
Starky and zkEVM Kernel
Security Audit Report

Polygon
Updated Final Audit Report: 22 August 2024

Table of Contents
Overview

Background
Project Dates
Review Team

Coverage
Target Code and Revision
Supporting Documentation
Areas of Concern

Findings
General Comments

System Design
Starky
Kernel

Code Quality
Documentation and Code Comments
Scope

Specific Issues & Suggestions
Issue A: Stark Verifier Trusts the Prover on the Validity of degree_bits
Issue B: Fiat-Shamir Initialization in Starky Crate Is Incomplete
Issue C: Fiat-Shamir Initialization in zkEVM Is Incomplete
Issue D: Missing Check in ECREC
Issue E: BLOCKHASH Incorrect for Max Block Height
Issue F: Some Privileged Instructions Not Restricted to Kernel Mode
Issue G: Type Confusion in Access List Bounds Check
Issue H: Incomplete Bounds Check in CALLDATACOPY Instruction
Issue I: Integer Overflow in CODECOPY and EXTCODECOPY Instructions
Issue J: Integer Overflow When Creating New Contexts

Suggestions
Suggestion 1: Implement a Script To Compute the Soundness as a Function of All Relevant
Parameters
Suggestion 2: Improve Code Quality
Suggestion 3: Improve Testing
Suggestion 4: Protect Control Flow Integrity of Jumps in Kernel Code

About Least Authority
Our Methodology

Security Audit Report | Starky and zkEVM Kernel | Polygon 1
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Polygon has requested that Least Authority perform a security audit of Starky and zkEVM Kernel.

Project Dates
● May 15, 2024 - June 27, 2024: Initial Code Review (Completed)
● July 1, 2024: Delivery of Initial Audit Report (Completed)
● 16 August, 2024: Verification Review (Completed)
● 16 August, 2024: Delivery of Final Audit Report (Completed)
● 22 August, 2024: Delivery of Updated Final Audit Report (Completed)

Review Team
● George Gkitsas, Security Researcher and Engineer
● Sven M. Hallberg, Security Researcher and Engineer
● Jasper Hepp, Security Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer
● Dominic Tarr, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of Starky and zkEVM Kernel followed by
issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories/directories are considered in scope for the review:
● Starky:

https://github.com/0xPolygonZero/plonky2/tree/main/starky
○ And the usage of the Starky crate in the zk_evm repo:

https://github.com/0xPolygonZero/zk_evm/tree/least_authority/evm_arithmetization
/src

● zkEVM Kernel:
https://github.com/0xPolygonZero/zk_evm/tree/least_authority/evm_arithmetization/src/cpu/ker
nel

Specifically, we examined the Git revisions for our initial review:

● Starky: 76da1383384a99691506b3904dd8c2ddfd057555
● zkEVM Kernel: c95155ce4bf234f6e7ba400388c6433220c443ba

For the verification, we examined the Git revision:

● Starky: 3ddcce4b56f684c9f94e51b72534d38677d22273
● zkEVM Kernel:4534d24323c7981b2bca2b2afa2734f8aa3f01e0

For the review, these repositories were cloned for use during the audit and for reference in this report:

● Starky:
https://github.com/LeastAuthority/PolygonZero-plonky2

Security Audit Report | Starky and zkEVM Kernel | Polygon 2
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/0xPolygonZero/plonky2/tree/main/starky
https://github.com/0xPolygonZero/zk_evm/tree/least_authority/evm_arithmetization/src
https://github.com/0xPolygonZero/zk_evm/tree/least_authority/evm_arithmetization/src
https://github.com/0xPolygonZero/zk_evm/tree/least_authority/evm_arithmetization/src/cpu/kernel
https://github.com/0xPolygonZero/zk_evm/tree/least_authority/evm_arithmetization/src/cpu/kernel
https://github.com/LeastAuthority/PolygonZero-plonky2

● zkEVM Kernel:
https://github.com/LeastAuthority/PolygonZero-zk_evm

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Website:
https://polygon.technology/polygon-zkevm

● The Polygon Zero zkEVM Draft:
https://github.com/0xPolygonZero/zk_evm/blob/least_authority/docs/arithmetization/zkevm.pdf

In addition, this audit report references the following documents:
● A. G. Aztec, Z. J. Williamson, and O. Ciobotaru, “PLONK: Permutations over Lagrange-bases for

Oecumenical Noninteractive arguments of Knowledge.” IACR Cryptology ePrint Archive, 2019,
[AWC19]

● E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transparent, and post-quantum
secure computational integrity.” IACR Cryptology ePrint Archive, 2018, [BBH+18]

● D. Bernhard, O. Pereira, and B. Warinschi, “How not to Prove Yourself: Pitfalls of the Fiat-Shamir
Heuristic and Applications to Helios.” IACR Cryptology ePrint Archive, 2016, [BPW16]

● A. Chiesa and E. Yogev, “Subquadratic SNARGs in the Random Oracle Model.” IACR Cryptology
ePrint Archive, 2021, [CY21]

● Q. Dao, J. Miller, O. Wright, and P. Grubbs, “Weak Fiat-Shamir Attacks on Modern Proof Systems.”
IACR Cryptology ePrint Archive, 2023, [DMW+23]

● H. Dobbertin, A. Bosselaers, and B. Preneel, “RIPEMD-160: A strengthened version of RIPEMD.”
Springer Link, 2005, [DBP05]

