

Utility Libraries
Security Audit Report
ChainSafe
Final Report Version: 23 March 2020

Table of Contents

Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Specific Issues

Issue A: Key Generation Entropy Source Fallback to Math.random()

Suggestions

Suggestion 1: Array Creation Syntax

Suggestion 2: Dependencies with Known Security Vulnerabilities

Suggestion 3: Value Override Edge Case in objectToCamelCase

Recommendations

About Least Authority

Our Methodology

Manual Code Review

Vulnerability Analysis

Documenting Results

Suggested Solutions

Responsible Disclosure

Security Audit Report | Utility Libraries | ChainSafe 1
23 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
ChainSafe has requested that Least Authority perform a security audit of their Lodestar utility libraries.
Lodestar is an Ethereum 2.0 implementation of the Beacon Chain.

Project Dates
● February 17 - February 25: Code review completed (Completed)
● February 28: Delivery of Initial Audit Report (Completed)
● March 18 - 19: Verification completed (Completed)
● March 20: Delivery of Final Audit Report (Completed)

Review Team
● Emery Rose Hall, Security Researcher and Engineer
● Jan Winkelmann, Security Researcher and Engineer
● Nathan Ginnever, Security Researcher and Engineer

Coverage
This report only covers a small subsection of a larger scope that was greatly reduced due to specification
changes and outstanding work to be completed.

Target Code and Revision
For this audit, we performed research, investigation, and review of the Lodestar utility libraries followed by
issue reporting, along with mitigation and remediation instructions outlined in this report.

The following components are considered in scope:
● Utility libraries

○ Persistent Merkle Tree: https://github.com/chainsafe/persistent-merkle-tree
○ BLS key derivation and hd key utilities: https://github.com/ChainSafe/bls-hd-key
○ Key management for BLS curves: https://github.com/ChainSafe/bls-keygen
○ BLS key store: github.com/chainsafe/bls-keygen
○ Typescript types for Ethereum 2.0 data structures:

https://github.com/ChainSafe/lodestar/tree/master/packages/lodestar-types
○ Utility methods used throughout Lodestar modules:

https://github.com/ChainSafe/lodestar/tree/master/packages/lodestar-utils
○ Beacon Chain configuration:

https://github.com/ChainSafe/lodestar/tree/master/packages/lodestar-config

However, Ethereum 2.0 BLS Signature Verification, Beacon Chain parameters, Simple Serialize Type
Schema, Lodestar, and third party vendor code is considered out of scope.

Specifically, we examined the Git revisions for our initial review:

bls-hd-key@f772e6673bbb613cf7208648723bd5776596c2fd

bls-keygen@32b06822b490ee679f7e1334858b8ec5beac5cf1

Security Audit Report | Utility Libraries | ChainSafe 2
23 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/chainsafe/persistent-merkle-tree
https://github.com/ChainSafe/bls-hd-key
https://github.com/ChainSafe/bls-keygen
http://github.com/chainsafe/bls-keygen
https://github.com/ChainSafe/lodestar/tree/master/packages/lodestar-types
https://github.com/ChainSafe/lodestar/tree/master/packages/lodestar-utils
https://github.com/ChainSafe/lodestar/tree/master/packages/lodestar-config

lodestar/packages/eth2.0-types@6911fc0e4f08678a907afebd778451e7fbee4df4

lodestar/packages/eth2.0-utils@8d01a343ada1fac0116b1e6bfeb5bb5746c270d4

lodestar/packages/eth2.0-config@8d01a343ada1fac0116b1e6bfeb5bb5746c270d4

persistent-merkle-tree@8b5ad7e97e138cdd7770b24c581311cc6bf361de

For the verification, we examined the Git revision:

 bls-hd-key@767c9989f0dd353249d39e605aababfcbef8413c

bls-keygen@32b06822b490ee679f7e1334858b8ec5beac5cf1

lodestar@12a2edaecf3910caf7003717ad79cc20a8c2c8fb

bcrypto@1b7bcda5cd60db545d6f3425751aee280ce8718a

All file references in this document use Unix-style paths relative to the project’s root directory.

Supporting Documentation
The following documentation was available to the review team:

● ChainSafe Documentation HackMD: https://hackmd.io/fg3sxYt2RJSKlVSLBb1XYg

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Vulnerabilities within each component as well as secure interaction between the network

components;
● Data privacy, data leaking, and information integrity;
● Key management implementation: secure private key storage and proper management of

encryption and signing keys;
● Storing assets securely;
● Any attack that impacts funds, such as draining or manipulating of funds;
● Mismanagement of funds via transactions;
● General use of external libraries;
● Inappropriate permissions and excess authority;
● Anything else as identified during the initial analysis phase.

