
Smart Contracts
Security Audit Report

NEOKingdom DAO
Updated Final Audit Report: 25 September 2023

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Deposited Tokens Can Be Redeemed

Issue B: Unsettled Deposits Can Be Locked

Issue C: Missing Modifier Preventing the Update of Non-Existent Resolutions

Issue D: The Status of InternalMarket or ShareholderRegistry Can Be Set to Contributor Status

Issue E: settleTokens Function Mints Extra NEOK Tokens to the GovernanceToken Smart Contract

(Known Issue)

Suggestions

Suggestion 1: Improve Code Comments and Update the Documentation

Suggestion 2: Add Check To Verify Token Transfer Return Value

Suggestion 3: Add Zero Address Checks

Suggestion 4: Remove Redundant Checks

Suggestion 5: Use an Updated and Non-Floating Pragma Version Consistently Across the Project

Suggestion 6: Implement the Appropriate Interface

Suggestion 7: Use Custom Error To Output Arguments in Error Messages

About Least Authority

Our Methodology

Security Audit Report | Smart Contracts | NEOKingdom DAO 1
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
NEOKingdom DAO has requested that Least Authority perform a security audit of their smart contacts.

Project Dates
● July 5, 2023 - July 19, 2023: Initial Code Review (Completed)
● July 26, 2023: Delivery of Initial Audit Report (Completed)
● August 30, 2023: Verification Review (Completed)
● August 30, 2023: Delivery of Final Audit Report (Completed)
● September 25, 2023: Delivery of Updated Final Audit Report (Completed)

Review Team
● Nicole Ernst, Security Researcher and Engineer
● Mukesh Jaiswal, Security Researcher and Engineer
● Ahmad Jawid Jamiulahmadi, Security Researcher and Engineer
● Steven Jung, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the NEOKingdom DAO Smart Contracts
followed by issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repository is considered in scope for the review:
● NEOkingdom DAO contracts:

https://github.com/NeokingdomDAO/contracts

Specifically, we examined the Git revision for our initial review:

● 3be9557ead0c8694d43caaf88591622a666211c6

For the verification, we examined the Git revision:

● d139cd81b922490a7d64f561db311a607e0d4478

For the review, this repository was cloned for use during the audit and for reference in this report:

● NEOKingdom-Smart-Contracts:
https://github.com/LeastAuthority/Neokingdom-Smart-Contracts

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

Security Audit Report | Smart Contracts | NEOKingdom DAO 2
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/NeokingdomDAO/contracts
https://github.com/LeastAuthority/Neokingdom-Smart-Contracts

● Documentation:
https://github.com/NeokingdomDAO/contracts/blob/main/README.md#documentation

● Brief Overview:
https://vimeo.com/744685086?embedded=true&source=vimeo_logo&owner=182413982

In addition, this audit report references the following documents:
● NatSpec Format:

https://docs.soliditylang.org/en/v0.8.21/natspec-format.html
● Errors and the Revert Statement:

https://docs.soliditylang.org/en/v0.8.21/contracts.html#errors-and-the-revert-statement

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Adversarial actions and other attacks on the network;
● Potential misuse and gaming of the smart contracts;
● Attacks that impacts funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial of Service (DoS) or security exploits that would impact the intended use of the smart

contracts or disrupt their execution;
● Vulnerabilities in the smart contracts’ code;
● Protection against malicious attacks and other ways to exploit the smart contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team performed a security audit of the NEOKingdom DAO smart contract suite, which is a blockchain
based, EVM compatible governance solution that allows its users to be legal shareholders of a
decentralized autonomous organization (DAO) and participate in its governance, management, as well as
operations.

Overall, we found that security has been taken into consideration in the design of the NEOKingdom DAO
as demonstrated by appropriate implementation of access controls and re-entrancy measures. However,
we identified an Issue in the design of the system whereby the excess authority of the DAO admin could
allow them to acquire extra voting power (Issue D). Furthermore, we identified Issues in the
implementation that could lead to unintended behavior (Issue A, Issue C), in addition to an Issue that
could result in the loss of user funds (Issue B).

Code Quality
The code is well-organized and generally adheres to best practice. However, our team identified several
areas of improvement that would increase the overall quality of the code. We found that using custom
errors and removing redundant checks can improve gas efficiency (Suggestion 7, Suggestion 4). In
addition, we identified instances of missing checks, which could result in unintended behavior
(Suggestion 3).