● A. Gabizon, Z. J. Williamson, and O. Ciobotaru, "Plonk: Permutations over Lagrange-bases for
Oecumenical Noninteractive arguments of Knowledge." IACR Cryptology ePrint Archive, 2022,
[GWC22]

● U. Haböck, “Multivariate lookups based on logarithmic derivatives.” IACR Cryptology ePrint
Archive, 2023, [Haböck23]

● E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, et al., “KEVM: A Complete Formal
Semantics of the Ethereum Virtual Machine.” IEEE 31st Computer Security Foundations
Symposium (CSF), 2018, [HSR+18]

● D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital Signature Algorithm
(ECDSA).” Springer Link, 2014, [JMV14]

● G. Wood, “Ethereum: A Secure Decentralized Generalised Transaction Ledger.” Ethereum, 2024,
[Wood24]

● Polygon Zero Team, “Plonky2: Fast Recursive Arguments with PLONK and FRI.” (draft version)
● Certicom Research, “Standards for Efficient Cryptography (SEC).” Standards for Efficient

Cryptography Group (SECG), 2000, [Version 1.0]
● Blog post, “Beyond Limits: Pushing the Boundaries of ZK-EVM”:

https://web.archive.org/web/20240627230838/https://toposware.medium.com/beyond-limits-pu
shing-the-boundaries-of-zk-evm-9dd0c5ec9fca

● FIPS 180-4 | Secure Hash Standard (SHS):
https://csrc.nist.gov/pubs/fips/180-4/upd1/final

● EIP-2:
https://eips.ethereum.org/EIPS/eip-2

Security Audit Report | Starky and zkEVM Kernel | Polygon 3
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/PolygonZero-zk_evm
https://polygon.technology/polygon-zkevm
https://github.com/0xPolygonZero/zk_evm/blob/least_authority/docs/arithmetization/zkevm.pdf
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2016/771.pdf
https://eprint.iacr.org/2021/281
https://eprint.iacr.org/2023/691
https://doi.org/10.1007/3-540-60865-6_44
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2022/1530.pdf
https://ieeexplore.ieee.org/document/8429306
https://doi.org/10.1007/s102070100002
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/0xPolygonZero/plonky2/blob/main/plonky2/plonky2.pdf
https://www.secg.org/SEC1-Ver-1.0.pdf
https://web.archive.org/web/20240627230838/https://toposware.medium.com/beyond-limits-pushing-the-boundaries-of-zk-evm-9dd0c5ec9fca
https://web.archive.org/web/20240627230838/https://toposware.medium.com/beyond-limits-pushing-the-boundaries-of-zk-evm-9dd0c5ec9fca
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://eips.ethereum.org/EIPS/eip-2
https://eips.ethereum.org/EIPS/eip-2

● EIP-3855: PUSH0 instruction:
https://eips.ethereum.org/EIPS/eip-3855

● EIPs/EIPS/eip-155.md:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Performance problems or other potential impacts on performance;
● Data privacy, data leaking, and information integrity;
● Vulnerabilities in the code leading to adversarial actions and other attacks;
● Protection against malicious attacks and other methods of exploitation; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
The Polygon team implements a zkEVM based on the STARK protocol [BBH+18] and a recursive Plonk
SNARK [GWC22]. The zkEVM aims to provide an execution environment equivalent to the Ethereum
Virtual Machine (EVM), allowing Ethereum transactions and smart contract executions. Because of the
underlying cryptographic tools, zkEVMs aim to provide a solution to the scalability problem of the
Ethereum blockchain (see this blog post for more details).

The Polygon Zero zkEVM implements the EVM specification [Wood24] in terms of a simplified “native” VM
that is modeled by seven STARK tables, each with their own operations (such as Arithmetics or CPU). The
STARK tables are linked via Cross-table Lookups (CTLs) [Haböck23]. Constraints on the tables and on the
CTLs are used to generate a STARK proof for the correct execution of one EVM transaction. To generate a
proof for an Ethereum block, the Polygon team recursively aggregates transactions using Plonky2. The
result is a proof of the correct (i.e., EVM equivalent) execution of a set of Ethereum transactions.

Within the zkEVM, a "Kernel" of native code emulates the EVM proper through a table of "system calls"
that implement any EVM opcode not natively supported. Some additional native opcodes that can only be
used from the Kernel code are provided for efficiency or low-level operations. The Kernel is written in a
custom dialect of the EVM assembly language and implements creation of contracts, execution of
transactions and method calls, memory management, the "precompiled" contracts, etc.

Our team previously delivered a Final Audit Report on February, 9, 2024 in which we reviewed the STARK
prover's constraints system to check the correct execution of the Ethereum Stack machine and its
execution of Ethereum smart contracts – and ensure the correctness of the proof. For this audit, our team
reviewed the Starky and Kernel components of the system to check for the correctness of the
implementation and identify any security concerns or issues.

System Design

Starky

For the cryptography part of this audit, we reviewed the Starky crate in the Plonky2 repository as a
standalone code. The Starky crate contains a STARK prover and verifier [BBH+18] as well as a recursive

Security Audit Report | Starky and zkEVM Kernel | Polygon 4
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eips.ethereum.org/EIPS/eip-3855
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2019/953.pdf
https://toposware.medium.com/beyond-limits-pushing-the-boundaries-of-zk-evm-9dd0c5ec9fca
https://ethereum.github.io/yellowpaper/paper.pdf
https://eprint.iacr.org/2022/1530.pdf
https://github.com/0xPolygonZero/plonky2/blob/main/plonky2/plonky2.pdf
https://eprint.iacr.org/2018/046

verifier based on the Plonky2 paper. In addition, we reviewed the incorporation of the Starky crate into
the zkEVM — in particular, the STARK prover and verifier for the zkEVM specific STARK tables and the
constraint system of the recursive verifier for one transaction, one aggregation step, and one block.

