

Mobile Application
Security Audit Report
Rabby Wallet
Final Audit Report: 2 September 2025

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Dependencies

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Issue A: Weak Key Derivation Function and Parameters

Issue B: Wallet Addresses Are Not Encrypted in Cloud Backups

Issue C: Hardware Wallet Addresses Are Not Encrypted in Mobile Device Storage

Issue D: In-App Browser Remains Open Over Application Lock Screen

Issue E: Screenshots Are Not Encrypted in Mobile Device Storage

Suggestions

Suggestion 1: Improve Test Coverage

Suggestion 2: Update Vulnerable Dependencies

Suggestion 3: Remove Logging for Production

About Least Authority

Our Methodology

Security Audit Report | Mobile Application | Rabby Wallet ​ 1
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Rabby Wallet has requested that Least Authority perform a security audit of their Mobile Application to
assess developments since the previous review, for which a final audit report was delivered on October
18, 2024.

Project Dates
●​ August 11, 2025 - 21 August, 2025: Initial Code Review (Completed)
●​ August 22, 2025: Delivery of Initial Audit Report (Completed)
●​ September 1, 2025: Verification Review (Completed)
●​ September 2, 2025: Delivery of Final Audit Report (Completed)

Review Team
●​ Paul Lorenc, Security Researcher and Engineer
●​ Michael Rogers, Security Researcher and Engineer
●​ Burak Atasoy, Project Manager
●​ Jessy Bissal, Technical Editor

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Rabby Wallet Mobile Application
followed by issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repository is considered in scope for the review:
●​ https://github.com/RabbyHub/rabby-mobile

Specifically, we examined the Git revision for our initial review:

●​ 932ec85044bbd806b0ac32660d0e4274e2944401

For the verification, we examined the Git revision:

●​ 2069644732985a2bc60d0df521d125db5365686b

We focused on the following changes, as requested by the Rabby Wallet team:

●​ https://github.com/RabbyHub/rabby-mobile/pull/560
●​ https://github.com/RabbyHub/rabby-mobile/pull/907

Additionally, we reviewed all modifications to the codebase since the previous Least Authority audit to
identify any changes likely to affect the security of the application:

●​ https://github.com/LeastAuthority/rabby-wallet/pull/2

Specific changes that were considered likely to be security-relevant are identified in this report.

Security Audit Report | Mobile Application | Rabby Wallet ​ 2
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/RabbyHub/rabby-mobile
https://github.com/RabbyHub/rabby-mobile/pull/560
https://github.com/RabbyHub/rabby-mobile/pull/907
https://github.com/LeastAuthority/rabby-wallet/pull/2

For the review, this repository was cloned for use during the audit and for reference in this report:

●​ https://github.com/LeastAuthority/rabby-wallet/tree/audit2

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

●​ Website: ​
https://rabby.io

●​ Previous audit reports:
○​ SlowMist Audit Report - Rabby mobile wallet iOS.pdf (shared with Least Authority via email

on 5 August 2024)
○​ SlowMist Audit Report - Rabby mobile wallet Android.pdf (shared with Least Authority via

email on 5 August 2024)
○​ Least Authority Audit Report - Rabby Wallet:​

https://leastauthority.com/wp-content/uploads/2024/10/Least-Authority-Debank-Rabby-
Wallet-Final-Audit-Report.pdf

○​ Least Authority Audit Report - Rabby Wallet Extension:
https://leastauthority.com/wp-content/uploads/2024/12/Least-Authority-DeBank-Rabby-
Wallet-Extension-Final-Audit-Report.pdf

In addition, this audit report references the following documents:

●​ EIP-1193: Ethereum Provider JavaScript API:​
https://eips.ethereum.org/EIPS/eip-1193

●​ OWASP Password Storage Cheat Sheet:​
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

●​ GitHub Advisory for CVE-2025-27789:​
https://github.com/advisories/GHSA-968p-4wvh-cqc8

Areas of Concern
Our investigation focused on the following areas:

