
Xverse Wallet
Security Audit Report

Secret Key Labs
Final Audit Report: 27 August 2021

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Clearing Keystore Does Not Delete Seed

Issue B: Wallet Screen Not Protected Against Screen Recording

Issue C: Complete Reliance On OS Security Framework

Suggestions

Suggestion 1: Implement a Test Suite

Suggestion 2: Remove Unused and Unreachable Code

Suggestion 3: Improve Documentation

Suggestion 4: Increase Code Comments

Suggestion 5: Conduct Additional Security Reviews

Suggestion 6: Disable Logging in Production Version of the Wallet

Suggestion 7: Update and Maintain Dependencies

About Least Authority

Our Methodology

Security Audit Report | Xverse Wallet | Secret Key Labs 1
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Secret Key Labs has requested that Least Authority perform a security audit of their Xverse Wallet, a
mobile wallet application for the Stacks blockchain.

Project Dates
● June 30 - July 19: Code review (Completed)
● July 23: Delivery of Initial Audit Report (Completed)
● August 23-25: Verification Review (Completed)
● August 27: Final Audit Report delivered (Completed)

Review Team
● Gabrielle Hibbert, Security Researcher and Engineer
● Jan Winkelmann, Cryptography Researcher and Engineer
● Sajith Sasidharan, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Xverse Wallet followed by issue
reporting, along with mitigation and remediation instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● Xverse Wallet: https://github.com/secretkeylabs/xverse
● Beta version install: https://www.secretkeylabs.com/install

Specifically, we examined the Git revisions for our initial review:

0c361886daf162086a0cae31fa9a581838c19d6b

For the verification, we examined the Git revision:

0e643788a70c3a271c6ee59fcd976514f1e02144

For the review, this repository was cloned for use during the audit and for reference in this report:

https://github.com/LeastAuthority/xverse

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Xverse Audit Documentation.paper (provided by Secret Key Labs to Least Authority via Slack 12
July 2021)

Security Audit Report | Xverse Wallet | Secret Key Labs 2
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/secretkeylabs/xverse
https://www.secretkeylabs.com/install
https://github.com/LeastAuthority/xverse

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation and adherence to best practices;
● Exposure of any critical information during user interactions, including authentication

mechanisms;
● Adversarial actions and other attacks that impact funds, such as the draining or the manipulation

of funds;
● Mismanagement of funds via transactions;
● Vulnerabilities in the code, as well as secure interaction between the related and network

components;
● Proper management of encryption and storage of private keys, including the key derivation

process;
● Inappropriate permissions and excess authority;
● Data privacy, data leakage, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
The Xverse Wallet developed by Secret Key Labs is a mobile wallet application that allows Android and
iOS users to generate and store a key pair for sending and receiving Stacks and Bitcoin. Users are also
able to use the wallet to participate in Stacking pools or to Stack individually. In addition, the Xverse Wallet
allows users to view NFT assets. The Xverse Wallet uses the BIP-39 library for key pair generation, which
is widely considered to be sufficiently secure. However, our team did not review the BIP-39 library, as this
external dependency was considered out of scope for this security review.

System Design
It is clear that security has been strongly considered by the Secret Key Labs team in the system design of
the Xverse Wallet. The system is built with well-maintained React components. Furthermore, the Xverse
Wallet stores private keys in adherence with best security practices. However, in investigating if stored
keys are susceptible to extraction, our team found that when the keystore is cleared, the unencrypted
seed phrase is not cleared from the device. As a result, we recommend deleting all fields in the keystore
that may have been set by the application in the clearKeystore function (Issue A).

We examined the implementation of PIN authentication and did not identify any implementation errors in
that component. However, we recommend that instead of the seed phrase being stored unencrypted in
the device keystore, that the seed phrase be encrypted with a PIN or password for storage. Additionally,
we suggest allowing users to set longer PINs or passwords, which increases the security of the PIN or
password (Issue C).

Our team noted that the security of the Xverse Wallet is completely dependent on the security of the
mobile device’s operating system (OS). We suggest that this be disclosed in the documentation to the
users so that they may be informed in making security considerations (Suggestion 3).