Findings
General Comments
We found the packages that were reviewed for this audit to be of exceptional quality. The codebase is
logically structured, easy to trace, and comprehensible. This made it a pleasure to evaluate the software
for security issues. We also found test coverage to be fair - covering most of the critical code paths. While
we did not identify any critical vulnerabilities in the packages we reviewed, we did identify one issue in an
upstream dependency that needs attention as well as a few miscellaneous suggestions worth noting.

Security Audit Report | Utility Libraries | ChainSafe 3
23 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://hackmd.io/fg3sxYt2RJSKlVSLBb1XYg

Specific Issues
We list the issues we found in the code in the order we reported them. In most cases, remediation of an
issue is preferable, but mitigation is suggested as another option for cases where a trade-off could be
required.

ISSUE / SUGGESTION STATUS

Issue A: Key Generation Entropy Source Fallback to Math.random() Resolved

Suggestion 1: Array Creation Syntax Resolved

Suggestion 2: Dependencies with Known Security Vulnerabilities Partially Resolved

Suggestion 3: Value Override Edge Case in objectToCamelCase Resolved

Issue A: Key Generation Entropy Source Fallback to Math.random()

Location

https://github.com/LeastAuthority/bls-keygen/blob/master/src/index.ts#L12

https://github.com/bcoin-org/bcrypto/blob/master/lib/js/random.js#L21-L22

https://github.com/bcoin-org/bcrypto/blob/master/lib/js/random.js#L157-L167

Synopsis

BLS key generation uses a third party library, bcrypto, to create the key. Bcrypto’s randomBytes()
function unsafely and silently falls back to using Math.random() as the entropy source instead of native
crypto based on the inclusion of a property in the global scope.

Impact

Critical. Math.random() is not a cryptographically secure random number generator and its use for
anything outside of testing significantly compromises the integrity of generated keys.

Preconditions

An attacker would need to have exploited some type of script injection vulnerability - either XSS, malicious
extensions, or rogue dependency.

Feasibility

Low-Medium. The feasibility of such an attack largely depends on the deployment of the code. If running
as a regular web application, the attack surface may be much wider than if running as a browser
extension with its own global context. In addition, many other factors such as browser, extensions
installed, and other factors may radically change the feasibility of this attack for better or worse.

Technical Details

Assuming access to the global scope, an attacker could then nullify the global
crypto.getRandomValues() function (or if the user is running the application in a browser that does
not yet support the WebCrypto API). As a result, the library will automatically and silently fallback to using
Math.random() if the attacker also satisfies the check !process.browser &&
process.env.NODE_TEST === '1'.

Security Audit Report | Utility Libraries | ChainSafe 4
23 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/bls-keygen/blob/master/src/index.ts#L12
https://github.com/bcoin-org/bcrypto/blob/master/lib/js/random.js#L21-L22
https://github.com/bcoin-org/bcrypto/blob/master/lib/js/random.js#L157-L167
https://caniuse.com/getrandomvalues
https://caniuse.com/getrandomvalues

It is true that if an attacker already has access to the global scope they could likely wreak more havoc
than merely reducing the integrity of the RNG used for keygen, perhaps overriding
crypto.getRandomValues() to return a static private key they control. However, an attack such as
this is far more likely to be noticed sooner than more covertly reducing the entropy used to generate many
users’ keys.

Mitigation

We have opened a ticket upstream with bcrypto to remove the use of Math.random() from the
conditional path in the module and place that testing code in the test suite instead. This would at least
prevent the silent compromise of the entropy source by manipulation of the global object.

In the meantime, and perhaps in addition to such an upstream fix, calling
Object.freeze(window.crypto) to prevent other scripts from attempting to override the
getRandomValues method. Additionally, having your own check for WebCrypto support is a good path.
Using the same check that bcrypto uses:

const crypto = global.crypto || global.msCrypto;

const HAS_CRYPTO = crypto && typeof crypto.getRandomValues ===
'function';

Performing this check before calling randomBytes() and throwing an exception or using SJCL or
another crypto library if no crypto support exists is a good patch until something is done upstream.

Remediation

Ultimately, this issue is about being resilient to script injection attacks. This is an area of active research,
but great progress has been made with SES (Secure EcmaScript), such as Secure EcmaScript Shim and
LavaMoat. Remediation of this issue boils down to further developments and stability in these (and
perhaps other) projects, browser-native secure execution sandboxes, etc.

Status

This issue was also reported upstream in bcrypto and was fixed in bcrypto. As a result,
Math.random()will no longer be a possible fall back path in the case of global scope tampering.
Tampering with global variables will now lead to an exception instead of possible silent compromise of
the entropy source for keys.

Verification

Resolved.