●​ Correctness of the implementation;
●​ Adversarial actions and other attacks on the wallet;
●​ Attacks that impact funds, such as the draining or manipulation of funds;
●​ Mismanagement of funds via transactions;
●​ Malicious attacks and security exploits that would impact the wallet;
●​ Vulnerabilities in the wallet code and whether the interaction between the related network

components is secure;
●​ Exposure of any critical or sensitive information during user interactions with the wallet and use

of external libraries and dependencies;
●​ Proper management of encryption and storage of private keys;
●​ Inappropriate permissions and excess authority;
●​ Data privacy, data leaking, and information integrity; and
●​ Anything else as identified during the initial analysis phase.

Security Audit Report | Mobile Application | Rabby Wallet ​ 3
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/rabby-wallet/tree/audit2
https://rabby.io
https://leastauthority.com/wp-content/uploads/2024/10/Least-Authority-Debank-Rabby-Wallet-Final-Audit-Report.pdf
https://leastauthority.com/wp-content/uploads/2024/10/Least-Authority-Debank-Rabby-Wallet-Final-Audit-Report.pdf
https://leastauthority.com/wp-content/uploads/2024/12/Least-Authority-DeBank-Rabby-Wallet-Extension-Final-Audit-Report.pdf
https://leastauthority.com/wp-content/uploads/2024/12/Least-Authority-DeBank-Rabby-Wallet-Extension-Final-Audit-Report.pdf
https://eips.ethereum.org/EIPS/eip-1193
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://github.com/advisories/GHSA-968p-4wvh-cqc8

Findings
General Comments
Our team performed a security audit of the Rabby Wallet Mobile Application, which supports multiple
hardware and software wallets for the Ethereum blockchain. The mobile application can manage and host
dApps from numerous providers and enables users to interact with the hosted dApps through a unified
interface. We previously audited Rabby Wallet and delivered a final audit report on October 18, 2024. Since
then, several features have been introduced, including the ability to synchronize accounts between the
Rabby browser extension and mobile application and the ability to back up seed phrases to the cloud.

System Design
Our team examined the design of the mobile application and found that it has clearly been developed with
security in mind. It incorporates several security features including encrypting data stored on the user’s
device or in the cloud, requiring a password to unlock the application, automatically locking the
application when the user is not interacting with it, and clearing sensitive information from memory when
the application is locked.

The application also contains an in-app browser that can host dApps interacting with it via the standard
EIP-1193 API. It applies restrictions to dApp actions, with controls enforced depending on whether a
dApp is currently in the foreground. User confirmation is required for potentially sensitive actions, such as
connecting a wallet to a dApp or signing a transaction.

Specific Components Examined

We began our review with an initial focus on the two changes highlighted by the Rabby Wallet team as
requiring particular attention: the storage of unencrypted information about hardware wallets on the
user’s mobile device, and the use of the @scure/bip39 cryptography library to improve performance.

1.​ Storage of unencrypted information about hardware wallets. Our team identified one issue with
the storage of unencrypted information about hardware wallets (Issue C).

2.​ Use of the @scure/bip39 cryptography library. We did not identify any issues with the use of the
@scure/bip39 cryptography library, including patches applied by the Rabby Wallet team.
However, we also report a related issue that predates the use of the new library (Issue A).

We subsequently reviewed the changes to the mobile application since the previous audit, for which we
delivered a final audit report on October 18, 2024. In this process, we identified several changes with
potential security implications that warrant closer examination.

3.​ Patch applied to the @ledgerhq/hw-app-eth library. We examined the Rabby Wallet team’s
patch for the @ledgerhq/hw-app-eth library, which changes the way certain error conditions
are handled. The Rabby Wallet team explained that the purpose of the patch is to handle network
timeouts that may occur when fetching data from the Internet. We did not identify any issues with
the patch.

4.​ Patch applied to the @metamask/browser-passworder library. We examined the Rabby Wallet
team’s patch for the @metamask/browser-passworder library, which changes the way keys
are derived from passwords. We did not identify any issues with the patch, although the purpose
of the change remains unclear.

