binary state (i.e. a node is
either slashed or is not slashed).

Remediation

Since slashing is a binary state, proposer_slashing can be limited to one message per validator and
ignore any other duplicates that are received. Otherwise, a validator that was going to be slashed or was
already slashed could create infinite valid `proposer_slashing` messages.

voluntary_exit messages can be treated similarly and can accept one valid voluntary_exit
message per validator, since it is a one-time operation. If another voluntary_exit message is received
for a validator, it can be forwarded if it has a more recent epoch than the one that is known. Otherwise,
duplicates can be safely ignored.

The attester_slashing messages are a little more difficult to declare the rules for because the
slashable attestations included in the message contain many different validators. We recommend
updating the specification so that a node only forwards attester_slashing messages that contain
new validators not yet seen in another attester_slashing message.

We recommend that stronger validations be included in the specification for clients around message
forwarding for these three message types in particular.

Status

The specification was updated and applies the recommended remediation. Specifically, any
voluntary_exit and proposer_slashing message is only forwarded once, ignoring duplicates.
Additionally, attester_slashing messages that do not contain new information are also not
propagated. Details on the specifics of their approach can be found in PR #1617.

Verification

Resolved.

Issue C: Distributed Denial of Service (DDoS) Attacks Against Block
Proposer

Location

compute_shuffled_index, compute_proposer_index, compute_committee

Design decision rationale

Synopsis

The network specification makes it simple for any validator to figure out the IP addresses of any other
validator quickly. In addition, specification of committees and proposers imply that all proposers are
public knowledge for any slot in an epoch at the beginning of that epoch. An attacker might use this
knowledge to strategically execute DDoS attacks against the proposer of a slot to stall the chain, or to
keep slots empty.

Impact

A validator that is made incapable of reasonably fast network access may be unable to propagate
attestations and proposed blocks in a timely manner. This would lead to targeted censorship of
attestations and blocks, resulting in penalties for the victim.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 7
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ethereum/eth2.0-specs/pull/1617
https://github.com/LeastAuthority/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md#compute_proposer_index
https://github.com/LeastAuthority/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md#design-decision-rationale

Furthermore, the attack is inexpensive enough to perform it over a long range of time on a series of block
proposers. This means that it is a possibility that no new blocks are getting gossipped, which threatens
the liveness of the chain. Once a sustained attack prevents finalization for several epochs, the validators
will lose deposits due to the inactivity penalty.

Feasibility

Any attacker who is able to perform DDoS attacks can mount this attack. The cost depends on the node
under attack - a home staker node with a residential internet connection is significantly less expensive to
bring down than a node in a data center with a symmetric 10GBit/s uplink.

Technical Details

Committees are computed by RANDAO at the beginning of each epoch and the first member (relative to
index order) of each committee is the block proposer. An attacker could then precompute IP addresses of
the validator set and keep that list updated on the fly, while that set changes over time. After the RANDAO
is revealed, they then select all proposer addresses and DDoS them in the usual manner, when their slot is
up for execution.

Remediation

This attack can be remediated by using a proposer election system where only the elected proposer
knows that they are elected, but is able prove this to others. This way, the attacker does not know which
validator node to target before the elected validator proposes their block. Such schemes are called Single
Secret Leader Election (SSLE), as described and constructed in [BEHG20].

Status

The team has acknowledged the issue and is working both on implementing a short term workaround and
developing a long-term solution.

The long term solution will likely be using Single Secret Leader Election (SSLE) for electing block
proposers, based on our recommendation. Since SSLE research is still premature and implementing SSLE
is non-trivial, the Ethereum Foundation team decided to introduce this change during a later phase.

In the interim, the Ethereum Foundation team suggests that validator operators run multiple nodes, such
that one node participates in network communication on behalf of the validator, and another node is used
to propagate the blocks proposed by the validator. The decoupling of node identity and validator identity
allows for operators to switch between nodes in order to publish their blocks.