We found that the STARK verifier in the Starky crate computes the degree bits from prover data and
hence trusts the prover on the correctness of this data (Issue A). We additionally found that the STARK
prover opens the proofs at the same opening point for each execution and that the protocol reuses
Fiat-Shamir challenges at different levels (i.e., for different STARK tables and different lookup arguments).
The Polygon team argued convincingly that this is not a security issue.

We reviewed the implementation of lookup arguments against the specification of Polygon in the zkEVM
documentation and examined, in particular, the usage of logup for range checks and cross table lookups
(CTL). We did not find any issue in the Starky crate nor with its integration into the zkEVM.

We reviewed the code against best practice Fiat-Shamir principles (see [BPW16]). We found that the
Fiat-Shamir challenger is not initialized properly in the Starky crate (Issue B) and in the STARK prover in
the zkEVM (Issue C).

Since the Starky crate does not use the optional blinding to introduce the hiding property, we did not
reason about the zero knowledge of the STARK. The Polygon team explained that they do not plan to add
zero knowledge on the STARK level but rather in the recursive Plonk wrapper proof.

Kernel

For the Kernel part of this audit, our team reviewed the Kernel and assembler implementations. We also
reviewed components that are external to the Kernel but are pertinent to the Kernel’s operation, such as
the CPU constraints that handle privileged instructions.

Our team noted that using a low-level custom language for the Kernel implementation is not an ideal
choice, as it lacks features that can reduce security issues. Utilizing a high-level type-safe language would
reduce exposure to issues, such as type confusion (Issue H) and can significantly help reasoning about —
and auditing — the code. Note that no such language implementation is immediately available for the
novel (native) VM and would therefore have to be developed.

We identified correctness issues (Issue D, Issue E) when comparing the implementation against the EVM
specification [Wood24]. Although we could not find a way to exploit these Issues, deviation from standard
behavior can open an attack vector, and we recommend strictly following the EVM specification.

Our team also identified an issue (Issue F) where the implementation deviates from the zkEVM draft
specification, as some privileged instructions can be executed outside of Kernel mode. If exploited, it
could lead to unintended consequences in the normal execution flow. During our review, we shared this
finding with the Polygon team, and the Polygon team immediately addressed and resolved the Issue.

Additionally, while we acknowledge that some issues (Issue H, Issue I) would incur considerably high gas
costs to be exploited, we nevertheless recommend always prioritizing security and implementing the
proper checks.

Similarly, user memory access is limited to addresses within the lower 32-bit portion of the 256-bit EVM
address space. This limit is enforced due to the implicit assumption that exceeding this limit would be
prohibitively expensive in any real-world scenario. However, the EVM specification, as described in
[Wood24], explicitly requires that an implementation still handle such extreme cases correctly.

We additionally recommend considering a formal verification of the Kernel, although our team

Security Audit Report | Starky and zkEVM Kernel | Polygon 5
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/0xPolygonZero/plonky2/blob/main/plonky2/plonky2.pdf
https://eprint.iacr.org/2016/771.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/0xPolygonZero/zk_evm/blob/least_authority/docs/arithmetization/zkevm.pdf
https://github.com/0xPolygonZero/zk_evm/blob/least_authority/docs/arithmetization/zkevm.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

acknowledges that this would require significant effort, which would include formal semantics for the
EVM (as a reference, we recommend considering prior work, notably KEVM [HSR+18]).

Code Quality
Our team performed a manual review of the repositories in scope and found the codebases relating to the
Starky crate and STARK in zkEVM to be clean and well-organized. Additionally, the Kernel assembly code
is generally organized, and the custom macro facility helps abstraction. However, our team did identify
some areas of improvement that would increase the overall quality of code (Suggestion 2).

Tests

The Kernel code has an extensive testing suite but lacks completeness. Since there is no test coverage
facility for the tests of the custom assembly code, we were unable to accurately estimate the testing
thoroughness. Our team also noted that test vector verification is not properly provided. We recommend
improving test coverage (Suggestion 3).

Additionally, our team found that the Starky crate as well as the zkEVM have some tests. However, we
did not quantitatively assess the test coverage.

Documentation and Code Comments
The project documentation provided for the zkEVM and the Kernel is generally accurate and helpful;
however, it is not extensive. For the Starky crate as well as its integration into the zkEVM, no
documentation was provided by the Polygon team. For future audits, our team recommends providing
more thorough documentation to facilitate the ability to understand the intention of the code, which is
critical for assessing the security and the correctness of the implementation. Additionally, the zkEVM
codebase includes relevant descriptions that sufficiently describe the intended behavior of
security-critical components and functions, and the Kernel assembly code is thoroughly commented with
respect to stack contents. However, comments on the actual functioning of the code are sparse.

Scope
Our team did not reason about the constraint system of each STARK table, as they were included in the
scope of the Final Audit Report that Least Authority delivered on February 9, 2024. We also did not reason
about the security of any functions in Plonky2 outside of the Starky crate, in particular the FRI prover
and verifier, as they were out of the scope of this review.

Due to the complexity of the Kernel codebase, which is written in a custom low-level language, certain
areas (e.g., JUMPDEST handling and memory) could benefit from a more in-depth investigation. Our team
additionally noted that the journal and transactions components as well as the expmod algorithms
were not reviewed during this audit.