5.​ Changes to deep linking configuration. We examined changes to the way links from outside the
application are handled. We did not identify any issues.

6.​ Changes to unlocking logic. We examined changes to the logic for unlocking the application,
which impose a waiting period if several unsuccessful attempts are made to unlock the

Security Audit Report | Mobile Application | Rabby Wallet ​ 4
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eips.ethereum.org/EIPS/eip-1193
https://github.com/RabbyHub/rabby-mobile/pull/560
https://github.com/RabbyHub/rabby-mobile/pull/907
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/.yarn/patches/%40ledgerhq-hw-app-eth-npm-6.45.0-24dc988cd5.patch
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/.yarn/patches/%40metamask-browser-passworder-npm-6.0.0-b3e10a0dba.patch
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/apps/mobile/src/LinkingConfig.ts
https://github.com/LeastAuthority/rabby-wallet/blob/932ec85044bbd806b0ac32660d0e4274e2944401/apps/mobile/src/core/apis/lock.ts#L283

application in a short period of time. The code implementing the waiting period is complex, but
we did not find any issues.

7.​ Handling of mnemonics. We reviewed the code that handles mnemonics and derives private keys
from them. We did not identify any issues.

8.​ RPC middleware. We examined the code that restricts the permitted interactions between dApps
and the user’s accounts. We did not identify any issues with this code, although our review led to
the discovery of Issue D.

9.​ In-app browser. We reviewed changes to the in-app browser to support multiple tabs and
identified an issue with the storage of screenshots (Issue E).

10.​ Cloud backup. We examined the code for backing up seed phrases to the cloud and discovered a
potential privacy issue (Issue B). We further note that the cloud backup component logs data to
the console on production (Suggestion 3).

11.​ Screenshot settings. We reviewed the code that prevents the user from taking screenshots or
screen recordings of the application. We did not identify any issues.

12.​ Merging vaults. We reviewed the logic for merging account details when accounts stored in the
browser extension and mobile application are synchronized. We did not identify any issues.

13.​ Ledger integration. We examined changes to the code for interacting with Ledger hardware
wallets. We did not identify any issues. However, we note that there is a “FIXME” comment in the
Ledger Keyring introduced as a temporary fix for a Ledger device issue. We suggest investigating
whether Ledger has resolved this issue so that this section of code may be removed, thereby
reducing the overall complexity of the Ledger Keyring component.

Dependencies
The Rabby Wallet team relies on patching upstream dependencies to provide functionality required by the
application. The repository contains 21 patched dependencies. Similar to forking, patching places
responsibility on the development team to track upstream changes, determine whether updates are
necessary, and assess whether modifications to the patched code’s semantics should be considered. ​
​
Additionally, our analysis identified one vulnerable dependency in the project, and we recommend
updating it while adopting a secure dependency management process to reduce the risk of supply-chain
attacks (Suggestion 2).

Code Quality
The overall structure of the codebase is well-organized, with code divided into modules with well-defined
purposes. However, the quality of the application code is inconsistent. We found many instances of
misspelled names for variables, functions, and classes. Sections of code are duplicated, unused, or
commented out. The code contains minor errors highlighted by static analysis tools, such as the omission
or unnecessary use of the await keyword.

Some of the code uses a mixture of English and Chinese for comments and developer-facing outputs.
Such practices risk impairing the maintainability of the codebase if not all developers are fluent in both
languages.

Tests

Our team found the test coverage of the repository to be insufficient. The codebase contains only 5,000
lines of test code out of a total of 289,000 lines of code, and some features appear to be intended for
manual testing but are disabled in production builds. A robust test suite should include unit and
integration tests covering both success and failure cases to help identify errors and protect against
potential edge cases, which may lead to security-critical vulnerabilities or exploits. We recommend
improving test coverage (Suggestion 1).