Security Audit Report | Smart Contracts | NEOKingdom DAO 3
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/NeokingdomDAO/contracts/blob/main/README.md#documentation
https://vimeo.com/744685086?embedded=true&source=vimeo_logo&owner=182413982
https://docs.soliditylang.org/en/v0.8.21/natspec-format.html
https://docs.soliditylang.org/en/v0.8.21/contracts.html#errors-and-the-revert-statement

Tests

Our team found sufficient test coverage of the smart contracts has been implemented.

Documentation
The project documentation provided for this review provides a generally sufficient overview of the system
and its intended behavior. However, we recommend updating the documentation to reflect the current
state of the codebase (Suggestion 1).

Code Comments

There are insufficient code comments describing security-critical components and functions in the
codebase. We recommend improving code comments (Suggestion 1).

Scope
The scope of this review was sufficient and included all security-critical components and functionality of
the smart contracts.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Deposited Tokens Can Be Redeemed Resolved

Issue B: Unsettled Deposits Can Be Locked Resolved

Issue C: Missing Modifier Preventing the Update of Non-Existent Resolutions Resolved

Issue D: The Status of InternalMarket or ShareholderRegistry Can Be Set to
Contributor Status

Partially Resolved

Issue E: settleTokens Function Mints Extra NEOK Tokens to the
GovernanceToken Smart Contract (Known Issue)

Resolved

Suggestion 1: Improve Code Comments and Update the Documentation Resolved

Suggestion 2: Add Check To Verify Token Transfer Return Value Resolved

Suggestion 3: Add Zero Address Checks Resolved

Suggestion 4: Remove Redundant Checks Resolved

Suggestion 5: Use an Updated and Non-Floating Pragma Version
Consistently Across the Project

Resolved

Suggestion 6: Implement the Appropriate Interface Unresolved

Suggestion 7: Use Custom Error To Output Arguments in Error Messages Unresolved

Security Audit Report | Smart Contracts | NEOKingdom DAO 4
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue A: Deposited Tokens Can Be Redeemed

Location

contracts/InternalMarket/InternalMarket.sol#L71-L73

contracts/GovernanceToken/GovernanceToken.sol#L205-L207

contracts/GovernanceToken/GovernanceToken.sol#L358-L370

contracts/RedemptionController/RedemptionController.sol#L55-L60

Synopsis

It is possible to redeem tokens bought from the internal or external markets, and/or tokens with an
expired redemption period. Tokens bought from the internal market can be withdrawn after being offered
to the internal market for seven days. After this period, these tokens can be redeposited. NEOK tokens
bought from the external market can be simply deposited.

Deposited tokens can be settled after a specific period by calling the settleTokens function in the
GovernanceToken smart contract. In a series of function calls, new tokens are minted to the
depositor address and, eventually, the afterMint function in the RedemptionController smart
contract will be called. This function adds the minted amount to the depositor’s mint budget – the amount
which can be redeemed.

Contributors could continuously withdraw and deposit the same tokens to gain unlimited redemption
balance. Although this contributor would not be able to redeem more than their GovernanceTokens
holdings balance, it enables the redemption of tokens without offering them to the internal market first.
Contributors could redeem tokens received from internal or external sources easily, and activate their
expired tokens by periodically withdrawing and depositing the same tokens.

Impact

This Issue enables circumventing intended restrictions on the NOEKGov token redemption, and bypassing
the internal market, which contradicts the business requirements of the system.

Preconditions

In order for this Issue to occur, the user should at least be a contributor.

Mitigation

Mitigating this Issue requires further consideration and could require breaking changes. We recommend
preventing the settleTokens function from eventually calling the afterMint function by adding
appropriate checks.

An alternative option is to mint the tokens to one of the smart contracts – rather than the depositor’s
address – then transfer the amount from the smart contract to the depositor. For example, one of the
smart contracts could be the InternalMarket smart contract.

Status

The NEOKingdom DAO team has stopped calling the afterMint function from the
_afterTokenTransfer function. Instead, the function is currently called from the mint function inside
the GovernanceToken smart contract, thus preventing the calling of the afterMint function when
tokens are being settled.

