o

Least Authority

PRIVACY MATTERS

Crypto Suites & Multiparty ECDSA
(Incremental Changes) + Encapsulation Layer

Security Audit Report

Safeheron

Updated Final Audit Report: 5 February 2024

Table of Contents

Overview

Background
Project Dates
Review Team
Coverage
Target Code and Revision
Supporting Documentation
Areas of Concern
Findings
General Comments
System Design
Code Quality
Documentation and Code Comments
Scope
Specific Issues & Suggestions
Issue A: Length Field in CSafeHash256/512::Write Can Overflow
Issue B: Sanity Check Assertions Are Compiled Away in Release Mode
Issue C: Incorrect Cofactor Handling in PubKeyRecovery
Issue D: Missing Checks in ECDSA Signature Verification

Issue E: Missing Check in Feldman'’s Secret Sharing Allows for Threshold Escalation [Known
Issue]

Suggestions
Suggestion 1: Remove SHA1 and 3DES From Elliptic Curve Integrated Encryption Scheme

Suggestion 2: Replace Elliptic Curve Integrated Encryption Scheme with Hybrid Public Key
Encryption

Suggestion 3: Implement a Different Serialization for the Points at Infinity
Suggestion 4: Correct Inaccurate Code Comments
Suggestion 5: Improve Exception and Error Handling
Suggestion 6: Complete Security Proof Draft
About Least Authority

Our Methodology

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background

Safeheron has requested that Least Authority perform a security audit of their Safeheron Crypto Suites
CPP, incremental changes to the Crypto Suites and Multiparty ECDSA, along with a review of the
Encapsulation Layer for these algorithms.

Project Dates

December 4, 2023 - December 15, 2023: Initial Code Review (Completed)
December 19, 2023: Delivery of Initial Audit Report (Completed)

January 3, 2024): Verification Review (Completed)

January 4, 2024: Delivery of Final Audit Report (Completed)

January 9, 2024: Delivery of Updated Final Audit Report - Version 1 (Completed)
February 5, 2024: Delivery of Updated Final Audit Report - Version 2 (Completed)

Review Team

Anna Kaplan, Cryptography Researcher and Engineer
Xenofon Mitakidis, Security Researcher and Engineer
Mirco Richter, Cryptography Researcher and Engineer
Jan Winkelmann, Cryptography Researcher and Engineer

Coverage

Target Code and Revision

For this audit, we performed research, investigation, and review of the Safeheron Crypto Suites CPP,
incremental changes to the Crypto Suites and Multiparty ECDSA, along with a review of the Encapsulation
Layer for these algorithms followed by issue reporting, along with mitigation and remediation instructions
as outlined in this report.

The following code repositories are considered in-scope for the review:

e Audit for Safeheron Crypto Suites CPP (except crypto-zkp-cpp)
o https:/qithub.com/Safeheron/safeheron-crypto-suites-cpp

Incremental audit for crypto-zkp-cpp

o https://qgithub.com/Safeheron/safeheron-crypto-suites-cpp
e Incremental audit for multi-party-sig-cpp

o https:/github.com/Safeheron/multi-party-sig-cpp
e Incremental audit for multi-flow-cpp

o https://github.com/Safeheron/multi-

w
C++/WASM library (only src)
o https://qithub.com/Safeheron/mpc-snap-wasm

For the review, these repositories were cloned for use during the audit and for reference in this report:

e crypto-suites-cpp:

https://qithub.com/LeastAuthority/safeheron-crypto-suites-cpp
e multi-party-sig-cpp:

https://github.com/L eastAuthority/safeheron-multi-party-sig-cpp

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 2
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Safeheron/safeheron-crypto-suites-cpp
https://github.com/Safeheron/safeheron-crypto-suites-cpp
https://github.com/Safeheron/multi-party-sig-cpp
https://github.com/Safeheron/multi-party-sig-cpp/tree/main/src/multi-party-sig/mpc-flow
https://github.com/Safeheron/multi-party-sig-cpp/tree/main/src/multi-party-sig/mpc-flow
https://github.com/Safeheron/mpc-snap-wasm
https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/
https://github.com/LeastAuthority/safeheron-multi-party-sig-cpp