Security Audit Report | Mobile Application | Rabby Wallet ​ 5
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/rabby-wallet/blob/audit2/apps/mobile/src/core/apis/mnemonic.ts
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/apps/mobile/src/core/bridges/middlewares/RPCMethodMiddleware.ts#L103
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/apps/mobile/src/core/services/browserService.ts#L378
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/apps/mobile/src/core/utils/cloudBackup.ts
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/apps/mobile/src/hooks/appSettings.ts#L15
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/packages/service-keyring/src/utils/mergeVault.ts
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/packages/eth-keyring-ledger/src/LedgerKeyring.ts
https://github.com/LeastAuthority/rabby-wallet/blob/932ec85044bbd806b0ac32660d0e4274e2944401/packages/eth-keyring-ledger/src/LedgerKeyring.ts#L351
https://github.com/RabbyHub/rabby-mobile/pull/458

Documentation and Code Comments
The project’s documentation and code comments remain limited, with only about 800 lines of
documentation excluding change logs. This provides little insight into the design or technical choices and
reduces readability, making it more difficult to reason about the security of the components reviewed. We
recommend that documentation and comments be extended to adequately cover the newly introduced
features.

Scope
The scope of this audit was limited to the changes to the mobile application since the previous audit by
our team, for which a final report was delivered on October 18, 2024.​

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Weak Key Derivation Function and Parameters Unresolved

Issue B: Wallet Addresses Are Not Encrypted in Cloud Backups Unresolved

Issue C: Hardware Wallet Addresses Are Not Encrypted in Mobile Device
Storage

Unresolved

Issue D: In-App Browser Remains Open Over Application Lock Screen Resolved

Issue E: Screenshots Are Not Encrypted in Mobile Device Storage Unresolved

Suggestion 1: Improve Test Coverage Planned

Suggestion 2: Update Vulnerable Dependencies Unresolved

Suggestion 3: Remove Logging for Production Resolved

​
Issue A: Weak Key Derivation Function and Parameters

Location

apps/mobile/src/core/services/encryptor.ts

Synopsis

The encryption used to store seed phrases and other account details on the user’s mobile device and in
cloud backups relies on a weak key derivation function with weak parameters.

Impact

High.​
​

Security Audit Report | Mobile Application | Rabby Wallet ​ 6
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/rabby-wallet/blob/audit2/apps/mobile/src/core/services/encryptor.ts

If an attacker were to obtain the encrypted seed phrases and successfully decrypt them, they would have
full control over the user’s wallet, including the ability to transfer the user’s funds to their own account.

Feasibility

Low.

To obtain the application data stored on the user’s mobile device, the attacker would either need to exploit
the Rabby Mobile Wallet Application to execute code in the context of the application, or run code with
root privileges on the mobile device. In the case of a rooted or jailbroken mobile device, this might be
done by first persuading the user to install an application controlled by the attacker, and then persuading
the user to grant root access for some apparently legitimate reason.

In the case of an Android device with disk encryption disabled (which is an uncommon configuration in
devices released in recent years), an attacker might be able to obtain the application data from a lost,
discarded, or stolen device without compromising any applications.

To obtain the data stored in a Google cloud backup, the attacker would need to gain access to the user’s
cloud account and then use the Google Drive API to download the application-specific data for the Rabby
Mobile Wallet Application. This, in turn, would require extracting some API parameters from the Android
application package.

Severity

Medium.

Preconditions

The attacker would need to obtain the encrypted seed phrases stored on the user’s mobile device or in a
cloud backup.

Technical Details

The encryption key used for encrypting seed phrases and other account details is derived from the user’s
application password using the key derivation function PBKDF2 with 5,000 iterations of SHA-256. This
key derivation function is not adequately secure with such a low number of iterations. An attacker who
managed to obtain the encrypted seed phrases might be able to guess the encryption key by brute force,
as only a small amount of computation is needed to check each guess.

There are no restrictions on the application password other than a minimum length of eight characters, so
many users are likely to choose weak passwords, such as dictionary words or sequences of repeated or
consecutive digits. By trying these weak passwords first, an attacker’s chances of guessing the
encryption key increase significantly.