Dependencies

Running cargo audit and cargo deny for the Plonky2 and zkEVM repositories yielded no issues.
Hence, our team did not identify any vulnerabilities in the implementation's use of dependencies.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

Security Audit Report | Starky and zkEVM Kernel | Polygon 6
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://ieeexplore.ieee.org/document/8429306

ISSUE / SUGGESTION STATUS

Issue A: Stark Verifier Trusts the Prover on the Validity of degree_bits Resolved

Issue B: Fiat-Shamir Initialization In Starky Crate Is Incomplete Partially Resolved

Issue C: Fiat-Shamir Initialization in zkEVM Is Incomplete Partially Resolved

Issue D: Missing Check in ECREC Resolved

Issue E: BLOCKHASH Incorrect for Max Block Height Unresolved

Issue F: Some Privileged Instructions Not Restricted to Kernel Mode Resolved

Issue G: Type Confusion in Access List Bounds Check Resolved

Issue H: Incomplete Bounds Check in CALLDATACOPY Instruction Partially Resolved

Issue I: Integer Overflow in CODECOPY and EXTCODECOPY Instructions Resolved

Issue J: Integer Overflow When Creating New Contexts Resolved

Suggestion 1: Implement a Script To Compute the Soundness as a Function
of All Relevant Parameters

Partially Resolved

Suggestion 2: Improve Code Quality Planned

Suggestion 3: Improve Testing Partially Resolved

Suggestion 4: Protect Control Flow Integrity of Jumps in Kernel Code Unresolved

Issue A: Stark Verifier Trusts the Prover on the Validity of degree_bits

Location

starky/src/proof.rs#L45

starky/src/verifier.rs#L110

starky/src/verifier.rs#L223

Synopsis

The verifier does not check the validity of the parameter degree_bits but, instead, trusts the prover to
provide correct data.

Impact

A malicious prover could extend the Merkle proof openings and hence trick the verifier into using an
incorrect value for degree_bits, which could lead to undefined behavior.

Security Audit Report | Starky and zkEVM Kernel | Polygon 7
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/PolygonZero-plonky2/blob/76da1383384a99691506b3904dd8c2ddfd057555/starky/src/proof.rs#L45
https://github.com/LeastAuthority/PolygonZero-plonky2/blob/76da1383384a99691506b3904dd8c2ddfd057555/starky/src/verifier.rs#L110
https://github.com/LeastAuthority/PolygonZero-plonky2/blob/76da1383384a99691506b3904dd8c2ddfd057555/starky/src/verifier.rs#L223

Technical Details

This Issue occurs when the verifier calls the function recover_degree_bits to obtain the degree bits
value. This function computes the value from the length of the Merkle proof openings provided by the
prover as well as data from the STARK config file.

Remediation

We recommend implementing a check on the parameter degree_bits in the verifier by comparing it
against a value derived from the associated constraint system.

Status

The Polygon team has acknowledged the finding and has convinced us that it is not a security issue,
because degree_bits is the definitive source of truth, and cannot be maliciously altered in any
successful attack. If the length of a Merkle proof does not align with degree_bits (considering any
adjustments like blowup), the Merkle proof will fail and any adaptation of associated Merkle trees to the
wrong degree_bits is not a viable concern.

Verification

Resolved.

Issue B: Fiat-Shamir Initialization in Starky Crate Is Incomplete

Location

starky/src/prover.rs#L73

Synopsis

The initialization of the Fiat-Shamir challenger for the STARK implementation in the Starky crate does
not adhere to the principles of Fiat-Shamir, which require the challenger to absorb all information the
verifier has access to at any given step in the computation.

Impact

Not absorbing parameters, such as the public inputs or the FRI configuration, allows a malicious prover to
tamper with this data. Depending on the use case of this STARK implementation, this can lead to
security-related consequences (see, for example, [DMW+23]).

Technical Details

In the current implementation, the prover and the verifier initialize the challenger with the hash of the trace
commitment. The principles of Fiat-Shamir recommend absorbing all the information the verifier has
access to. Based on this, we identified that the following items are missing:

● A global domain separator to ensure that proofs of different domains are incompatible;
● A configuration for FRI, including the rate_bits, num_query_rounds or

proof_of_work_bits;
● A representation of the underlying Fields and Field Extensions;
● All pre-decided generators;
● A representation of the AIR in use;
● A representation of the Polynomial Commitment Scheme (PCS);
● The public values used; and
● The potential maximal degree of all constraints;

Security Audit Report | Starky and zkEVM Kernel | Polygon 8
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/PolygonZero-plonky2/blob/76da1383384a99691506b3904dd8c2ddfd057555/starky/src/prover.rs#L73
https://eprint.iacr.org/2023/691

Remediation

We recommend properly initializing the challenger by including all of the items listed above.

Status

The Polygon team has added the public values. The team does not consider any data beyond the trace
commitment and the public values to be relevant.

Verification

Partially Resolved.

Issue C: Fiat-Shamir Initialization in zkEVM Is Incomplete

Location

evm_arithmetization/src/prover.rs#L106

Synopsis

The initialization of the Fiat-Shamir challenger for the STARK implementation in the zkEVM does not
adhere to the principles of Fiat-Shamir, which require the challenger to absorb all information the verifier
has access to at any given step in the computation.