e multi- party sig/mpc-flow:

g/mpc -flow
e C++/WASM library:

https://github.com/LeastAuthority/safeheron-mpc-wasm

Specifically, we examined the Git revisions for our initial review:

e crypto-suites-cpp: 02641725e3448065a02dfa004f40fb266b14a007
e multi-party-sig-cpp: c5bc655bb6e6fabc9fe60775aae3cbac2c3b4b58
e mpc-snap-wasm: 30d838acb6f6c0e25bb4e1bb7b1f6dc1c0aed0al

For the verification, we examined the Git revisions:

e crypto-suites-cpp: 60c5e730926def3c34c0cbb8acdc3173c4f77ede
e multi-party-sig-cpp: a52b74ab6d082b7dcd995203477c2ff1bd0fffof
e mpc-snap-wasm: a3871658e0d6ea925a22431be59e45c364534dea

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation

The following documentation and resources were available to the review team:

e Website:
https:/www.safeheron.com

e Audit Difference Analysis (Google Doc file) (shared with Least Authority via email on 29 November
2023)
LA_diff.zip (shared with Least Authority via email on 29 November 2023)
2-3 TSS Scenario Key Recovery Protocol.pdf (shared with Least Authority via email on 29
November)

e Updated 2-3 TSS Scenario Key Recovery Protocol with Security Proof.pdf (shared with Least
Authority via Slack on 5 December)

In addition, this audit report references the following documents:
e D.R.L.Brown, “SEC 1: Elliptic Curve Cryptography.” Certicom Corp., 2009, [BrownQ9]
e R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled, “UC Non-Interactive, Proactive,
Threshold ECDSA with Identifiable Aborts.” IACR Cryptology ePrint Archive, 2021, [CGG+21]
e R. Gennaro and S. Goldfeder, “One Round Threshold ECDSA with Identifiable Abort.” IACR
Cryptology ePrint Archive, 2020, [GG20]
e RFC9180:

https:/www.rfc-editor.org/rfc/rfc9180.html
° Update to Current Use and Deprecation of TDEA:

Areas of Concern

Our investigation focused on the following areas:

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 3
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/safeheron-multi-party-ecdsa-cpp/tree/main/src/multi-party-sig/mpc-flow
https://github.com/LeastAuthority/safeheron-multi-party-ecdsa-cpp/tree/main/src/multi-party-sig/mpc-flow
https://github.com/LeastAuthority/safeheron-mpc-wasm
https://www.safeheron.com/
https://www.secg.org/sec1-v2.pdf
https://eprint.iacr.org/2021/060.pdf
https://eprint.iacr.org/2020/540.pdf
https://www.rfc-editor.org/rfc/rfc9180.html
https://csrc.nist.gov/news/2017/update-to-current-use-and-deprecation-of-tdea
https://www.nist.gov/news-events/news/2022/12/nist-retires-sha-1-cryptographic-algorithm

Correctness of the implementation;
Vulnerabilities within each component and whether the interaction between the components is
secure;
Whether requests are correctly passed to the network core;
Key management, including secure private key storage and management of encryption and
signing keys;
e Denial of Service (DoS) and other security exploits that would impact the intended use or disrupt
the execution;
Protection against malicious attacks and other ways to exploit;
Inappropriate permissions and excess authority;
Data privacy, data leaking, and information integrity; and
Anything else as identified during the initial analysis phase.