Security Audit Report | Smart Contracts | NEOKingdom DAO 5
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/InternalMarket/InternalMarket.sol#L71-L73
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/GovernanceToken/GovernanceToken.sol#L205-L207
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/GovernanceToken/GovernanceToken.sol#L358-L370
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/RedemptionController/RedemptionController.sol#L55-L60

Verification

Resolved.

Issue B: Unsettled Deposits Can Be Locked

Location

contracts/InternalMarket/InternalMarket.sol#L71-L73

contracts/GovernanceToken/GovernanceToken.sol#L205-L207

Synopsis

It is possible for a user to deposit (wrap) zero external tokens using the deposit function in the
InternalMarket smart contract. When settling tokens using the settleTokens function in the
GovernanceToken smart contract, the internal function _settleTokens uses an iteration to settle a
list of unsettled deposits. In each iteration, it checks if the amount to be settled is greater than zero. If the
condition fails, the iteration will stop.

Impact

Due to the aforementioned check, if a user deposits zero NEOK tokens in addition to their previously
unsettled tokens, previously unsettled tokens will be locked.

Preconditions

The user must add a zero token deposit to other unsettled token deposits.

Technical Details

function _settleTokens(address from) internal virtual {

for (uint256 i = depositedTokens[from].length; i > 0; i--) {

DepositedTokens storage tokens = depositedTokens[from][i - 1];

if (block.timestamp >= tokens.settlementTimestamp) {

if (tokens.amount > 0) {

super._mint(from, tokens.amount);

tokens.amount = 0;

} else {

break;

}

}

}

}

Security Audit Report | Smart Contracts | NEOKingdom DAO 6
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/InternalMarket/InternalMarket.sol#L71-L73
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/GovernanceToken/GovernanceToken.sol#L205-L207

Remediation

We recommend preventing zero deposit amounts by adding a check in the deposit function.

Status

The NEOKingdom DAO team has added the check for zero amounts as suggested.

Verification

Resolved.

Issue C: Missing Modifier Preventing the Update of Non-Existent
Resolutions

Location

contracts/ResolutionManager/ResolutionManagerBase.sol#L257-L264

contracts/ResolutionManager/ResolutionManagerBase.sol#L119-L126

Synopsis

The function _updateResolution does not have the existsmodifier to prevent the update of
resolutions that do not exist.

Impact

This Issue could result in the creation of another resolution rather than updating an existing one.

Preconditions

This Issue is likely if the resolutionId passed to the function does not exist.

Remediation

We recommend adding the existsmodifier to the function to verify whether the resolution exists.

Status

The NEOKingdom DAO team has added the modifier to check for resolutionId.

Verification

Resolved.

Issue D: The Status of InternalMarket or ShareholderRegistry Can Be Set
to Contributor Status

Location

contracts/ShareholderRegistry/ShareholderRegistry.sol#L65-L70

contracts/Voting/Voting.sol#L147-L152

Synopsis

The RESOLUTION_ROLE, which is currently controlled by a Multi-Sig, can be set by the
DEFAULT_ADMIN_ROLE to any address. Additionally, the RESOLUTION_ROLE can set the status of
InternalMarket or ShareholderRegistry to the CONTRIBUTOR_STATUS and then delegate their

Security Audit Report | Smart Contracts | NEOKingdom DAO 7
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/ResolutionManager/ResolutionManagerBase.sol#L257-L264
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/ResolutionManager/ResolutionManagerBase.sol#L119-L126
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/ShareholderRegistry/ShareholderRegistry.sol#L65-L70
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/Voting/Voting.sol#L147-L152

potential voting power to an arbitrary contributor using the delegateFrom function in the Voting smart
contract.

Impact

The ShareholderRegistry smart contract’s shares and InternalMarket’s governance tokens are
counted as voting power. Consequently, these voting powers might potentially be misused since they can
be delegated to any contributor.

Remediation

Even though the setting of the aforementioned state changes may go through a resolution process, we
still recommend that the smart contract self-guard against this by preventing the setting of a status for
the aforementioned contracts.

Status

The NEOKingdom DAO team has added a check to prevent setting a status if the address is a contract.
However, this fix will prevent the setting of a status for valid contributors if the contributor address is a
Multi-Sig address.

Verification

Partially Resolved.

Issue E: settleTokens Function Mints Extra NEOK Tokens to the
GovernanceToken Smart Contract (Known Issue)

Location

contracts/GovernanceToken/GovernanceToken.sol#L366-L378

contracts/GovernanceToken/GovernanceTokenBase.sol#L60

Synopsis

The settleTokens function in the GovernanceToken smart contract can be used to settle deposited
tokens, after waiting for a specific period, once the deposit is complete.