Impact

Not absorbing parameters, such as the FRI configuration, allows a malicious prover to tamper with this
data. Depending on the use case of this STARK implementation, this can lead to security-related
consequences (see, for example, [DMW+23]).

Technical Details

In the current implementation, the prover and the verifier initialize the challenger with the hash of the trace
commitment and the public values. This is an improvement in comparison to Issue B. However, it is still
missing crucial information, such as the FRI config data as well as other critical items, as listed in the
Technical Details of Issue B.

Remediation

We recommend properly initializing the challenger by including all of the items listed above in the
Technical Details of Issue B.

Status

The Polygon team stated that public values are part of the initialization. The team does not consider any
data beyond the trace commitment and the public values to be relevant.

Verification

Partially Resolved.

Issue D: Missing Check in ECREC

Location

curve/secp256k1/ecrecover.asm#L140

Security Audit Report | Starky and zkEVM Kernel | Polygon 9
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/prover.rs#L106
https://eprint.iacr.org/2023/691
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/asm/curve/secp256k1/ecrecover.asm#L140

Synopsis

ECREC precompile, as defined in [Wood24], utilizes ECDSARECOVER. ECDSARECOVER requires a range
check of the value of s, as described in Equation 304. This check is missing from the implementation.

Impact

This is a correctness Issue. According to EIP-2, this missing check “opens a transaction malleability
concern”; however, “this is not a serious security flaw, especially since Ethereum uses addresses and not
transaction hashes as the input to an ether value transfer or other transaction.”

Our team did not identify any security concerns directly stemming from this Issue.

Technical Details

According to Equation 304 in [Wood24], a signature is invalid if it does not follow this range check
. However, the implementation only checks for . This0 < 𝑠 < 𝑠𝑒𝑐𝑝256𝑘1𝑛 / 2 + 1 0 < 𝑠 < 𝑠𝑒𝑐𝑝256𝑘1𝑛

omission permits two values of s per signature.

Remediation

We suggest implementing the missing check. Additionally, we recommend adding a regression test
targeting this case.

Status

The Polygon team has fixed this issue.

Verification

Resolved.

Issue E: BLOCKHASH Incorrect for Max Block Height

Location

asm/memory/metadata.asm#L294-L297

Synopsis

The BLOCKHASH instruction is expected to work on any allowed block height, but it will return an error if
invoked at block height
0xff.

Impact

The BLOCKHASH instruction cannot be considered fully equivalent to the specification. This misalignment
between the expected and actual behavior will disrupt, at the specific block height, smart contracts that
utilize BLOCKHASH.

Preconditions

The Block height would have to be
0xff (256-bits with
value 1).

Feasibility

The block height that triggers this behavior is a large number. Assuming that the current block generation
pace does not accelerate dramatically, this is unlikely to be a problem in practice.

Security Audit Report | Starky and zkEVM Kernel | Polygon 10
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://ethereum.github.io/yellowpaper/paper.pdf
https://eips.ethereum.org/EIPS/eip-2
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/0xPolygonZero/zk_evm/pull/363.
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/asm/memory/metadata.asm#L294-L297

Technical Details

When cur_block_number is
0xff (256-bits with
value 1), the BLOCKHASH implementation (code line) returns an error (zero value). The reasoning behind
this behavior is to protect the following check from an overflow. Before this check is performed,
cur_block_number is increased by one, which results in a value wrap-around when
cur_block_number is at its max value. The intended check is block_number >=
cur_block_number, but the check is transformed to its equivalent block_number + 1 >
cur_block_number. Due to this, there is a need for an increment by one and, subsequently, the need for
the overflow check.

Remediation

We recommend implementing the check without incrementing by one and removing the overflow check.

Status

The Polygon team acknowledged the finding but decided not to resolve this Issue since it is unlikely to be
a problem in practice.

Verification

Unresolved.

Issue F: Some Privileged Instructions Not Restricted to Kernel Mode

Location

src/cpu/decode.rs#L78

src/cpu/decode.rs#L226

Synopsis

According to the zkEVM specification section “5.3 Privileged instructions,” the operations ADDFP254,
MULFP254, SUBFP254, and SUBMOD are privileged, and, as such, they must be executed only while in
Kernel mode. This restriction is missing from the implementation.

Impact

Although our team did not identify a specific attack vector, we note that this Issue can result in unintended
behavior that could be exploited by a malicious actor.

Feasibility

This type of exploit requires an understanding of EVM opcode-level programming.

Remediation

We suggest implementing necessary checks for the affected instructions, similarly to the rest of the
privileged instructions. Additionally, we recommend refactoring the code to replace special case handling
for each group of instructions and utilizing, instead, a configuration/data structure. The configuration
would store information about the instructions’ privileges, while the functional part would generate the
required constraints based on the configuration. This approach can help to alleviate risks for similar
omissions in the future.

Status

The Polygon team has implemented the remediation as recommended.

Security Audit Report | Starky and zkEVM Kernel | Polygon 11
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/asm/memory/metadata.asm#L295
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/asm/memory/metadata.asm#L297
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/decode.rs#L78
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/decode.rs#L226
https://github.com/0xPolygonZero/zk_evm/pull/333

Verification

Resolved.

Issue G: Type Confusion in Access List Bounds Check

Location

kernel/asm/core/access_lists.asm#L75

kernel/asm/core/access_lists.asm#L217

Synopsis

The misinterpretation of a global variable in the Kernel bookkeeping code makes an associated bounds
check largely ineffective. This allows a malicious prover to supply false data and gain invalid write access
to Kernel memory across context boundaries.

