
Pickles
Security Audit Report

Mina
FInal Audit Report: 13 December 2023



Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Suggestions

Suggestion 1: Improve Documentation

Suggestion 2: Improve Variable Name Consistency and Update TODOs

About Least Authority

Our Methodology

Security Audit Report | Pickles | Mina Foundation 1
13 December 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



Overview
Background
Mina Foundation has requested that Least Authority perform a security audit of Pickles, Mina’s inductive
zk-SNARK composition system.

Project Dates
● September 18, 2023 - November 13, 2023: Initial Code Review (Completed)
● November 15, 2023: Delivery of Initial Audit Report (Completed)
● December 7, 2023: Verification Review (Completed)
● December 13, 2023: Delivery of Final Audit Report (Completed)

Review Team
● Mehmet Gönen, Cryptography Researcher and Engineer
● Jasper Hepp, Security Researcher and Engineer
● Anna Kaplan, Cryptography Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of Pickles followed by issue reporting,
along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Pickles:

https://github.com/MinaProtocol/mina/tree/develop/src/lib/pickles
● Pickles Base:

https://github.com/MinaProtocol/mina/tree/develop/src/lib/pickles_base
● Pickles Types:

https://github.com/MinaProtocol/mina/tree/develop/src/lib/pickles_types
● Mina Book:

○ https://github.com/o1-labs/proof-systems/tree/master/book
○ https://github.com/o1-labs/proof-systems/commit/4a87b0831c6230b572705f25eb664c

a28e778bd4

Specifically, we examined the Git revision for our initial review:

● 1c7749f580c005d2f857755c02786c471dd87486

For the review, this repository was cloned for use during the audit and for reference in this report:

● Mina Pickles:
https://github.com/LeastAuthority/mina_pickles

All file references in this document use Unix-style paths relative to the project’s root directory.

Security Audit Report | Pickles | Mina Foundation 2
13 December 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/MinaProtocol/mina/tree/develop/src/lib/pickles
https://github.com/MinaProtocol/mina/tree/develop/src/lib/pickles_base
https://github.com/MinaProtocol/mina/tree/develop/src/lib/pickles_types
https://github.com/o1-labs/proof-systems/tree/master/book
https://github.com/o1-labs/proof-systems/commit/4a87b0831c6230b572705f25eb664ca28e778bd4
https://github.com/o1-labs/proof-systems/commit/4a87b0831c6230b572705f25eb664ca28e778bd4
https://github.com/LeastAuthority/mina_pickles


In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Mina Docs:
https://docs.minaprotocol.com

● Mina Book:
https://o1-labs.github.io/proof-systems/introduction.html

● MIPS/mip-kimchi.md:
https://github.com/MinaProtocol/MIPs/blob/main/MIPS/mip-kimchi.md

● 22kB-Sized Blockchain — A Technical Reference:
https://minaprotocol.com/blog/22kb-sized-blockchain-a-technical-reference

In addition, during our review, our team referred to the following documents and sources:
● J. Adámek, S. Milius, and L. S. Moss, "Initial algebras and terminal coalgebras: a survey." 2010,

[AMM10]
● J. Bonneau, I. Meckler, V. Rao, and E. Shapiro, "Coda: Decentralized Cryptocurrency at Scale." IACR

Cryptology ePrint Archive, 2020, [BMR+20]
● S. Bowe, J. Grigg, and D. Hopwood, "Recursive Proof Composition without a Trusted Setup." IACR

Cryptology ePrint Archive, 2019, [BGH19]
● Q. Dao, J. Miller, O. Wright, and P. Grubbs, "Weak Fiat-Shamir Attacks on Modern Proof Systems."

IACR Cryptology ePrint Archive, 2023, [DMW+23]
● A. Gabizon, Z. J. Williamson, and O. Ciobotaru, "PlonK: Permutations over Lagrange-bases for

Oecumenical Noninteractive arguments of Knowledge." IACR Cryptology ePrint Archive, 2022,
[GWC22]

● R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish, "Doubly-efficient zkSNARKs without
trusted setup." IACR Cryptology ePrint Archive, 2017, [WTS+17]

● Pickles - Mina Book:
https://o1-labs.github.io/proof-systems/specs/pickles.html

● Kimchi - Mina Book:
https://o1-labs.github.io/proof-systems/specs/kimchi.html

● Halo 2 book:
https://zcash.github.io/halo2

● Kimchi codebase:
https://github.com/o1-labs/proof-systems

● Blog post, “A More Efficient Approach to Zero Knowledge for PLONK”:
https://minaprotocol.com/blog/a-more-efficient-approach-to-zero-knowledge-for-plonk

● Blog post, “Kimchi: The latest update to Mina’s proof system”:
https://minaprotocol.com/blog/kimchi-the-latest-update-to-minas-proof-system