Findings

General Comments

Our team previously conducted an audit on Safeheron's MPC-ECDSA protocol implementation, as
described in [CGG+21], and delivered the final audit report on October 19, 2023. In the aforementioned
report, we closely investigated how the Safeheron team adjusted the threshold setting, such that
t-out-of-n parties were sufficient to sign a message. This report is a follow-up of the former report and
focuses on the incremental changes implemented to the Crypto Suites and Multiparty ECDSA. In this
audit, we reviewed cryptographic primitives, such as BigNums, elliptic curves, cryptographic hash
functions and the Paillier cipher as well as Safeheron’s implementation of a safe hash function for Fiat
Shamir.

The Safeheron team has implemented a custom key recovery algorithm based on Shamir Secret Sharing.
We reviewed the corresponding security proof that the team wrote specifically for this custom algorithm
and found that it could be improved to adhere to standards for provable security (Suggestion 6).

Additionally, we reviewed the Encapsulation Layer for these algorithms. The Safeheron team implemented
wrappers for the key generation, signing, key recovery and auxiliary info, as well as utility functions, such
as Elliptic Curve Integrated Encryption Scheme (ECIES) encryption and decryption.

System Design

Our team found that the Safeheron team has prioritized security in the design and implementation of their
crypto suites as demonstrated by generally well-implemented advanced cryptography and adherence to
best practices.

During our audit, we investigated Safeheron’s custom safe_hash function. Our team noted that the
revised implementation prevents the issue of preimage collisions in case the attacker controls multiple
consecutive inputs to the hash function’s state. We therefore considered it to be a more secure alternative
to the previously used hash functions in settings like the Fiat Shamir transformation. However, we
identified a potential overflow issue, which can lead to forged proofs (Issue A).

We examined Safeheron’s implementation of BIP39 and compared it to the reference. We also reviewed
the tests and confirmed that the Safeheron team has tested their implementation against the reference.
Additionally, we compared and tested Safeheron’s implementation of standard cryptographic hash
functions against the OpenSSL implementations. We could not identify any issues or deviations.

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 4
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2021/060.pdf
https://github.com/bitcoinjs/bip39
https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/tree/main/test/crypto-bip39

In our review of the cryptographic primitives, we found that the code is generally well-written and
organized. However, we identified several issues and areas for improvement (Issue C, Issue D, Suggestion

3, Suggestion 4).

Moreover, we could not identify any issues in the implementation of wrappers. The communication model
adheres to the requirements described in [CGG+21]. We investigated potential ways to intercept
peer-to-peer (P2P) messages and did not identify any. Moreover, we tested the implementation for data
disclosure via memory leaks and did not identify any issues.

Code Quality

We performed a manual review of the repositories in scope and found the codebases to be generally
organized and well-written. However, we found that the codebases use the C++ assertion macro and
recommend improving the process in which assumption checks are performed by implementing a more
stable approach (Issue B).

Tests

The repositories in scope include sufficient test coverage.

Documentation and Code Comments

The project documentation provided for this review offers a sufficient overview of the system and its
intended behavior. While the crypto-suites are sufficiently commented, most parts of the codebase have
few code comments. In addition, our team found some inaccurate and misleading comments, which we
recommend be updated (Suggestion 4).

Scope

The scope of this review was sufficient and included all security-critical components. However, since the
Safeheron team updated the key recovery algorithm during the review and stated that they plan to
produce a new security proof for it, we recommend that the updated key recovery algorithm and new
security proof be comprehensively audited by an independent security firm familiar with the Safeheron
codebase once development is complete.

After the initial review, an external security service provider identified a vulnerability in the
crypto-suites/crypto-sss module and reported the security flaw to the Safeheron team. The
Safeheron team then implemented a security patch to remediate the vulnerability, which our team
reviewed and verified, as documented in this updated report (Issue E).