Unfortunately, operating multiple nodes comes with a financial cost that can be prohibitive for hobbyists
and home stakers. For these cases, the Ethereum Foundation team suggests introducing a
community-run semi-trusted node that accepts proposed blocks and forwards them to the network.

At present, the Ethereum Foundation team has stated that they are working on formulating processes and
recommendations that implement this pattern.

Verification

Unresolved.

Issue D: Block Proposer Eclipse Attack

Location

https://github.com/libp2p/go-libp2p-pubsub/blob/master/gossipsub.go#L472

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 8
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2020/025.pdf
https://github.com/libp2p/go-libp2p-pubsub/blob/master/gossipsub.go#L472

compute_shuffled_index, compute_proposer_index, compute_committee

Synopsis

An attacker creates a large volume of nodes and uses them to connect to the block proposer. The large
number of connections triggers the victim node to prune, as described in gossipsub. When the node
pruning occurs, some legitimate nodes might be purged. This increases the likelihood of connections with
the attacker’s malicious nodes. After a number of repetitions, the target node only has connections to the
attacker’s node, eclipsing them from the rest of the network.

Impact

A node that has a majority of attacker nodes as peers in their topic mesh may be unable to propagate
attestations and proposed blocks to the main network. This would lead to targeted censorship of
attestations and blocks, resulting in penalties for the victim.

Furthermore, the attack is inexpensive enough to perform it over a long range of time on a series of block
proposers. This makes it possible that no new blocks are getting gossipped, which threatens the liveness
of the chain. Once a sustained attack prevents finalization for several epochs, the validators will lose
deposits due to the inactivity penalty.

Preconditions

An attacker is able to control enough identities that they have a high probability of becoming the majority
of the target’s mesh peers.

Feasibility

This attack can be carried out by any actor with access to a reasonably modern computer and a decent
internet connection.

Technical Details

Given a D_High of 12 and a node selecting peers on the mesh to join as a target, not at random. For each
GRAFT message let P equal the probability of adding to the target mesh while maintaining a previously
connected attack node. Assuming a target is at D_High with 12 connected peers, getting the first attack
node already in the list with zero previous nodes is P=1. The probability of not removing the first, or any
subsequent, attack nodes will be P=11/12, followed by P=10/12,P=9/12 and so on until the final
attempt to completely fill the target mesh with attack nodes being P=1/12. Summing the expected values
of becoming an additional peer, an attacker expects to be all 12 peers in 37.2385 GRAFT messages.
These probabilities assume that trials are independent and that the probability of success does not
change between trials (i.e. that no other peers attempt to GRAFT to the target while the attack is taking
place). In practice, it can be expected that more attempts to completely fill the target’s mesh would be
needed.

Mitigation

An effort could be made to make a variant of gossipsub less susceptible to eclipse attacks and clients
could deviate from regular gossipsub behavior and try to detect and counteract this attack. For example,
instead of randomly pruning peers, use a conservative approach and keep old connections or connections
that provide low latency pubsub (i.e. connections that send IHAVE first for many messages). There are
likely other suitable metrics to heuristically determine the value of a connection.

Remediation

Instead of making the pubsub mechanism less susceptible to eclipse attacks, we recommend making the
beacon chain rely on a protocol that is eclipse-resistant. See Issue C.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 9
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md#compute_proposer_index

Status

See the status explanation in Issue C.

Verification

Unresolved.

Issue E: Misaligned Gossip Incentives

Synopsis

Rational, or non-altruistic Beacon Nodes (BN) in the gossip network are only incentivised to relay
information to other BNs if it provides their messages with a higher probability of being seen by the
network. Where it is expected that relaying this information increases their profitability (i.e. increase the
likelihood that their block proposal and attestation messages are propagated). If another BN requests
blocks, or asks to relay a message, then it would be a cost burden of some degree on the bandwidth of
the rational BN.

Impact

This could lead to a tragedy of the commons where BNs are incentivized into using the gossip network
only in their favor. This would require altruistic nodes to take on more network traffic and increase gossip
latency. However, this may not be of any immediate concern and more research is needed to fully
understand this concern.