Remediation

Our team highlighted this issue in the previous audit report, at which time it was only limited to data
stored on the user’s mobile device, but did not affect cloud backups. The Rabby Wallet team decided not
to address the issue due to performance concerns with using a stronger key derivation function or a
higher number of iterations. However, we note that the application also uses PBKDF2 when synchronizing
accounts between the browser extension and the mobile application, and in that context 900,000
iterations of SHA-256 are used with no observed performance degradation. This suggests that there is
substantial capacity for increasing the iteration count used for data stored on the mobile device and in
cloud backups without introducing significant performance overhead.

Security Audit Report | Mobile Application | Rabby Wallet ​ 7
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

In line with OWASP guidelines, we recommend replacing PBKDF2 with a memory-hard function such as
Argon2id. If PBKDF2 must be retained for performance reasons, then we recommend strengthening the
parameters to at least 600,000 iterations of HMAC-SHA-256.

Status

The Rabby Wallet team stated that they must conduct additional benchmarking for more than 600,000
iterations, particularly on Android devices, before making decisions. As this process may be lengthy, they
noted that the fix is unlikely to be included at this time.

Verification

Unresolved.

Issue B: Wallet Addresses Are Not Encrypted in Cloud Backups

Location

apps/mobile/src/core/utils/cloudBackup.ts#L68

apps/mobile/src/core/utils/cloudBackup.ts#L20

Synopsis

When backing up a seed phrase to the cloud, the wallet address is used as the filename, exposing the
user’s wallet addresses to anyone with the ability to access the user’s cloud account.

Impact

Low.​
​
This issue affects the user’s privacy by allowing an attacker to see the user’s wallet addresses and link
them to the identity associated with the user’s cloud account.

Feasibility

Low.

As noted in Issue A, to obtain the data stored in a Google cloud backup, the attacker would need to gain
access to the user’s cloud account and then use the Google Drive API to download the
application-specific data for the Rabby Mobile Wallet Application. This would, in turn, require extracting
some API parameters from the Android application package.

Severity

Low.

Preconditions

An attacker would need to gain access to the user’s cloud account in order to view the filenames
containing the user’s wallet addresses.

Technical Details

Each seed phrase that is backed up to the user’s cloud account is encrypted and stored in a separate file.
The filename is the wallet address associated with the seed phrase.

Remediation

A simple remediation would be to use a random filename for each backup file. However, if a user
repeatedly backed up the same seed phrase, a new file would be created each time, which might

Security Audit Report | Mobile Application | Rabby Wallet ​ 8
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/rabby-wallet/blob/932ec85044bbd806b0ac32660d0e4274e2944401/apps/mobile/src/core/utils/cloudBackup.ts#L68
https://github.com/LeastAuthority/rabby-wallet/blob/932ec85044bbd806b0ac32660d0e4274e2944401/apps/mobile/src/core/utils/cloudBackup.ts#L20

eventually impact backup restoration performance. Duplicate seed phrases would be detected and
discarded after decryption, so the existence of multiple files would not result in duplicate keyring entries.

To avoid this drawback, we recommend storing a salt value in the backup folder and deriving each
filename from the corresponding wallet address by using a suitable key derivation function, such as
Argon2id, with the wallet address and salt as its inputs.

Status

The Rabby Wallet team stated that the proposed remediation could enable associations between backup
files and addresses but considered this only a minimal privacy risk. For this reason, they noted that they
will not address the issue.

Verification

Unresolved.

Issue C: Hardware Wallet Addresses Are Not Encrypted in Mobile Device
Storage

Location

packages/service-keyring/src/keyringService.ts#L759

packages/service-keyring/test/mergeValut.data1.ts#L96

Synopsis

When seed phrases and other account data are stored on the user’s mobile device, some accounts are
excluded from encryption to allow them to be used while the application is locked. The information
excluded from encryption may consist of wallet addresses.

Impact

Low.​
​
This issue affects the user’s privacy by allowing an attacker to view the user’s wallet addresses for certain
hardware wallets.

Feasibility

Low.