Impact

The corruption of internal Kernel data structures as well as cross-context user memory can have
unpredictable (i.e., potentially catastrophic) consequences.

Preconditions

An attacker would have to accurately predict memory access patterns by the EVM emulation and
understand the data structures involved. Some restrictions would have to be maintained on the particular
values used.

Feasibility

This Issue is similar to common heap memory vulnerabilities. An attacker familiar with basic techniques
can likely exploit it. The exact impact depends on effort invested and whether the remaining restrictions
apply or can be overcome.

Technical Details

Whenever an EVM instruction such as BALANCE accesses an Ethereum contract, that contract’s address
is entered into a list of “accessed addresses.” In the zkEVM, this list is implemented as an ordered (singly)
linked list that is stored in a dedicated segment of a given context’s memory space. This segment is
treated as an array of list nodes, each node consisting of a value (list element) and a pointer to the next
node. When a new element is to be entered into the list, the appropriate place for insertion is determined,
a new list node is constructed (extending the array), and the “next pointer” of its designated predecessor
node is updated. Upon the eventual removal of a list element, its predecessor and successor are
determined, the predecessor’s “next pointer” is updated, and the removed node is marked as deleted by
storing an invalid value in its “next pointer” field.

Since searching the linked list for a given element (or its future place) is a relatively costly operation, the
zkEVM avoids this overhead by leveraging the PROVER_INPUT instruction. This special (privileged)
instruction serves as an “oracle” for operations that are costly to compute but inexpensive to verify,
offloading the costly computation to the prover, while the VM code only has to verify that the result is
correct (i.e., that the prover was honest).

Part of the validity checks on a (purported) list location is to verify that its address falls within the
allocated array of list nodes within the access list segment. PROVER_INPUT yields a pointer that is then
validated with the macro get_valid_addr_ptr. This macro converts the pointer into an offset by
subtracting the segment base address and then compares this offset to the global variable
GLOBAL_METADATA_ACCESSED_ADDRESSES_LEN. However, despite its name, the variable does not

Security Audit Report | Starky and zkEVM Kernel | Polygon 12
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/asm/core/access_lists.asm#L75
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/asm/core/access_lists.asm#L217

contain a length/size. It contains a pointer to (one past) the end of the allocated array – that is, a bound
on the pointer rather than on the offset. This is evident from the initialization code in the function
init_access_lists, where an address (pointer) is placed on the stack, incremented twice while
storing an initial (dummy) node, and then saved to GLOBAL_METADATA_ACCESSED_ADDRESSES_LEN.

Since the base address, and thus GLOBAL_METADATA_ACCESSED_ADDRESSES_LEN, includes the
(nonzero) context number in its higher-order portion, the erroneous check will pass (correctly) for valid
pointers, but also for those that place the purported list node far outside the bounds of the correct
segment, or outside the bounds of the correct context.

This will allow an attacker (on insert) to cause the address of a newly-allocated list node to be written into
an almost arbitrary memory location, corrupting control flow. On removal, the value to be written is taken
from the data structure at the attacker-controlled location, allowing even more control.

An analogous vulnerability exists with respect to the list of “accessed storage keys” and the variable
GLOBAL_METADATA_ACCESSED_STORAGE_KEYS_LEN.

Remediation

We recommend correcting the logic of the macros get_valid_addr_ptr and
get_valid_storage_ptr as well as changing the name of the global variables to properly reflect their
type.

Status

The Polygon team has independently discovered this issue and implemented the remediation as
recommended, though retaining the original variable names.

Verification

Resolved.

Issue H: Incomplete Bounds Check in CALLDATACOPY Instruction

Location

kernel/asm/memory/syscalls.asm#L78

Synopsis

Lax bounds checks in the implementation of CALLDATACOPY and (to a lesser extent RETURNDATACOPY),
theoretically give an attacker access to Kernel data structures. Only gas cost considerations likely avoid
practical exploitability.

Impact

Writing (even zero values) into unintended parts of Kernel memory could have unpredictable
consequences. Unintended read access represents a violation of the EVM specification, but does not
reveal new information to an attacker.

Feasibility

Given the gas costs involved in storing or copying large amounts of data, this Issue is unlikely to be
practically exploitable.

Security Audit Report | Starky and zkEVM Kernel | Polygon 13
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/0xPolygonZero/zk_evm/pull/217
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/asm/memory/syscalls.asm#L78

Technical Details

The wcopymacro that is used to implement the CALLDATACOPY and RETURNDATACOPY instructions
checks that its destination address is “reasonable” — that is, below the limit considered practically
reachable given gas costs. It does not account for the size of the data in this check.

The EVM specification [Wood24] requires CALLDATACOPY to store a value of zero for any index that falls
outside the bounds of the source area. The wcopymacro branches to a code path that copies all zeroes
in the case where the source (base) offset is strictly greater than the size of the available data. We note
that a base offset equal to the available size is already sufficient for the entire source range to be out of
bounds and would thus justify the “all zeroes” code path. However, zero values also have to be written for
any part of the source range that falls out of bounds. Since unused memory is initialized to zero, the
correct value is written if a source address that is technically out of bounds is still a valid address within
the associated segment of Kernel memory. The latter is only assured by the present code under the
assumption that the calldatamemory segment can never be full enough, nor the size argument to
CALLDATACOPY large enough, to reach across the boundary into the next segment.