Preconditions

This is only likely if the network is providing a stressful load to a rational BN and there is a clear price to
behaving altruistically that many will not take on.

Feasibility

There are many examples of altruistic actions and we are unsure of the cost that will be placed on these
nodes at this time. It is likely that altruistic nodes will take on rational node costs.

Technical Details

We define altruistism as a BN performing an action initiated by another BN on the network without
compensation (i.e if BN A forwards attestations from BN B, then A expects that B will forward their
attestations messages). Another example is provided in Issue G where control messages meant to keep
nodes in sync are abused to always request more information than is produced. The common resource is
a healthy network that can deliver messages that all nodes require as a whole, and a tragedy being a
situation where nodes behave in a self interested way that damages the network.

A rational node we define as one that would attempt to minimize short term costs or maximize profit (i.e.
saving bandwidth costs by not gossiping messages that a node has no interest in, or selectively reducing
the chance of others to maintain validator good standing such that the attackers profits are increased).

Remediation

Methods to deal with rational actors in gossip networks are known, for example under models like
Byzantine, Altruistic, Rational (BAR) tolerant Gossip described in [LCWNRAD06] and first introduced in
[AACDMP05]. Similar strategies might succeed here, too. These strategies come with tradeoffs and it is
not clear what the best approach for Eth2.0 traffic will be at this time.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 10
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.cs.utexas.edu/users/dahlin/papers/bar-gossip-apr-2006.pdf
http://www.cs.cornell.edu/lorenzo/papers/sosp05.pdf

Status

This is an area of ongoing research as the network unfolds and activity is monitored and analyzed.

Proof of Work (PoW) networks have a limited amount of gossip communication, primarily due to block
and transaction propagation. Traditionally in PoW systems, there are tendencies towards more
centralized solutions that are deployed to ensure timely block delivery and healthy propagation in general.
Ethereum is working hard to avoid these strategies if possible by taking into consideration distributed
reputation and scoring systems. PoS networks will require slightly more complicated messaging which
could make this challenging.

Verification

Unresolved.

(Invalid) Issue F: Bias in Weighted Random Sampling in Election of Block
Proposers

Location

compute_proposer_index

Synopsis

The probability for an active validator to be elected block proposer should be their deposit, divided by the
deposit of all active validators. Measurements have shown that this is not the case.

Impact

Based on an initial review, it seems like the measured bias in favour of validators with a higher effective
balance further incentivizes not provoking to get slashed. However, it is possible that there are edge
cases where this unexpected behavior produces results that are not in the interest of the network.

Technical Details

The following test setup describes an extreme, but possible case in which the proposer selection function
should behave as expected. Sets of validators of different sizes are prepared. In each of these sets, all
validators have an effective balance of 16 ETH, except one, that has an expected balance of 32 ETH. Then
run the compute_proposer_index function over these validators. Each test is performed 32 times and
the average each of the resulting values approximates typical behaviour. The expected outcome is that in
all cases, all 16 ETH validators get elected roughly the same amount of time, and the 32 ETH validator
gets elected roughly twice as often.

However, test results show that this is not the behavior of the function. In order to learn about the
statistical properties of the function, a large number of samples is required. Since the python executable
specification is not very fast, the tests were performed using zrnt.

Two irregularities are identified with this test. The first validator in the set consistently gets elected more
often than the rest. The extent of this advantage varies, depending on the number of validators and the
ratio of the own stake and that of the rest of the network. Second, as the validator set grows larger, the
validator with more stake is elected disproportionately more often than the others.

A possible cause of these issues is the compute_proposer_index function, which performs a variant
of the rejection sampling method. Instead of sampling a new validator that is tested in every round, it
performs a random permutation once and then iterates over that.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 11
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md#compute_proposer_index

The fact that the first validator gets elected more than the others suggests that there is an issue in the
permutation function, as the first validator in the shuffled list will have a much higher chance of getting
elected. The shuffle function described in the specification appears to match the description in [HMR12].

Remediation

We advise performing tests to verify whether the shuffle really behaves randomly.