Specific Issues & Suggestions

We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Length Field in CSafeHash256/512::Write Can Overflow Resolved
Issue B: Sanity Check Assertions Are Compiled Away in Release Mode Resolved
Issue C: Incorrect Cofactor Handling in PubKeyRecovery Resolved
Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 5

5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2021/060.pdf

Issue D: Missing Checks in ECDSA Signature Verification Resolved

Issue E: Missing Check in Feldman’s Secret Sharing Allows for Threshold Resolved
Escalation [Known Issue]

Suggestion 1: Remove SHA1 and 3DES From Elliptic Curve Integrated Resolved
Encryption Scheme

jon 2: Repl Ellipti rve Inteqr Encryption Scheme with Planned
Hybrid Public Key E .
Suggestion 3: Implement a Different Serialization for the Points at Infinity Resolved
Suggestion 4: Correct Inaccurate Code Comments Resolved
Suggestion 5: Improve Exception and Error Handling Resolved
jon 6: Compl rity Proof Draf Resolved

Issue A: Length Field in CSafeHash256/512::Write Can Overflow

Location

crypto-suites/crypto-hash/safe_hash256.cpp#L33

crypto-suites/crypto-hash/safe_hash512.cpp#L33

Synopsis
The length fields that provide injectivity in CSafeHash can overflow, resulting in the same hash being
produced for different sequences of writes.

Impact
This attack may lead to forged proofs, possibly undermining the security of the MPC-ECDSA signature
protocol.

Preconditions
The attacker needs to be able to trick the prover to include a very long value in one of the hashes.

Feasibility
It is unlikely that this attack can be performed successfully outside of a lab setting.

Technical Details

CSafeHash256 and CSafeHash512 wrap hash functions and add a 32-bit length to each write. This is a
common method for injectively encoding sequences of values that may have variable length. Injectivity
means that any two sequences produce different encodings. In the edge case where a very large value
(>4GiB) is supplied, the length field wraps around, allowing injectivity to break. Breaking injectivity allows
hash collisions to be produced without the hash function itself being attacked.

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 6
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/main/src/crypto-suites/crypto-hash/safe_hash256.cpp#L33
https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/02641725e3448065a02dfa004f40fb266b14a007/src/crypto-suites/crypto-hash/safe_hash512.cpp#L33

Remediation

We recommend checking that the length of each write fits in 32-bits.

Status
The Safeheron team has expanded the length representation to 64-bit length, which makes it practically
infeasible to overflow the length field.

Verification

Resolved.

Issue B: Sanity Check Assertions Are Compiled Away in Release Mode

Location
Examples (non-exhaustive):

Synopsis
The C++ assertion macro is implemented for assumption checks throughout the codebase.

Impact
This might lead to unexpected behavior.

Technical Details

In C++, the assert macro is used for debugging purposes only, and its behavior depends on the presence
of the NDEBUG macro. If NDEBUG is defined, the assert macro is compiled away. Developers often utilize
the assert macro for optimization purposes by eliminating the negative impact assertion checks can
have on performance.

In some instances in the codebase, however, the Safeheron team utilizes the assert macro to perform
assumption checks on parameters in low-level algebraic and cryptographic primitives. These checks are
hence missing if the NDEBUG macro is present, which is standard behavior in release builds.

Remediation

We recommend that the Safeheron team either build a custom assert macro expressing the same logic,
or check the relevant assumption via exception handling.

Status

The Safeheron team has implemented a custom assert functionality and replaced the C++ assert
macro with it.

Verification
Resolved.

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 7
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/main/src/crypto-suites/crypto-bn/bn.cpp#L125
https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/02641725e3448065a02dfa004f40fb266b14a007/src/crypto-suites/crypto-bn/rand.cpp#L143
https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/02641725e3448065a02dfa004f40fb266b14a007/src/crypto-suites/crypto-sss/vsss.cpp#L25

Issue C: Incorrect Cofactor Handling in PubKeyRecovery

Location

crypto-suites/crypto-curve/ ecdsa. cpp

Synopsis

In Safeheron’s implementation of the ECDSA PubKeyRecovery algorithm, a parameter j is used in order
to decide which of the four possible public keys from the key recovery process should be considered as
valid. However, the implementation uses j incorrectly.

Impact

The two cases j=2 and j=3 might compute public keys that are invalid for the signature.