As noted in Issue A, to obtain the application data stored on the user’s mobile device, the attacker would
either need to exploit the Rabby Mobile Wallet Application itself in order to execute code in the context of
the application, or need to run code with root privileges on the mobile device. In the case of a rooted or
jailbroken mobile device, this might be achieved by first convincing the user to install an application
controlled by the attacker and then persuading the user to grant root access to the application for some
apparently legitimate reason.

In the case of an Android device with disk encryption disabled (which is an uncommon configuration in
devices released in recent years), an attacker might be able to obtain the application data from a lost,
discarded, or stolen device without compromising any applications.

Severity

Low.

Security Audit Report | Mobile Application | Rabby Wallet ​ 9
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/rabby-wallet/blob/932ec85044bbd806b0ac32660d0e4274e2944401/packages/service-keyring/src/keyringService.ts#L759
https://github.com/LeastAuthority/rabby-wallet/blob/932ec85044bbd806b0ac32660d0e4274e2944401/packages/service-keyring/test/mergeValut.data1.ts#L96

Preconditions

An attacker would need to gain access to the application data stored on the user’s mobile device in order
to access the hardware wallet addresses.

Technical Details

For most wallet types, information about the wallet is encrypted with a key derived from the application
password before being stored on the user’s mobile device. This prevents the information from being
accessed while the application is locked. However, information about hardware wallets such as Ledger
and OneKey is excluded from encryption to allow these wallets to be used while the application is locked.
Private keys are not exposed since they remain on the corresponding hardware device, whereas wallet
addresses can be observed.

Remediation

We recommend holding the unencrypted wallet information in the mobile device’s memory but not storing
it on disk. This would require the user to unlock the application once after each restart (for example, after
rebooting the mobile device) so that the wallet information could be read from disk and decrypted.

Alternatively, depending on the types of interactions needed between dApps and hardware wallets while
the application is locked, we recommend excluding wallet addresses from the information stored in
unencrypted form.

Status

The Rabby Wallet team stated that the issue poses no security risk and only a minimal privacy risk, so
they will not address it.

Verification

Unresolved.

Issue D: In-App Browser Remains Open Over Application Lock Screen

Location

apps/mobile/src/screens/Unlock/Unlock.tsx

apps/mobile/src/core/bridges/middlewares/RPCMethodMiddleware.ts#L108

apps/mobile/src/core/controllers/rpcFlow.ts#L72

Synopsis

If the in-app browser is open when the application automatically locks, the browser remains open over the
application lock screen and can still be used.

Impact

Low.​
​
The issue has two potential impacts: private information about the user’s activity in dApps may be
exposed while the application is locked, and dApps running in the in-app browser may be able to perform
operations that should not be permitted while the application is locked.

Security Audit Report | Mobile Application | Rabby Wallet ​ 10
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/rabby-wallet/blob/audit2/apps/mobile/src/screens/Unlock/Unlock.tsx
https://github.com/LeastAuthority/rabby-wallet/blob/932ec85044bbd806b0ac32660d0e4274e2944401/apps/mobile/src/core/bridges/middlewares/RPCMethodMiddleware.ts#L108
https://github.com/LeastAuthority/rabby-wallet/blob/932ec85044bbd806b0ac32660d0e4274e2944401/apps/mobile/src/core/controllers/rpcFlow.ts#L72

Our team did not identify a method to exploit this issue from the perspective of a dApp running in the
in-app browser. However, the attack surface exposed by the application to dApps running in the browser is
large, and we cannot rule out the possibility that an exploit path exists.

Feasibility

High.

The issue occurs reliably if the in-app browser is open when the application automatically locks, even if
this occurs while the device’s screen is turned off. Users are likely to encounter this issue by chance. This
behavior was observed on Android and confirmed through reproduction on an additional device.

Severity

Low.

Technical Details

The mobile application automatically locks when the user has not interacted with it for a configurable
amount of time. However, if the in-app browser is open when this happens, it remains open over the
application lock screen and can still be used.