We examined the implementation of the Xverse Wallet for iOS and Android, and found that Android and
some iOS versions allow the user to take screenshots from applications that can inspect the screen at all
times, including instances of the mnemonic passphrase being displayed by the Xverse Wallet. We

Security Audit Report | Xverse Wallet | Secret Key Labs 3
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

recommend that the Secret Key Labs team take measures to prevent or mitigate the impact of
screenshots (Issue B).

Finally, our team identified logging messages being generated in the application. If compromised, these
logs could leak private user data. As a result, we suggest disabling logging in the production build of the
Xverse Wallet (Suggestion 6).

Code Quality
The Xverse Wallet codebase is well written and follows React best practices. The code is organized by
modular React components that are reused in different screens, thus making the codebase more readable
and concise. However, there are screens in the application that cannot be navigated to, and components
that are not used or only used in these unreachable screens. As a result, we suggest that unused code be
removed from the repository to increase readability of the code and to reduce potential confusion
(Suggestion 2).

Tests

The Xverse Wallet in-scope repository does not implement a test suite and contains no tests. We strongly
suggest implementing a test suite to aid in identifying implementation errors and potential security
vulnerabilities (Suggestion 1).

Documentation
The Secret Key Labs team provided us with audit documentation that was helpful in explaining the basic
functionality of the system. We suggest improving the documentation to include all components of the
system, including the biometric authentication component (Suggestion 3).

Code Comments

There are very few code comments present in the codebase. The documentation contained within the
code should be comprehensive and document every function and entrypoint, explaining the intended
functionality of each of the components to aid both reviewers and contributors in understanding the
system’s intended behavior (Suggestion 4).

Scope
Our team found that the scope of this security review was generally sufficient. However, the commit
provided by the Secret Key Labs team did not include the biometric authentication component, which is
intended to be implemented in the Xverse Wallet. Since this is a critical security feature, we recommend a
follow up security review of the biometric authentication component (Suggestion 5).

We noted that the Xverse Wallet relies on the react-native-keychain library for accessing keystores.
This is a security critical dependency and, as a result, we recommend that it undergo an independent
security audit (Suggestion 5).

Dependencies

Finally, as a supplement to our review, we ran an npm-audit test on the repository in-scope, which
reported a large number of vulnerable dependencies, most of them classified as “high”. We recommend
including npm-audit in Continuous Integration (CI) runs and that vulnerable dependencies be promptly
updated to patched versions. The use of outdated, unmaintained, and unaudited dependencies increase
the attack surface of any system. Use of audited and well maintained dependencies reduces the potential
for security exploits (Suggestion 7).

Security Audit Report | Xverse Wallet | Secret Key Labs 4
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.npmjs.com/cli/v7/commands/npm-audit

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Clearing Keystore Does Not Delete Seed Resolved

Issue B: Wallet Screen Not Protected Against Screen Recording Resolved

Issue C: Complete Reliance on OS Security Framework Resolved

Suggestion 1: Implement a Test Suite Unresolved

Suggestion 2: Remove Unused and Unreachable Code Resolved

Suggestion 3: Improve Documentation Unresolved

Suggestion 4: Increase Code Comments Partially Resolved

Suggestion 5: Conduct Additional Security Reviews Unresolved

Suggestion 6: Disable Logging in Production Version of the Wallet Partially Resolved

Suggestion 7: Update and Maintain Dependencies Partially Resolved

Issue A: Clearing Keystore Does Not Delete Seed

Location

utils/walletKeychainHelper.ts#L146-L148

Synopsis

The mobile device keystore can be cleared when the wallet is wiped from the settings menu or when a
wrong PIN is entered three times during authentication. Wiping of the device keystore removes the PIN
from memory, however, the seed phrase is not cleared from the keystore. If the keystore of the mobile
device used is not secure, the seed phrase is vulnerable to extraction.

In the case that the user intends to wipe the wallet from the settings menu or as a result of attempted
unauthorized access, the user will likely expect and assume that the seed phrase is unextractable from
the wiped wallet, which is not the case.

Impact

Compromise of the seed phrase could lead to loss of all funds controlled by the wallet.

Preconditions

The attacker must have physical access to the device and has compromised the mobile devices keystore
mechanism.