Preconditions
A private key would need to have an associated public key pk=(x, y), such that x is larger than the
modulus of the curve’s scalar field.

Feasibility

The attack is straightforward since public keys are distributed uniformly. Hence, by utilizing a brute-force
try and error generation of secret keys, it would be feasible to generate an associated public key that
satisfies the precondition.

Technical Details

For parameter 2 <= j <= 3, the Safeheron team computes the x coordinate of the curve pointRas x =
r + curv->n * j.However, the algorithm requires x = r + curv->n. Since 2*curve->n >
curve->p, the value curve->n*j exceeds the curve’s base field modulus, which would result in
unexpected consequences.

Mitigation
We recommend computing the x coordinate of Ras x = r + curve->n in case j=2 or j=3.

Remediation

As Safeheron’s implementation of the ECDSA key recovery algorithm can only handle curves with a
cofactor of 1, and utilizes j inconsistently, we recommend implementing algorithm 4.1.6, as explained in

[Brown09].

Status

The Safeheron team has replaced the parameter j with a more descriptive name and updated their elliptic
curve representation to include the cofactor. They also updated the recovery algorithm to work as
intended for elliptic curves with a cofactor of 1.

Verification

Resolved.

Issue D: Missing Checks in ECDSA Signature Verification

Location

crypto-suites/crypto-curve/ecdsa.cpp#L122

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 8
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/main/src/crypto-suites/crypto-curve/ecdsa.cpp
https://www.secg.org/sec1-v2.pdf
https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/main/src/crypto-suites/crypto-curve/ecdsa.cpp#L122

Synopsis

In addition to computing the verification equation, an ECDSA verifier must also compute some sanity
checks on the input values. While the Safeheron team checks that the coordinates of the public key are
reduced and that they satisfy the curve's defining equation, other sanity checks are missing.

Impact
In the absence of such sanity checks, an attacker can forge signatures.

Technical Details
Our team identified the following missing checks on the verifier's input:

a check verifying that the signer’s public key is not the point at infinity;
a check verifying that the public key is in the large prime order subgroup (note that this is not
needed for secp256k1, P256 or STARK); and

e acheck verifying that the signature values are reduced (i.e., verifying that r<curve->n and
s<curve->n).

Remediation
We recommend implementing the missing checks.

Status
The Safeheron team has implemented the missing checks.

Verification
Resolved.

Issue E: Missing Check in Feldman’s Secret Sharing Allows for Threshold
Escalation [Known Issue]

Location

Synopsis

During the audit, an external security service provider reported a vulnerability to the Safeheron team. This
vulnerability occurs because a test is missing where an honest participant checks that the degree of each
random polynomial in Feldman's verifiable secret sharing scheme does not exceed the agreed on
threshold t of the protocol.

Impact

If a malicious participant generates a commitment to a Feldman random polynomial of degree T > t for
an agreed on threshold t, and the degree is not checked by all other honest participants, it effectively
transforms the t out of n protocol into a T out of n protocol. As a result, no set of t participants will be
able to generate a valid signature. In case the attacker choses T>n, it is not possible to generate a valid
signature at all.

Feasibility
The attack is straightforward since it is trivial to generate random polynomials of arbitrary degrees.

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 9
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/35306826def8ea1a5dfa33f40a307a4a6037c58f/src/crypto-suites/crypto-sss/vsss.cpp#L32

Remediation

The VerifyShare function in Safeheron’s implementation of Feldman'’s verified secret sharing scheme
needs to implement a check on the number of coefficient commitments for the shared random
polynomial of each participant.

Status
The Safeheron team has implemented the recommended check.

Verification
Resolved.

Suggestions

Suggestion 1: Remove SHAI and 3DES From Elliptic Curve Integrated
Encryption Scheme

Location

src/crypto-suites/crypto-ecies

Synopsis
While neither SHAT nor 3DES is broken in the specific contexts utilized for this implementation, they are
not recommended foundations to build on, as they are susceptible to a high number of attacks.