A more thorough implementation would properly identify any parts of the source that are in bounds
versus those that are not and copy the former while explicitly writing zero values for the latter. Notably, the
macro codecopy_after_checks that is used for the CODECOPY instruction already does just that.

The RETURNDATACOPY instruction, while also using wcopy, follows different semantics in that it is
required to fail if any source address is out of bounds, and the implementation correctly includes this
check.

Remediation

We recommend adapting or reusing the existing solution in codecopy_after_checks.

Status

The Polygon team has implemented an alternative remediation that causes a controlled fault in the critical
case where the data window to be copied overlaps both the available data and the end of the internal
calldatamemory segment. We note that this still deviates from the EVM specification which requires
any access outside the available data to succeed and yield zero.

Verification

Partially Resolved.

Issue I: Integer Overflow in CODECOPY and EXTCODECOPY Instructions

Location

kernel/asm/memory/syscalls.asm#L233

Synopsis

An unchecked addition operation theoretically gives an attacker unintended read access to Kernel
memory.

Impact

Unintended read access represents a violation of the EVM specification but does not reveal new
information to an attacker.

Security Audit Report | Starky and zkEVM Kernel | Polygon 14
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/0xPolygonZero/zk_evm/pull/445
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/asm/memory/syscalls.asm#L233

Feasibility

Given the gas costs involved in storing or copying large amounts of data, this Issue is unlikely to be
practically exploitable.

Technical Details

The macro codecopy_after_checks that is used to implement the CODECOPY and EXTCODECOPY
instructions (in a similar manner to the wcopymacro discussed in Issue H) calculates the upper bound of
its source buffer as “offset + size” without checking for integer overflow. Passing a large size argument
could yield a very small result, making the code consider the entire source area to be within bounds. This
would lead to reading out-of-bounds data.

Remediation

We recommend leveraging the existing add_or_faultmacro to explicitly check for overflow on the first
addition of offset and size.

Status

The Polygon team has implemented the remediation as recommended.

Verification

Resolved.

Issue J: Integer OverflowWhen Creating New Contexts

Location

kernel/asm/core/util.asm#L14

Synopsis

The global context ID counter is incremented without checking for overflow. This would theoretically allow
an attacker to compromise existing contexts, including the privileged Kernel context.

Impact

Obtaining a previously-assigned context ID has an unpredictable impact on the control flow of other (user)
contexts. Obtaining the privileged ID of the Kernel context (0) would compromise a central security
assumption of the system.

Feasibility

Given that the counter in question starts at zero, has a width of 192-bits, and can only be incremented in
steps of one, we consider this Issue unexploitable in practice.

Technical Details

The macro next_context_id is used when a new context is created (for example, during a CALL
instruction) to assign the corresponding number to the new context. This “context ID” becomes part of the
internal memory addresses used by the Kernel. Specifically, it forms the most significant 192 bits of the
256-bit address (with the lower 64 bits divided between “segment” and “virtual” address). Context IDs are
never reused, so the Kernel simply keeps a counter of (effectively) 192 bits, and creating a new context
increments this counter (GLOBAL_METADATA_LARGEST_CONTEXT) to the next value.

The increment operation uses the add_constmacro and does not check for integer overflow. Thus,
theoretically, the counter could wrap around, leading to the reuse of context IDs, starting with zero (the
privileged Kernel context).

Security Audit Report | Starky and zkEVM Kernel | Polygon 15
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/0xPolygonZero/zk_evm/pull/444
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/asm/core/util.asm#L14

We note that GLOBAL_METADATA_LARGEST_CONTEXT is only modified by next_context_id.

Remediation

We recommend using the add_or_faultmacro in next_context_id to explicitly check for overflow.

Status

The Polygon team has implemented the remediation as recommended. They also noted that the context
counter is in fact required to stay within 32 bits for the arithmetic circuit and have applied the check with
that limit.

Verification

Resolved.

Suggestions

Suggestion 1: Implement a Script To Compute the Soundness as a
Function of All Relevant Parameters

Synopsis

The soundness of STARK and FRI in particular depend on many parameters, such as numbers of queries,
field size, extension degree, etc. For users to target a particular soundness level, a formula or script is
needed that computes this number as a function of all adjustable parameters.

Mitigation

We recommend implementing a script to compute the system’s soundness as a function of all
configurable parameters.

Status

The Polygon team stated that a script for the conjectured FRI security level based on the configuration
data exists (see here). However, a script to compute the soundness of the overall protocol is missing.
Implementing this would require using the size of the proof.

Verification

Partially Resolved.

Suggestion 2: Improve Code Quality

Location

Examples (non-exhaustive):

src/witness/operation.rs#L175

asm/core/jumpdest_analysis.asm#L135

cpu/kernel/opcodes.rs#L62

kernel/interpreter.rs#L928

kernel/constants/mod.rs#L229

Security Audit Report | Starky and zkEVM Kernel | Polygon 16
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/0xPolygonZero/zk_evm/pull/443
https://github.com/0xPolygonZero/plonky2/blob/76da1383384a99691506b3904dd8c2ddfd057555/starky/src/config.rs#L70
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/witness/operation.rs#L175
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/least_authority/evm_arithmetization/src/cpu/kernel/asm/core/jumpdest_analysis.asm#L135
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/opcodes.rs#L62
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/interpreter.rs#L928
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/constants/mod.rs#L229
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/constants/mod.rs#L230

kernel/constants/mod.rs#L231

Synopsis

During our review of the codebase, our team identified practices that impact the quality, readability, and
maintainability of the codebase. To illustrate, the following is a non-exhaustive list of examples:

● In opcodes.rs:get_opcode(), DIFFICULTY is a deprecated name for PREVRANDAO;
● There are instances of hard coded opcode numbers being used instead of named or looked-up

values. This increases the difficulty of understanding, navigating, and debugging the code;
● There are instances of code duplication, such as between interpreter.rs::get_mnemonic

and opcodes.rs::get_opcode. These could be, instead, centrally organized to avoid
unintended omissions in future changes;

● SELFBALANCE(0x47) opcode is missing from the interpreter code; and
● There are instances of derived constants being defined with hard coded values, such as

GAS_COLDACCOUNTACCESS_MINUS_WARMACCESS and GAS_COLDSLOAD_MINUS_WARMACCESS.
These values can be defined functionally to automatically update if any changes occur in the
future to the values they depend on.