Security Audit Report | Xverse Wallet | Secret Key Labs 5
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/xverse/blob/0c361886daf162086a0cae31fa9a581838c19d6b/utils/walletKeychainHelper.ts#L146-L148

Feasibility

The mechanisms for secure storage of keys of both Android and iOS devices have been compromised in
the past. A recent research paper pointed out several realistic scenarios for extracting keys. Nonetheless,
a skilled and well-resourced attacker is required to successfully carry out this attack.

Technical Details

The clearKeystore function only removes the PIN from the keystore, but leaves the seed stored.

Remediation

We recommend deleting all fields in the keystore that may have been set by the application in the
clearKeystore function.

Status

The Secret Key Labs team has resolved the issue by updating the code to also delete the stored seed
phrase from the key store in the clearKeystore function.

Verification

Resolved.

Issue B: Wallet Screen Not Protected Against Screen Recording

Location

android

ios

Synopsis

On Android and some versions of iOS, the user or an application may record videos or individual frames
from the Xverse Wallet application.

The data displayed by the Xverse Wallet is critical to both the security of the application and the privacy of
the user. This data includes the mnemonic phrase, which is displayed during wallet key pair generation,
and at any time after that in the backup screen. A leak of the mnemonic passphrase is a critical breach of
the security of the wallet. Additionally, the wallet displays user account balance and transaction history, of
which a malicious screenshot could leak private user data.

Private user data must be secured and protected from access by other applications running on the mobile
device.

Impact

A malicious application accessing an image of the mnemonic phrase could result in loss of all wallet
funds. In addition, account balance or transaction history leaks are a breach of user privacy.

Preconditions

The user must make a screenshot, and grant other applications access to the screenshot. Alternatively, an
application that has access to the contents of the screen (e.g. a screen recording application) would be
required.

Feasibility

The feasibility of such an attack depends on the specific phone and OS.

Security Audit Report | Xverse Wallet | Secret Key Labs 6
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://securephones.io/main.html
https://github.com/LeastAuthority/xverse/tree/master/android
https://github.com/LeastAuthority/xverse/tree/master/ios

On iOS 10 or newer, there is no API for an application to use to access the screen of another application,
so this attack vector is not applicable. However, if the attacker plants a malicious application with access
to the photo gallery on the device and the user makes a screenshot of the seed phrase or other private
information, it is possible for the application to access it.

On Android, the MediaProjection API can be used to record the contents of the screen. The user has to
explicitly consent to the access, and during the duration of the screen recording, an icon is shown. This
icon represents wireless transmission of the screen contents to a projector or ChromeCast and may not
be immediately identifiable as a screen recording icon. Additionally, any application with access to the
files of the user can access all screenshots.

Mitigation

We suggest that the Secret Key Labs team take the following measures to prevent or mitigate the impact
of screenshots.

Android

On Android, we recommend setting FLAG_SECURE on the application window and making sure that no
private content is shown in other windows. For more information, we suggest referring to this blog post
about vulnerabilities of weak screenshot protection. The flag can either be set manually or by using an
existing React module.

iOS

On iOS, there is no API to prevent screenshots, which makes mitigating this issue more difficult. In some
instances, the only thing that can be done is to remind the user that taking screenshots of the seed means
making it available to other applications. In other cases, such as the seed generation screen or when the
application is being AirPlayed or mirrored, stronger measures could be taken. In this case, the iOS event
UIApplicationUserDidTakeScreenshotNotification can be handled to display a notice to the user that the
action is not secure, and to generate and display a new seed. With this approach, instead of preventing
the screenshotting of a seed that is used, using a seed that is screenshotted is prevented. ScreenShieldKit
also warrants mention in this case as a potential resource for preventing screenshots.

Status

Android

The Secret Key Labs team has updated the application to make use of FLAG_SECURE, in order to protect
the screen against screenshotting. We did not identify any component that evades this protection.

iOS

The Secret Key Labs team has updated the application to make use of a Boolean value that indicates
whether the system is actively cloning the screen to another destination (AirPlay, recording, or mirroring)
in the AppDelegate.m file. We did not identify any component that evades this protection.

Verification

Resolved.