Mitigation
We recommend adhering to best practice and removing support for SHA1 and 3DES.

Status
The Safeheron team has removed support for both SHA1 and 3DES, as recommended.

Verification
Resolved.

Suggestion 2: Replace Elliptic Curve Integrated Encryption Scheme with
Hybrid Public Key Encryption

Location

erypto-suites/ .

Synopsis

The Elliptic Curve Integrated Encryption Scheme (ECIES) is a family of non-interoperable hybrid encryption
standards. In order to improve the encryption scheme used, Hybrid Public Key Encryption (HPKE) was
standardized in REC 9180. In the motivation section of the RFC, the authors explain:

Currently, there are numerous competing and non-interoperable standards and variants for hybrid
encryption, mostly variants on the Elliptic Curve Integrated Encryption Scheme (ECIES), including ANSI
X9.63 (ECIES) [ANSI], IEEE 1363a [[EEE1363], ISO/IEC 18033-2 [[SQ], and SECG SEC 1 [SECG]. See [MAEA10]

for a thorough comparison. All these existing schemes have problems, e.g., because they rely on outdated

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 10
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/tree/main/src/crypto-suites/crypto-ecies
https://en.wikipedia.org/wiki/SHA-1#Attacks
https://en.wikipedia.org/wiki/Triple_DES#Security
https://csrc.nist.gov/news/2017/update-to-current-use-and-deprecation-of-tdea
https://www.nist.gov/news-events/news/2022/12/nist-retires-sha-1-cryptographic-algorithm
https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/tree/main/src/crypto-suites/crypto-ecies
https://www.rfc-editor.org/rfc/rfc9180.html
https://www.rfc-editor.org/rfc/rfc9180.html#ANSI
https://www.rfc-editor.org/rfc/rfc9180.html#IEEE1363
https://www.rfc-editor.org/rfc/rfc9180.html#ISO
https://www.rfc-editor.org/rfc/rfc9180.html#SECG
https://www.rfc-editor.org/rfc/rfc9180.html#MAEA10

primitives, lack proofs of indistinguishable (adaptive) chosen-ciphertext attack (IND-CCA2) security, or fail
to provide test vectors.

Mitigation
We recommend replacing ECIES with HPKE, as defined in RFC 9180.

Status
The Safeheron team has stated that they plan to implement HPKE in the future.

Verification

Planned.

Suggestion 3: Implement a Different Serialization for the Points at Infinity

Location

Synopsis

The Safeheron team serializes the points at infinity of an elliptic curve to a zero-byte array with the header
0x04 for an uncompressed representation and the header 8x02 for a compressed representation. In the
uncompressed case, this is safe only for short Weierstrass elliptic curves that do not have (x,y)=(9,90)
as a solution and in the compressed case, it is safe only for short Weierstrass curves that do not have
(y, @) in their solution set.

Mitigation

While neither one of the curves secp256k1, P256, and STARK has (8, 0) or (y, @) as curve points, we
recommend implementing a different representation for the point at infinity. One solution would be to
include two new headers designated to that point, in compressed and uncompressed forms.

Status

The Safeheron team has updated their codebase, such that it now refrains from serializing the point at
infinity.

Verification

Resolved.

Suggestion 4: Correct Inaccurate Code Comments

Location

crypto-suites/crypto-paillier/pail.cpp#L86
crypto-suites/crypto-paillier/pail.cpp#L95
crypto-suites/crypto-paillier/pail.cpp#L104

Synopsis
In the aforementioned locations, the code comments note that a Paillier Key Pair should be created with a
1024-bit key size. However, the functions reference varying key sizes (2048-bit, 2072-bit, and 2096-bit).

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 11
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/main/src/crypto-suites/crypto-curve/openssl_curve_wrapper.cpp#L35.
https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/main/src/crypto-suites/crypto-paillier/pail.cpp#L86
https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/02641725e3448065a02dfa004f40fb266b14a007/src/crypto-suites/crypto-paillier/pail.cpp#L95
https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/02641725e3448065a02dfa004f40fb266b14a007/src/crypto-suites/crypto-paillier/pail.cpp#L104

Mitigation
We recommend correcting the code comment and checking that all comments are accurate and relevant.