When the function is called after the specific waiting period, it internally calls the _mint function in the
GovernanceTokenBase smart contract to mint new NEOKGov tokens to the depositor. However, this
function mints new external (NEOK) tokens to the GovernanceToken smart contract, additionally to the
NEOKGov tokens minted to the depositor. This is unnecessary, extra minting since NEOK tokens had
already been deposited.

Impact

Even though the tokens are not minted to the depositor address but to the GovernanceToken smart
contract instead, it will break the 1:1 ratio of NEOK and NEOKGov tokens, resulting in more NEOK tokens
in the circulation.

Preconditions

This Issue can occur when external tokens are deposited to be substituted with NEOKGov tokens.

Security Audit Report | Smart Contracts | NEOKingdom DAO 8
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/NeokingdomDAO/contracts/blob/d139cd81b922490a7d64f561db311a607e0d4478/contracts/GovernanceToken/GovernanceToken.sol#L366-L378
https://github.com/NeokingdomDAO/contracts/blob/d139cd81b922490a7d64f561db311a607e0d4478/contracts/GovernanceToken/GovernanceTokenBase.sol#L60

Status

The NEOKingdom DAO team found this Issue during the audit and remediated it by refraining from calling
the _mint function in the GovernanceTokenBase smart contract and, instead, minting NEOKGov
tokens directly to the depositor in the settleTokens function.

Verification

Resolved.

Suggestions

Suggestion 1: Improve Code Comments and Update the Documentation

Location

contracts/ShareholderRegistry/ShareholderRegistryBase.sol#L79-L92

contracts/Voting/Voting.sol#L97

Synopsis

There is high-level documentation describing how the various components in the NEOKingdom DAO
smart contracts interact with each other. However, there were insufficient code comments explaining the
role of individual functions and variables.

Additionally, in the documentation and in the code comments, it is mentioned that the shareholder,
investor, contributor, and managing board have, respectively, increasing levels of privileges. However, in
the _isAtLeast function in the ShareholderRegistryBase smart contract, the shareholder and
investor are considered to be the same when determining the account status.

Furthermore, in the comments, it is mentioned that the afterTokenTransfer function can only be
called by the GovernanceToken contract. However, it can actually be called by both the
GovernanceToken contract and the shareholderRegistry contract.

Mitigation

We recommend adding more code comments while adhering to the NatSpec standard and updating the
documentation and code comments to reflect the implementation.

Status

The NEOKingdom DAO team prioritized documenting the public interface of their smart contracts and
also added comments to other components with complex logic.

Verification

Resolved.

Suggestion 2: Add Check To Verify Token Transfer Return Value

Location

GovernanceTokenBase.sol#L72

GovernanceToken.sol#L345

Security Audit Report | Smart Contracts | NEOKingdom DAO 9
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/ShareholderRegistry/ShareholderRegistryBase.sol#L79-L92
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/Voting/Voting.sol#L97
https://docs.soliditylang.org/en/v0.8.21/natspec-format.html
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/GovernanceToken/GovernanceTokenBase.sol#L72
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/GovernanceToken/GovernanceToken.sol#L345

Synopsis

The return value of the token transfer is not checked consistently. While the token transfer’s return value in
the InternalMarket contract is checked, the _wrap and _unwrap functions of the
GovernanceToken contract lack these checks.

Mitigation

We recommend adding checks to verify the return value of the token transfer.

Status

The NEOKingdom DAO team has added the checks for the token transfer as suggested.

Verification

Resolved.

Suggestion 3: Add Zero Address Checks

Location

Examples (non-exhaustive):

contracts/ResolutionManager/ResolutionManager.sol#L23-L27

contracts/InternalMarket/InternalMarket.sol#L26-L27

Synopsis

There are many input parameters in the smart contracts with missing zero address checks validating the
correctness of those parameters to prevent incorrectly set values.

Mitigation

We recommend implementing missing zero address checks in the smart contracts.

Status

The NEOKingdom DAO team has added zero address checks as suggested.

Verification

Resolved.