The actions that can be taken by dApps running in the in-app browser are restricted by the mobile
application, with tighter restrictions applying to dApps that are not currently in the foreground. However, if
the application automatically locks while the in-app browser is visible, the dApp running in the active tab
is still considered to be in the foreground. It is possible to switch tabs and open new tabs without
unlocking the application.

Attempting to use an RPC method such as eth_requestAccounts from a dApp while the application is
in this state results in a crash. After restarting the application, however, the in-app browser remains open.
A second attempt to use an RPC method at this stage is subject to checks by the application’s
middleware as usual, but we note that because the browser tab is still considered active, the checks that
are applied may not be the appropriate ones for the circumstances. The code performing these checks
contains several to-do comments, suggesting that the developers may not be fully confident that the
checks are complete and correct.

Remediation

We recommend closing the in-app browser when the application automatically locks, thereby protecting
the user’s activity in dApps from exposure and allowing the appropriate restrictions to be applied to RPC
requests made by dApps.

Status

The Rabby Wallet team has implemented the remediation as recommended.

Verification

Resolved.

Issue E: Screenshots Are Not Encrypted in Mobile Device Storage

Location

components/BrowserTab/index.tsx#L291

core/services/browserService.ts#L378

Security Audit Report | Mobile Application | Rabby Wallet ​ 11
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/RabbyHub/rabby-mobile/pull/1031
https://github.com/LeastAuthority/rabby-wallet/blob/932ec85044bbd806b0ac32660d0e4274e2944401/apps/mobile/src/screens/Browser/BrowserScreen/components/BrowserTab/index.tsx#L291
https://github.com/LeastAuthority/rabby-wallet/blob/932ec85044bbd806b0ac32660d0e4274e2944401/apps/mobile/src/core/services/browserService.ts#L378

Synopsis

Screenshots of the in-app browser are captured automatically and stored on the user’s mobile device
without being encrypted. These screenshots may contain information about private activity in dApps.

Impact

Low.​
​
The issue impacts the user’s privacy by allowing an attacker to view information about the user’s activity
in dApps.

Feasibility

Low.

Screenshots are captured and stored during normal usage of the application. However, as noted in Issue
A, to obtain the application data stored on the user’s mobile device, the attacker would either need to
exploit the Rabby Mobile Wallet Application itself in order to execute code within the application’s context,
or run code with root privileges on the mobile device. In the case of a rooted or jailbroken mobile device,
this might be achieved by first convincing the user to install an application controlled by the attacker and
then persuading the user to grant root access to the application for some apparently legitimate reason.

In the case of an Android device with disk encryption disabled (which is an uncommon configuration in
devices released in recent years), an attacker could obtain the application data from a lost, discarded, or
stolen device without compromising any applications.

Severity

Low.

Preconditions

An attacker would need to gain access to the application data stored on the user’s mobile device in order
to access the screenshots.

Technical Details

The mobile application contains an in-app browser for hosting dApps. The browser can have multiple tabs
open at any time. Screenshots of tabs are shown in the browser’s user interface to assist the user in
switching between tabs. These screenshots are captured automatically and stored in the filesystem on
the user’s mobile device. The screenshots are stored without encryption and may contain private
information about the user’s activity in dApps.

Remediation

We recommend encrypting the screenshots before storing them. Alternatively, the screenshots could be
retained in memory only, without being written to the filesystem.

Status

The Rabby Wallet team stated that the issue poses no security risk and only a minimal privacy risk, so
they will not address it.

Verification

Unresolved.

Security Audit Report | Mobile Application | Rabby Wallet ​ 12
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestions

Suggestion 1: Improve Test Coverage

Synopsis

There is insufficient test coverage implemented to test the correctness of the implementation and that the
system behaves as expected. Tests help identify implementation errors, which could lead to security
vulnerabilities.

Sufficient test coverage should include tests for success and failure cases (all possible branches), which
helps identify potential edge cases, and protect against errors and bugs that may lead to vulnerabilities. A
test suite that includes sufficient coverage of unit tests and integration tests adheres to development best
practices. In addition, end-to-end testing is also recommended to assess if the implementation behaves
as intended.