Status
The Safeheron team has corrected and improved the code comments.

Verification

Resolved.

Suggestion 5: Improve Exception and Error Handling

Location

crypto-suites/crypto-bn/bn.cpp#L985
crypto-suites/crypto-paillier/pail_pubkey.cpp#L49

Synopsis

While the Safeheron team has implemented extensive error and exception handling in general, our team
identified a few instances where edge case behavior was not handled as expected. For example, the
square root function does not throw an error but computes the root of negative numbers to be zero, which
is unexpected behavior.

In addition, the Paillier encryption algorithm does not check if the input message mis in the range 8<=m<n,
which could lead to incorrect signatures.

Mitigation
We recommend improving error and exception handling.

Status
The Safeheron team has improved error and exception handling.

Verification
Resolved.

Suggestion 6: Complete Security Proof Draft

Location

Modified Key Generation and New Key Recovery Protocol; Security Proof

Synopsis

Within the area of provable security, when new cryptographic algorithms are introduced, formal definitions
for their respective privacy and security are modeled. According to these definitions, the new algorithms
are then proven to be secure. The security definitions are typically derived either through a game-based
approach or a simulation-based approach. This was the process for the distributed key generation and
threshold signing schemes, as described in [CGG+21]. The distributed key generation and threshold
signing schemes in [CGG+21] were proven to be secure in the Universal Composability setting.

The Safeheron team has introduced a new key recovery algorithm based on Shamir Secret Sharing and
the Diffie-Hellman key exchange as well as the updates implemented to the key generation algorithm
described in [CGG+21] (to match the key recovery algorithm). The team has additionally provided a
document with a security proof.

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 12
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/main/src/crypto-suites/crypto-bn/bn.cpp#L985
https://github.com/LeastAuthority/safeheron-crypto-suites-cpp/blob/main/src/crypto-suites/crypto-paillier/pail_pubkey.cpp#L49
https://eprint.iacr.org/2021/060.pdf
https://eprint.iacr.org/2021/060.pdf
https://eprint.iacr.org/2021/060.pdf

The provided document, however, is missing a security definition for the key recovery functionality in
addition to a formal proof. A security definition for the key recovery functionality increases the coverage
of the relevant attacks being modeled. This is specifically important in regard to the composability of the
subprotocols. Due to the nature of threshold signing sessions and distributed key generation, the
concurrent security needs to be taken into account for modeling the protocol. As an example, whether it is
possible to recover keys across different signing sessions is unclear in this setting. The proof, therefore, is
incomplete and, as a result, does not provide a full picture of the security and privacy of the protocol at
this stage.

During our review, the Safeheron team also updated the new key recovery protocol, thus necessitating an
additional review in the future. Consequently, a new security proof will also be required in this case.

Mitigation

We recommend adding a security definition and formal proof for the key recovery functionality. This can
be done either in the Universal Composability framework as in [CGG+21], or in a standalone manner. Note
that if the latter approach is adopted, the composability of the new key recovery functionality with respect
to the threshold signing functionality from [CGG+21] is not given.

Status

The Safeheron team has updated the document entailing the changes and improved the security proof
draft. Additionally, the Safeheron team has provided a security definition and corresponding proof.
However, we were unable to verify its correctness during the verification period, as this would require a
detailed analysis of the security requirements of the Shard privacy definition. Therefore, we recommend
having the security definition verified by an independent third-party team.

Verification

Resolved.

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 13
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2021/060.pdf
https://eprint.iacr.org/2021/060.pdf

About Least Authority

We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis

Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 14
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results

We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions

We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing

Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Crypto Suites & Multiparty ECDSA (incremental changes) + Encapsulation Layer | Safeheron 15
5 February 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