Suggestion 4: Remove Redundant Checks

Location

contracts/ResolutionManager/ResolutionManager.sol#L170-L176

contracts/ResolutionManager/ResolutionManager.sol#L185-L191

contracts/ResolutionManager/ResolutionManager.sol#L212-L218

Synopsis

The referenced checks in the ResolutionManager smart contract functions are also implemented in
their corresponding internal functions in the ResolutionManagerBase smart contract, resulting in an
unnecessary consumption of gas.

Security Audit Report | Smart Contracts | NEOKingdom DAO 10
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/ResolutionManager/ResolutionManager.sol#L23-L27
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/InternalMarket/InternalMarket.sol#L26-L27
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/ResolutionManager/ResolutionManager.sol#L170-L176
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/ResolutionManager/ResolutionManager.sol#L185-L191
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/ResolutionManager/ResolutionManager.sol#L212-L218

Mitigation

We recommend keeping only one of the checks and removing the other one to save gas.

Status

The NEOKingdom DAO team has removed the redundant checks as suggested.

Verification

Resolved.

Suggestion 5: Use an Updated and Non-Floating Pragma Version
Consistently Across the Project

Location

Examples (non-exhaustive):

contracts/GovernanceToken/GovernanceToken.sol#L2

contracts/NeokingdomToken/NeokingdomToken.sol#L2

contracts/extensions/DAORoles.sol#L3

Synopsis

The version pragmas on the contracts are floating and inconsistent. Some are ^0.8.16, while others are
^0.8.9 or ^0.8.0. Compiling with different compiler versions may cause conflicts and unexpected
results and possibly lead to the smart contracts being deployed with an unintended compiler version,
which could result in unexpected behavior.

Mitigation

In order to maintain consistency and to prevent unexpected behavior, we recommended that the Solidity
compiler version be pinned by removing "^", updated to one of the latest versions, and used consistently
across the system.

Status

The NEOKingdom DAO team has implemented the remediation as recommended.

Verification

Resolved.

Suggestion 6: Implement the Appropriate Interface

Location

contracts/NeokingdomToken/INeokingdomToken.sol

contracts/NeokingdomToken/NeokingdomToken.sol

Synopsis

The NeokingdomToken smart contract, by design, relies on the former interface INeokingdomToken.
However, the interface does not appear to be implemented, which can prevent the interaction with the
smart contract.

Security Audit Report | Smart Contracts | NEOKingdom DAO 11
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/GovernanceToken/GovernanceToken.sol#L2
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/NeokingdomToken/NeokingdomToken.sol#L2
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/extensions/DAORoles.sol#L3
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/NeokingdomToken/INeokingdomToken.sol
https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/NeokingdomToken/NeokingdomToken.sol

Mitigation

We recommend implementing the following:

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.16;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";

import "@openzeppelin/contracts/access/AccessControl.sol";

import "./INeokingdomToken.sol";

...

contract NeokingdomToken is ERC20, ERC20Burnable, AccessControl,
INeokingdomToken {

bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");

...

Status

The NEOKingdom DAO team has not addressed this suggestion. Currently, the smart contract and
interface are defined identically. However, the interface has not been explicitly implemented yet. Hence, if
the NeokingdomToken contract and/or the INeokingdomToken interface are/is updated in such a way
that renders them different, this may result in unintended behavior. We recommend implementing the
appropriate interface for the smart contract as suggested above.

Verification

Unresolved

Suggestion 7: Use Custom Error To Output Arguments in Error Messages

Location

contracts/extensions/HasRole.sol#L28-L37

Synopsis

The code referenced above includes arguments in the error messages but is complex and not gas
efficient.

Mitigation

We recommend using custom errors to output data in error messages and to save gas.

Status

The NEOKingdom DAO team stated that they implemented the error message in this manner in an
attempt to make all the error messages in the codebase consistent with the error message utilized in
AccessControl.sol from OpenZeppelin.

Security Audit Report | Smart Contracts | NEOKingdom DAO 12
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/NeoKingdom-Smart-Contracts/blob/3be9557ead0c8694d43caaf88591622a666211c6/contracts/extensions/HasRole.sol#L28-L37
https://docs.soliditylang.org/en/v0.8.21/contracts.html#errors-and-the-revert-statement

Verification

Unresolved

Security Audit Report | Smart Contracts | NEOKingdom DAO 13
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Smart Contracts | NEOKingdom DAO 14
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Smart Contracts | NEOKingdom DAO 15
25 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