We do not have a concrete explanation for why validators with large deposits get elected more often as
the validator set grows. We did identify two possible sources of error, though.

First, the rejection sampling variant used in the specification iterates over a random permutation instead
of sampling fresh on every iteration. This discrepancy is measurable with very small sets of validators, but
unlikely to have an impact with many validators. The probability for a validator to get tested for rejection
twice within one function invocation is 0 for the permutation (ignoring the case where all validators have
been rejected), but 1/n^2 for re-sampling with n validators. While we did measure small irregularities for
very small validator sets (up to 16 validators), the data we measured especially shows deviations from the
expected result for large validator sets. This suggests that there is another issue.

The other possible source of error we identified is that the resolution of the rejection test is not high
enough. In each rejection test round, only a single byte is used to sample. The probability of the validator
to be sampled has over 32 bits of resolution. Reading four bytes from the result of the hash function
instead of one should reduce sampling error.

The tests we performed are in the dist_test branch of our fork of the zrnt repository, as well as PR #9
in our fork of the eth2.0-specs repository.

We consider the issue resolved when the provided tests indicate that proposer election rates are in fact
proportional to the effective balance of the validators.

Status

Invalid Issue. We initially ran the tests with the zrnt testnet presets. These configured the shuffle
algorithm to only perform 10 instead of 90 rounds, which resulted in statistically significant biases in the
election of block proposers.

Rerunning the test with the mainnet presets did not show these biases. Therefore, the issue does not
apply with the mainnet parameter selection of Ethereum 2.0.

Verification

Not Applicable.

Issue G: Gossipsub Control Message DoS

Location

Libp2p spec control messages

Libp2p gossipsub implementation

Synopsis

The Ethereum 2.0 P2P networking specification relies on libp2p gossipsub. Gossipsub uses an optimistic
push to handle gossiping messages with what are called Control Messages. The control messages in
questions are IHAVE, IWANT, and GRAFT that could cause network traffic overhead on a target node.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 12
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf
https://github.com/libp2p/specs/tree/master/pubsub/gossipsub#control-messages
https://github.com/libp2p/go-libp2p-pubsub/blob/master/gossipsub.go#L138-L139

Impact

This overhead could come at sensitive times when the node needs bandwidth to communicate and sync
with other nodes., which may result in reduced rewards (because their attestation is only added to later
blocks) or penalties (if the attack is strong enough to interrupt the service of the validator).

Preconditions

There must be no limits placed on the optimistic pushing of messages, and the message cache of the
target needs to be large enough to be required to send enough data that it hinders the targets connection.

Feasibility

This would only require a single peer and internet connection to cause traffic overhead in the target,
therefore the costs are inexpensive on the attacker side. However, we haven’t fully investigated the
disparity in relative resource consumption. There is also a tight bound in libp2p on the window of the
cache. A node will request messages that are not in the seen cache, meaning the attacker needs to
generate valid messages not in this cache. The cache is said to hold two minutes of message ID data. A
node will also only respond with data held within the GossipHistoryGossip slot length, which is
defaulted to three slots and assumed to be a minimal amount of message history stored, making this a
moderate to low feasibility attack at current understanding.

Technical Details

An example of optimistic pushing that forces network traffic overhead on a target is a sender S initiates a
message to a receiver R with the control message IHAVE. R then ignores if they have already seen those
IDs and responds to S with IWANT(IHAVE.ids.length()). The S client will then process every IWANT
ID in the control message and begin sending all messages in their cache that match the provided IDs.

IHAVE control messages will trigger a peer to search to see if they have seen this list of message IDs,
within a default value of two minutes, from the sender of the IHAVE message. The attacking client could
be modified here to ignore if the messages have been seen and load an IWANT control message with all
of the IHAVE IDs where IDs are in the targets range of [0..CacheWindow.length]. The attacker only
needs to send a list of message IDs and the target will reply with up to 1MB message bodies depending
on the message for each ID, potentially inundating the target machine. Alternatively it may be possible to
originate an IWANT(suspected_ids_target_has) control message without seeing what the peer
already has and target a peer that isn’t actively gossiping with the attacker. If the target node has been
filled with a large cache of messages from the following attack, this may cause a large amount of
messages to be sent.