Suggestions

Suggestion 1: Array Creation Syntax

Location

https://github.com/LeastAuthority/bls-hd-key/blob/master/src/key-derivation.ts#L34

Synopsis

In the function ikmToLamportSK(), an array of length 255 is created using the syntax:

Array.from(new Array(255), (_, i) => okm.slice(i*32, (i+1)*32));

Security Audit Report | Utility Libraries | ChainSafe 5
23 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/bcoin-org/bcrypto/issues/43
https://github.com/Agoric/ses-shim
https://github.com/LavaMoat
https://github.com/bcoin-org/bcrypto/issues/43
https://github.com/bcoin-org/bcrypto/commit/1b7bcda5cd60db545d6f3425751aee280ce8718a
https://github.com/LeastAuthority/bls-hd-key/blob/master/src/key-derivation.ts#L34
https://github.com/LeastAuthority/bls-hd-key/blob/master/src/key-derivation.ts#L34

Mitigation

This could be improved for both readability and eliminate the creation of two arrays by using
Array.from()'s support for array-like objects (those with a length property):

Array.from({ length: 255 }, (_, i) => okm.slice(i*32, (i+1)*32));

Status

A pull request has been accepted that removes the double creation of arrays bls-hd-key github.

Verification

Resolved.

Suggestion 2: Dependencies with Known Security Vulnerabilities

Location

https://github.com/LeastAuthority/bls-hd-key/issues/1

https://github.com/LeastAuthority/lodestar/issues/1

Synopsis

A large number of vulnerabilities were found through the use of yarn audit, though none were
observed to be used outside of development tooling or affect the in scope repositories.

Mitigation

Taking care to keep dependencies up to date when security issues are fixed should be part of the ongoing
development process. The risk of known vulnerabilities impacting the codebase can be minimized by
upgrading where possible and appropriate. By removing known vulnerabilities, new potential issues will be
easier to identify and address.

Status

The ChainSafe team updated several of the core dependencies in the BLS HD-Key repository and has an
open pull request for Lodestar that had security issues reported by yarn audit. The ChainSafe team
has acknowledged that there are more dependencies that need to be updated, some of which may not be
currently available to update given that they reside deeper in the dependency tree.

Verification

Partially Resolved.

Suggestion 3: Value Override Edge Case in objectToCamelCase

Location

https://github.com/LeastAuthority/lodestar/blob/master/packages/eth2.0-utils/src/misc.ts#L4

Synopsis

The function objectToCamelCase accepts an object and converts all property names to camel case
format. However, it does not check for name conflicts, so it will blindly override properties if they already
exist.

> misc.objectToCamelCase({ some_property: 'foo', someProperty: 'bar' })

Security Audit Report | Utility Libraries | ChainSafe 6
23 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ChainSafe/bls-hd-key/pull/5/commits/56bc9e55b3659df58d68f8bd61a40ee793e60297
https://github.com/LeastAuthority/bls-hd-key/issues/1
https://github.com/LeastAuthority/lodestar/issues/1
https://github.com/ChainSafe/bls-hd-key/commit/767c9989f0dd353249d39e605aababfcbef8413c
https://github.com/ChainSafe/lodestar/pull/700
https://github.com/LeastAuthority/lodestar/blob/master/packages/eth2.0-utils/src/misc.ts#L4
https://github.com/LeastAuthority/lodestar/blob/master/packages/eth2.0-utils/src/misc.ts#L4

{ someProperty: 'foo' }

While this is an edge case, and most likely one of low impact, it might be possible to exploit this in tandem
with another unknown vulnerability to manipulate data that is processed or displayed to the user.

Mitigation

Check if there is a name conflict before proceeding to set the value. Our suggestion would be to throw if
there is a conflict. Since this is an unexpected case there is no real way to proceed programmatically with
any confidence in which value should be used.

Status

With the introduction of this commit, name conflicts are checked for and objectToCamelCase will
throw an error if the name already exists on the property.

Verification

Resolved.

Recommendations
We recommend that the unresolved Issues and Suggestions stated above are addressed as soon as
possible and followed up with verification by the auditing team.

In addition, we recommend continuing to take an aggressive approach to updating dependencies to
resolve outstanding security issues. Pinning to exact versions might be a good approach to retaining
more control over when and where upgrades take place. This will help both developers and reviewers to
be more proactive about catching new vulnerabilities discovered in dependencies, which is paramount to
the security of the code base. However, we acknowledge that there will still be vulnerabilities reported
from dependencies deeper in the tree from others’ projects and it may not always be feasible to go
through each node in the tree to have these updated. This risk should continue to be monitored and
mitigated as best practices advise.

As mentioned in the Coverage section, this report only covers a small subsection of a larger scope that
was greatly reduced due to specification changes and outstanding work to be completed by the
ChainSafe team. We strongly recommend a more complete audit of Lodestar, SSZ, and the validator
packages before these components are considered for production release.

Security Audit Report | Utility Libraries | ChainSafe 7
23 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ChainSafe/lodestar/pull/683/files

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later

Security Audit Report | Utility Libraries | ChainSafe 8
23 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Utility Libraries | ChainSafe 9
23 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