Issue C: Complete Reliance On OS Security Framework

Location

utils/walletKeychainHelper.ts

Security Audit Report | Xverse Wallet | Secret Key Labs 7
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://developer.android.com/reference/android/media/projection/MediaProjection
https://blog.doyensec.com/2019/08/22/modern-password-managers-flag-secure.html
https://blog.doyensec.com/2019/08/22/modern-password-managers-flag-secure.html
https://www.netguru.com/blog/prevent-screenshots-react-native
https://github.com/staltz/react-native-flag-secure-android
https://developer.apple.com/documentation/uikit/uiapplicationuserdidtakescreenshotnotification?language=objc
https://screenshieldkit.com/
https://github.com/LeastAuthority/xverse/blob/0c361886daf162086a0cae31fa9a581838c19d6b/utils/walletKeychainHelper.ts

Synopsis

Both the PIN and the mnemonic passphrase are stored in the respective OS’s key stores without any
additional encryption. In recent research, it was found that mobile platforms do not always live up to their
security claims. Specifically, the research lists several cases where, given physical access, extraction of
keys is possible. Therefore, in order to provide a secure experience for users who store significant
amounts of coins in their wallet, we recommend only trusting the security of the mobile OS conditionally,
and implementing fail-safe measures to prevent immediate leakage if the device is stolen.

Impact

Leakage of the mnemonic and private key resulting in loss of funds.

Feasibility

This attack requires specialized equipment and expertise, both of which can be acquired by a motivated
adversary.

Preconditions

The attacker needs physical access to the phone.

Remediation

We recommend allowing the user to choose longer PINs, as well as allowing the user to choose
authentication by password. From the PIN or password, we recommend deriving a key that is used to
encrypt the seed. The key derivation function used should be memory hard and configured to compute for
roughly one second (we recommend using Argon2id). The encryption should be done using an
authenticated encryption algorithm like libsodium’s secretbox or AES-GCM. The nonce or IV can be
random and stored alongside the ciphertext. The key should not be used for any other purpose without
closely considering joint security.

To demonstrate the impact of a larger alphabet of the PIN/password, as well as increasing the number of
characters, we note that a compute-optimized server with 60 cores costs less than 600 USD per month on
Google Cloud Engine. Since each derivation, and therefore each password guess takes about a second
(we assume a phone core is roughly as fast as a GCE core), we know we get a guess price of:

.𝐶: =
600 𝑈𝑆𝐷

𝑚𝑜𝑛

60 𝑔𝑢𝑒𝑠𝑠
𝑠 ×3600 𝑠

ℎ ×24 ℎ
𝑑𝑎𝑦 ×30 𝑑𝑎𝑦

𝑚𝑜𝑛

= 3. 858 × 10−6 𝑈𝑆𝐷
𝑔𝑢𝑒𝑠𝑠

However, the attacker may rent multiple instances to increase the guess rate. Given the number of𝑎
available characters in a PIN or password (i.e. 10 for a PIN, 36 for a lowercase alphanumeric password),
and the amount of money the adversary is willing to spend , we can get the length a PIN or password𝑚
needs to have in order to be secure for a month from

𝑓(𝑚, 𝑎) = 𝑐𝑒𝑖𝑙
𝑙𝑜𝑔(𝑚

𝐶)

𝑙𝑜𝑔(𝑎)()
This formula demonstrates that, while for attackers with tight budgets (less than 36,000 USD), a 10-digit
PIN is sufficient to protect a wallet for a month, an attacker that invests several hundred thousand USD
will require a 12-digit PIN to achieve the same effect. In both cases, a seven-digit alphanumeric upper and
lowercase password or an eight-digit pure lowercase password would have had at least the same effect.

Security Audit Report | Xverse Wallet | Secret Key Labs 8
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://securephones.io/
https://www.cryptolux.org/images/0/0d/Argon2.pdf
https://libsodium.gitbook.io/doc/secret-key_cryptography/secretbox

Status

The Secret Key Labs team has resolved this issue by implementing an optional enhanced security mode,
where the PIN is used to derive an encryption key. In that mode, the PIN also is not restricted in length or
to numerical input. The key is derived using the memory-hard function Argon2, using safe parameters.