IWANT control messages could be forged by an attacker to contain messages IDs for invalid messages
by first sending to the target an IHAVE message for a topic the target is listening to with many invalid
message IDs. This would cause the target to download and verify the invalid messages sent by the
attacker. If message validation is a slow process, this could consume resources on the targets node. Also
a node may attempt to store old valid messages and wait for the SEEN cache timed message cache to
lapse after two minutes and attempt to retransmit old messages that are no longer in the SEEN cache,
causing the target to load their mcache with a large amount of old messages. If there is no bound
checking on future valid messages, these may also get stored in the mcache.

Repeated GRAFT messages from an attacker to a target may also cause some unwanted network activity
on the target by forcing a PRUNE message response. This should cost the attacker as much as the target.

Mitigation

Regulate the amount of messages a peer is willing to store in the mcache and respond with in IWANT
control messages.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 13
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Remediation

Implementing something more sophisticated than simple regulation like tit-for-tat may be possible. Using
the same or similar research linked to in the Remediation section of Issue D could help alleviate this
traffic overhead in an even more sophisticated way. If S only responds to R with an equivalent amount of
messages that S has not already seen from R, then it makes it harder for R to endlessly request data. The
tradeoff for implementing such a strategy is that lagging nodes or new nodes will have a harder time
syncing with the network.

Verification could require simulating game theory strategies for how nodes serve each other data. When it
is not possible or in the best interest of an attacker to perform this attack, it is considered resolved.

Status

According to the Ethereum Foundation team, the following mitigation strategies are in progress:

● Protocol Labs libp2p team is working on hardening gossipsub; and
● The Ethereum Foundation is working on publishing the details on the protections that will be put

in place, such as peer scoring and blacklisting.

Verification

Unresolved.

Suggestions

Suggestion 1: Improve Specification for ENR and P2P Systems

Synopsis

We found the documentation around the P2P and ENR systems of Ethereum 2.0 to be insufficient.
Specifically, we were unable to conclude how the P2P system incorporates the ENR system. We
recommend a more thorough and detailed document around how the ENR system should work with the
P2P interface and the gossipsub system.

Status

The Ethereum Foundation team states that they are currently working on a bidirectional conversion
function between multiaddr and ENR fields to allow for a canonical construction of a multiaddr from a
discovered ENR, which they intend to submit to the Ethereum 2.0 specifications repository as a PR for
review and integration into the specification.

Verification

Unresolved.

Suggestion 2: Consider Implementing a BAR-Resilient Gossip Protocol

Location

The specification states that gossipsub will be the protocol used for communication between nodes.

Synopsis

We recommend implementing a BAR-resilient gossip protocol as a way to provide additional guarantees
around node failure and throughput for the network given different conditions of partitions and possible
bad actors.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 14
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ethereum/eth2.0-specs/blob/v0.10.0/specs/phase0/p2p-interface.md#the-gossip-domain-gossipsub
https://github.com/libp2p/specs/tree/master/pubsub/gossipsub#gossipsub-the-gossiping-mesh-router

Status

The Ethereum Foundation team has made note of the ongoing efforts with Protocol Labs, the maintainers
of libp2p / gossipsub, to investigate BAR-resilient peer-sampling techniques to harden the protocol. They
also raised questions on how to best achieve Sybil attack resistance in the context of blockchain
networks, as it is suggested in the paper on BAR Gossip, [LCWNRAD06], that each participant is limited to
a single identity. In addition, the Ethereum Foundation also made known that a design goal of theirs has
been to avoid the use of validator pubkeys to enhance the P2P layer, in order to avoid coupling validator
identity with node identity and therefore allowing for flexibility for additional potential and sophisticated
validation/network setup designs (Issue C).