Mitigation

We recommend improving code quality by addressing the instances showcased by the items listed above.

Status

The Polygon team acknowledged the importance of this suggestion and stated that although they will
continue improving code quality in various aspects, they consider this mitigation to be part of an ongoing
and incremental process.

Verification

Planned.

Suggestion 3: Improve Testing

Location

Examples (non-exhaustive):

tests/ecc/bn_glv_test_data#L9

tests/ecc/secp_glv_test_data#L9

tests/bignum/test_data

kernel/asm/journal

kernel/asm/memory

Synopsis

Several test vectors are unverifiable either due to the usage of randomness within their generating scripts
or due to a lack of script generation. Additionally, there is no test coverage facility for the custom
assembly, which makes it difficult to accurately measure the testing effectiveness. Furthermore, through
manual review, we identified instances of untested code (e.g., the journal and memory
implementations).

Security Audit Report | Starky and zkEVM Kernel | Polygon 17
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/constants/mod.rs#L231
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/tests/ecc/bn_glv_test_data#L9
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/c95155ce4bf234f6e7ba400388c6433220c443ba/evm_arithmetization/src/cpu/kernel/tests/ecc/secp_glv_test_data#L9-L10
https://github.com/LeastAuthority/PolygonZero-zk_evm/tree/least_authority/evm_arithmetization/src/cpu/kernel/tests/bignum/test_data
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/735855e6a11976e0df38911f31dd7eb5c5270762/evm_arithmetization/src/cpu/kernel/asm/journal
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/least_authority/evm_arithmetization/src/cpu/kernel/asm/memory

Mitigation

We recommend modifying the test vector generation scripts to use deterministic generation in order to
facilitate verifiable test vectors and reproducible testing. Additionally, we recommend implementing
missing tests for important functionalities, such as memory and journal. Moreover, we recommend
considering the possibility of implementing code coverage for the Kernel code. We acknowledge that this
will incur additional effort due to the need for custom tooling; however, we believe it will be beneficial in
the long term as the project continues to evolve.

Status

The Polygon team stated that even though coverage of zk_evm on its own may seem light, all the
security-critical components are extensively tested through internal and external means. Additionally, the
coverage results of the zkEVM against the entire official Ethereum test suite can be checked here. Note
that these tests were run in a newer commit than the one assessed in this report. The team also added
that they are conducting recurring tests against mainnet blocks to ensure sufficient test coverage.
Regarding Starky, the Polygon team stated that some further testing is planned, following the migration of
plonky2/evm to zk_evm/evm_arithmetization.

Verification

Partially Resolved

Suggestion 4: Protect Control Flow Integrity of Jumps in Kernel Code

Location

kernel/asm/core/exception.asm#L91

kernel/asm/core/exception.asm#L106

kernel/asm/core/jumpdest_analysis.asm

Synopsis

The EVM implements a control flow protection measure in the form of the JUMPDEST instruction: JUMP
(or JUMPI) instructions may only target the location of a valid JUMPDEST instruction. In the zkEVM, this is
ensured for user code by raising a corresponding exception. By design, exceptions are not generated
during the execution of Kernel code. Consequently the most sensitive part of the system is not covered by
this protection.

Mitigation

We recommend considering options to extend the JUMPDEST control flow integrity checks to the Kernel
code.

Status

The Polygon team stated that they do not consider this protection crucial in the Kernel, adding that
they assume the Kernel to not contain any applicable flaws. Our team does not agree with the latter;
no software system can be assumed to be free of flaws. We therefore maintain that it would be of
benefit, in principle, to apply JUMPDEST protection in the Kernel.

Verification

Unresolved.

Security Audit Report | Starky and zkEVM Kernel | Polygon 18
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/0xPolygonZero/evm-tests/tree/457fcbd17dd524b1e197ffdd3e3de43ebfb5f5d6?tab=readme-ov-file#extended-results
https://github.com/0xPolygonZero/zk_evm/releases/tag/v0.4.0
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/735855e6a11976e0df38911f31dd7eb5c5270762/evm_arithmetization/src/cpu/kernel/asm/core/exception.asm#L91
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/735855e6a11976e0df38911f31dd7eb5c5270762/evm_arithmetization/src/cpu/kernel/asm/core/exception.asm#L106
https://github.com/LeastAuthority/PolygonZero-zk_evm/blob/735855e6a11976e0df38911f31dd7eb5c5270762/evm_arithmetization/src/cpu/kernel/asm/core/jumpdest_analysis.asm

Security Audit Report | Starky and zkEVM Kernel | Polygon 19
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Starky and zkEVM Kernel | Polygon 20
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Starky and zkEVM Kernel | Polygon 21
22 August 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