Verification

Resolved.

Suggestions

Suggestion 1: Implement a Test Suite

Location

tests__/App-test.tsx

Synopsis

Our team found no tests in the repository in-scope. Sufficient test coverage should include tests for
success and failure cases, which helps identify potential edge cases, and helps protect against errors and
bugs, which may lead to vulnerabilities or exploits. A test suite that includes a minimum of unit tests and
integration tests adheres to development best practices. In addition, end-to-end testing is also
recommended so that it can be determined if the implementation behaves as intended.

Mitigation

We recommend that the Secret Key Labs team create a test suite for the Xverse Wallet system to facilitate
identifying implementation errors and potential security vulnerabilities by developers and security
researchers.

Status

The Secret Key Labs team has responded that implementing a test suite will take additional time to
implement. As a result, this suggestion remains unresolved at the time of this verification.

Verification

Unresolved.

Suggestion 2: Remove Unused and Unreachable Code

Location

components/stackingStatus.tsx

components/stackingComponent

screens/stxLock

screens/confirmLock

Synopsis

The implementation includes code that is imported and included in the React DOM, but cannot be
navigated to. This code is a partially implemented feature that appears in more than one instance. Unused

Security Audit Report | Xverse Wallet | Secret Key Labs 9
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/xverse/blob/master/__tests__/App-test.tsx
https://github.com/LeastAuthority/xverse/blob/0c361886daf162086a0cae31fa9a581838c19d6b/components/stackingStatus.tsx
https://github.com/LeastAuthority/xverse/tree/0c361886daf162086a0cae31fa9a581838c19d6b/components/stackingComponent
https://github.com/LeastAuthority/xverse/tree/0c361886daf162086a0cae31fa9a581838c19d6b/screens/stxLock
https://github.com/LeastAuthority/xverse/tree/0c361886daf162086a0cae31fa9a581838c19d6b/screens/confirmLock

code hinders navigating and reasoning about the source code, which reduces the effectiveness of both
security researchers and maintainers.

Mitigation

We recommend that the Secret Key Labs team review the codebase for redundant or unused code and
that it be subsequently removed from the codebase.

Status

The Secret Key Labs team has removed the unused and redundant code identified by our team.

Verification

Resolved.

Suggestion 3: Improve Documentation

Location

https://github.com/LeastAuthority/xverse

Synopsis

The general documentation provided by the Secret Key Labs team was minimal. Robust and
comprehensive general documentation allows a security team to assess the in-scope components and
understand the expected behavior of the system being audited. In addition, clear and concise user
documentation provides users with a guide to utilize the application according to security best practices.

Mitigation

We recommend the Secret Key Labs team improve the project’s general documentation by creating a
high-level description of the system, each of the components, and interactions between those
components. This can include developer documentation and architectural diagrams.
In addition, we recommend that comprehensive user documentation be created to help users interact with
the system correctly and as intended, which encourages secure and correct usage. For example, we noted
that the security of the Xverse Wallet is completely dependent on the security of the mobile device’s OS,
which we suggest disclosing in the documentation to the users so that they may be informed in making
security considerations.

Status

The Secret Key Labs team has responded that they intend to improve documentation, however, the
undertaking will take additional time to implement. As a result, this suggestion remains unresolved at the
time of this verification.

Verification

Unresolved.

Suggestion 4: Increase Code Comments

Location

https://github.com/LeastAuthority/xverse

Security Audit Report | Xverse Wallet | Secret Key Labs 10
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/xverse
https://github.com/LeastAuthority/xverse

Synopsis

The documentation within the Xverse Wallet codebase is minimal. The documentation contained within
the code should be comprehensive and document every function and entrypoint, which significantly aids
security researchers in identifying implementation errors and potential security vulnerabilities.

Mitigation

We recommend that the documentation within the code be improved to explain the intended functionality
of each of the components, entrypoints, and function.

Status

The Secret Key Labs team has implemented code comments for some parts of the code, particularly for
the screen classes as to what is displayed on the screen. However, the average ratio of comment lines per
line of code has not significantly improved. As a result, we consider this suggestion to be partially
resolved and encourage the Secret Labs team to further increase code comments.