Mitigation

We recommend that comprehensive unit test coverage be implemented in order to identify any
implementation errors and to verify that the implementation behaves as expected.

Status

The Rabby Wallet team has acknowledged this suggestion and noted that, while the recommended
mitigation will not be implemented at this time, it will be taken into consideration for future releases.

Verification

Planned.

Suggestion 2: Update Vulnerable Dependencies

Location

package.json

apps/mobile/package.json

packages/rn-webview-bridge/package.json

Synopsis

Analyzing the project’s dependencies with yarn npm audit reveals one vulnerable dependency:
@babel/runtime, which is affected by CVE-2025-27789.

Mitigation

We recommend updating this dependency and following a process that emphasizes secure dependency
usage to avoid introducing vulnerabilities into the Rabby Mobile Wallet Application and to mitigate
supply-chain attacks. This process includes:

●​ Manually reviewing and assessing currently used dependencies;
●​ Upgrading dependencies with known vulnerabilities to patched versions with fixes;
●​ Replacing unmaintained dependencies with secure and battle-tested alternatives, if possible;
●​ Pinning dependencies to specific versions, including pinning build-level dependencies in the

package.json file to a specific version;
●​ Only upgrading dependencies upon careful internal review for potential backward compatibility

issues and vulnerabilities; and

Security Audit Report | Mobile Application | Rabby Wallet ​ 13
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/rabby-wallet/blob/audit2/package.json
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/apps/mobile/package.json
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/packages/rn-webview-bridge/package.json
https://github.com/advisories/GHSA-968p-4wvh-cqc8

●​ Including Automated Dependency auditing reports in the project’s CI/CD workflow.

Status

The Rabby Wallet team stated that they will not update dependencies unless necessary to avoid
introducing additional security risks. They also noted that CVE-2025-27789 has no impact on their
implementation, as no untrusted string will be used.

Verification

Unresolved.

Suggestion 3: Remove Logging for Production

Location

apps/mobile/src/core/utils/cloudBackup.ts

Synopsis

The current implementation emits logs for debugging purposes in the cloudBackup.ts file. Although
this can be beneficial during the development process, it also poses a vector for leaking sensitive data in
a production release.

Mitigation

We recommend removing or conditionally disabling debug logging in production builds to avoid exposing
potentially sensitive information.

Status

The Rabby Wallet team has removed debug logging from production builds.

Verification

Resolved.

Security Audit Report | Mobile Application | Rabby Wallet ​ 14
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/rabby-wallet/blob/audit2/apps/mobile/src/core/utils/cloudBackup.ts
https://github.com/LeastAuthority/rabby-wallet/blob/audit2/apps/mobile/src/core/utils/cloudBackup.ts
https://github.com/RabbyHub/rabby-mobile/blob/develop/apps/mobile/babel.config.js#L100

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.​

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Security Audit Report | Mobile Application | Rabby Wallet ​ 15
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Mobile Application | Rabby Wallet ​ 16
2 September 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Mobile Application
	Overview
	Background
	Project Dates
	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	System Design
	Specific Components Examined

	Dependencies
	Code Quality
	Tests

	Documentation and Code Comments
	Scope

	Specific Issues & Suggestions
	​Issue A: Weak Key Derivation Function and Parameters
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Remediation
	Status
	Verification

	Issue B: Wallet Addresses Are Not Encrypted in Cloud Backups
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Remediation
	Status
	Verification

	Issue C: Hardware Wallet Addresses Are Not Encrypted in Mobile Device Storage
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Remediation
	Status
	Verification

	Issue D: In-App Browser Remains Open Over Application Lock Screen
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Technical Details
	Remediation
	Status
	Verification

	Issue E: Screenshots Are Not Encrypted in Mobile Device Storage
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Remediation
	Status
	Verification

	Suggestions
	Suggestion 1: Improve Test Coverage
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 2: Update Vulnerable Dependencies
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: Remove Logging for Production
	Location
	Synopsis
	Mitigation
	Status
	Verification

	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