To note, the abstract principle of BAR-resilient gossip often goes beyond peer-sampling techniques and
also ensures that freeriding off the gossip platform is not possible. At present and to the best of our
knowledge, there is no proof of whether or not such BAR-resilience is possible in an entirely
permissionless system.

Our team proposed looking into BAR-resilient gossiping in order to help prevent greedy participants
freeriding on the gossip system. However, we do not consider Byzantine participants a significant issue,
given that they can only send too few or too many messages. In general, gossip networks do well with
handling participants that forward too few messages, for example when a few nodes completely fail. As a
result, we believe that this does not require further action. Sending too many messages is equivalent to
attempting to overwhelm the recipient with network traffic. While this problem may be resolved on the
gossip layer, it is not on the network layer. Thus, a publicly dialable participant can always be subject to a
DDoS attack.

Since the Ethereum P2P layer only forwards valuable messages, this type of attack does not pose an
application-layer threat. The attacks a Sybil node could launch on the gossip layer are not significantly
more powerful than network layer DDoS attacks (e.g. simple UDP floods). As a result, we consider Sybil
attacks tolerable and mitigating against them to be a lower-priority target.

Verification

Unresolved.

Suggestion 3: Peer Review of Consensus Papers and Proofs

Synopsis

Consensus systems are notoriously difficult to audit. Peer review processes are the de facto standard to
ensure quality research. Since consensus is at the heart of Ethereum 2.0, we recommend a peer review of
the theorems and proofs in the ongoing research on the consensus protocol, described in
[BHKPQRSWZ19], once finalized.

Status

The Ethereum Foundations team notes that the ongoing research paper combining Casper FFG and
LMD-GHOST, [BHKPQRSWZ19], is under final review and near completion. They have stated their intent to
publish the first draft on arXiv, with the intention of soliciting a community review, before seeking to
publish and submit the paper for peer review in a journal and conference.

Additionally, the Ethereum Foundation team has stated that they are working with Runtime Verification to
formally model the Beacon Chain Phase 0 Specification in K and are currently working on formally proving
that the Phase 0 specification correctly implements the theorems and proofs outlined in
[BHKPQRSWZ19]. They have stated their intent to also publish and submit this work to a conference and
journal for peer review.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 15
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.cs.utexas.edu/users/dahlin/papers/bar-gossip-apr-2006.pdf
https://github.com/ethereum/research/blob/master/papers/ffg%2Bghost/paper.pdf
https://github.com/ethereum/research/blob/master/papers/ffg%2Bghost/paper.pdf
https://arxiv.org/
https://github.com/runtimeverification/beacon-chain-spec
https://github.com/ethereum/research/blob/master/papers/ffg%2Bghost/paper.pdf

Verification

Unresolved.

Recommendations
Since Ethereum 2.0 will be one of the first and largest PoS systems in production, we also recommend
that expected system outcomes and desired participants behavior are clearly documented in advance of
the launch. These should be used to actively benchmark whether the blockchain is performing as
expected. We commend the Ethereum Foundation for stating their intent to document expected system
outcomes and desired participants behavior in conjunction with their upcoming testnets.

In addition, we recommend that existing research and resources distributed across multiple platforms be
gathered and distilled, in order to inform future decision making and facilitate better communication of
Ethereum 2.0’s goals, making them more comprehensible and accessible by the community of users and
engineers. We acknowledge that the specifications have been heavily optimized for those writing and
consuming them for implementation, however, there is great benefit from a single point of access to the
various active research efforts and educational resources.

We recommend that additional security audits be conducted in preparation for the Phase 1 and Phase 2
releases, to ensure that any potential issues and vulnerabilities are identified, addressed and verified.

Finally, we commend the Ethereum Foundation team for putting together a thoroughly comprehensive
short term and long term strategy to address the issues and suggestions raised in this report. We
recommend that follow up verification of the unresolved Issues and Suggestions stated above be
conducted once the intended changes have been implemented by the Ethereum Foundation team.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 16
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 17
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Ethereum 2.0 Specifications | Ethereum Foundation 18
6 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