Verification

Partially Resolved.

Suggestion 5: Conduct Additional Security Reviews

Location

react-native-keychain library

Synopsis

The Secret Key Labs team intends to implement a biometric authentication component in the Xverse
Wallet, however, this component was not in the scope of this security review. Since biometric
authentication is a critical security feature, we recommend a review of the biometric authentication
component by a third- party security team. Additionally, the Xverse Wallet relies on a react-native-keychain
library for the implementation of and access to keystores. As a critical security dependency, we suggest
that this library undergo a security review from an independent auditing team.

Mitigation

We recommend additional security reviews of the above mentioned security-critical dependencies.

Status

The Secret Key Labs team has responded they are planning additional security reviews in the future, which
have yet to be conducted at the time of this verification.

Verification

Unresolved.

Suggestion 6: Disable Logging in Production Version of the Wallet

Location

screens/scanQR/scanQR.tsx#L57

store/wallet/saga.ts#L283

utils/stacksTransactionHelper.ts#L166

Security Audit Report | Xverse Wallet | Secret Key Labs 11
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/oblador/react-native-keychain
https://github.com/LeastAuthority/xverse/blob/0c361886daf162086a0cae31fa9a581838c19d6b/screens/scanQR/scanQR.tsx#L57
https://github.com/LeastAuthority/xverse/blob/0c361886daf162086a0cae31fa9a581838c19d6b/store/wallet/saga.ts#L283
https://github.com/LeastAuthority/xverse/blob/0c361886daf162086a0cae31fa9a581838c19d6b/utils/stacksTransactionHelper.ts#L166

utils/stacksTransactionHelper.ts#L224

utils/stacksTransactionHelper.ts#L228

utils/stacksTransactionHelper.ts#L233

utils/stacksTransactionHelper.ts#L263

utils/stacksTransactionHelper.ts#L267

Synopsis

The Xverse Wallet application has several log message statements in multiple locations in the codebase.
While we did not find evidence of leaks of critical data as a result of these log statements, we suggest
that logs be only enabled for developer builds of the wallet application.

Mitigation

We recommend that the Secret Key Labs team disable the logging of messages in production builds of
the application.

Status

The Secret Key Labs team has removed or commented out code that performs logging in several places.
However, we identified instances where logging is still done. As a result, we consider the suggestion
partially resolved and recommend that logging be fully disabled.

Verification

Partially Resolved.

Suggestion 7: Update and Maintain Dependencies

Synopsis

Running npm audit on the codebase reveals that several dependencies are outdated and have
vulnerabilities. While it is not clear to what extent these would be exploitable, it is good practice to keep
dependencies up-to-date in order to avoid importing vulnerable code.

Mitigation

The Github Dependabot tool automatically sends emails when a security advisory that affects a codebase
is published. We recommend taking these seriously and swiftly updating the affected dependency to a
version that is not vulnerable.

Status

The Secret Key Labs team has updated several dependencies and running npm audit now reports
significantly fewer vulnerable dependencies. However, all vulnerable dependencies have not been
updated, thus we consider the suggestion to be partially resolved. We recommend updating all remaining
vulnerable dependencies.

Verification

Partially Resolved.

Security Audit Report | Xverse Wallet | Secret Key Labs 12
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/xverse/blob/0c361886daf162086a0cae31fa9a581838c19d6b/utils/stacksTransactionHelper.ts#L224
https://github.com/LeastAuthority/xverse/blob/0c361886daf162086a0cae31fa9a581838c19d6b/utils/stacksTransactionHelper.ts#L228
https://github.com/LeastAuthority/xverse/blob/0c361886daf162086a0cae31fa9a581838c19d6b/utils/stacksTransactionHelper.ts#L233
https://github.com/LeastAuthority/xverse/blob/0c361886daf162086a0cae31fa9a581838c19d6b/utils/stacksTransactionHelper.ts#L263
https://github.com/LeastAuthority/xverse/blob/0c361886daf162086a0cae31fa9a581838c19d6b/utils/stacksTransactionHelper.ts#L267

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Security Audit Report | Xverse Wallet | Secret Key Labs 13
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Xverse Wallet | Secret Key Labs 14
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