● Blog post, “Meet Pickles SNARK: Enabling Smart Contracts on Mina Protocol”:
https://medium.com/minaprotocol/meet-pickles-snark-enabling-smart-contract-on-coda-protocol-
7ede3b54c250

● ZK-GLOBAL 0x05 - Izaak Meckler - Meet Pickles SNARK:
https://www.youtube.com/watch?v=nOnGOxyh7jY

● The Pickles Inductive SNARK Composition System:
https://www.youtube.com/watch?v=ZQkzTB8VDzs

Areas of Concern
Our investigation focused on the following areas:

Security Audit Report | Pickles | Mina Foundation 3
13 December 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.minaprotocol.com/
https://o1-labs.github.io/proof-systems/introduction.html
https://github.com/MinaProtocol/MIPs/blob/main/MIPS/mip-kimchi.md
https://minaprotocol.com/blog/22kb-sized-blockchain-a-technical-reference
https://pdfcoffee.com/initial-algebras-and-terminal-coalgebras-pdf-free.html
https://eprint.iacr.org/2020/352.pdf
https://eprint.iacr.org/2019/1021.pdf
https://eprint.iacr.org/2023/691.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2017/1132.pdf
https://o1-labs.github.io/proof-systems/specs/pickles.html
https://o1-labs.github.io/proof-systems/specs/kimchi.html
https://zcash.github.io/halo2/
https://github.com/o1-labs/proof-systems
https://minaprotocol.com/blog/a-more-efficient-approach-to-zero-knowledge-for-plonk
https://minaprotocol.com/blog/kimchi-the-latest-update-to-minas-proof-system
https://medium.com/minaprotocol/meet-pickles-snark-enabling-smart-contract-on-coda-protocol-7ede3b54c250
https://medium.com/minaprotocol/meet-pickles-snark-enabling-smart-contract-on-coda-protocol-7ede3b54c250
https://www.youtube.com/watch?v=nOnGOxyh7jY
https://www.youtube.com/watch?v=ZQkzTB8VDzs


● Correctness of the Pickles implementation;
● Correctness of the strong Fiat Shamir heuristic;
● Vulnerabilities within each component and whether the interaction between the components is

secure;
● Denial of Service (DoS) and other security exploits that would impact the intended use or disrupt

the execution – excluding attacks that require controlling the circuits;
● Protection against malicious attacks and other ways to exploit;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Mina implements a succinct blockchain that uses Kimchi and Pickles for transparent, recursive
zero-knowledge proofs based on Halo 2 [BGH19] and Plonk [GWC22] in order to maintain a small
blockchain size, ensuring efficiency and privacy while supporting decentralized applications and smart
contracts. The Kimchi proof system is written in Rust, while Pickles is written in OCaml.

System Design
Our team found that security has been strongly considered in the design and implementation of Pickles
as demonstrated, for example, by the usage of OCaml’s type system.

In our review, we compared the code against the Plonk and Halo 2 specifications and did not identify any
security-relevant issues. We examined the step and wrap prover as well as their verifiers in Pickles to
investigate whether they are implemented correctly and could not find any issues.

Kimchi and Pickles implement complex, state-of-the-art protocols with security heavily based on a
properly implemented multi-move Fiat Shamir construction. We reviewed the correctness of the strong
Fiat Shamir implementation of a multi-move interactive oracle proof (IOP) (explained in [DMW+23]) by
examining the sequential Fiat Shamir steps, both in Plonk as well as Mina’s adaptation of Halo 2. Our
team investigated whether a sufficient transcript of all appearing statements, as well as all public
knowledge that the simulated verifier has at each step in the sequential proof, are included into the
transcript and properly hashed into simulated challenges. We did not find any issues in Kimchi and in
Pickles, nor in Mina’s adoption of Halo 2, nor in the recursive verifiers.

We reviewed Mina’s concept of inductive rules, in addition to investigating how OCaml’s type system
ensures that custom rules indeed define an inductive system in the abstract sense (as discussed in
[AMM10]) and could not identify any issues.

We also analyzed the implementation of – and thought process behind – deferred values since deferring
computation for certain values is needed, as a two-cycle of elliptic curves is necessary for Mina’s
inductive proof system.

Code Quality
We performed a manual review of the repositories in scope and found the codebases to be generally
well-organized, well-written, and of high quality. However, our team found that variables are used
inconsistently across the codebase and that resolved TODOs have not been removed from the codebase
(Suggestion 2).

Security Audit Report | Pickles | Mina Foundation 4
13 December 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://o1-labs.github.io/proof-systems/specs/kimchi.html
https://o1-labs.github.io/proof-systems/specs/pickles.html
https://eprint.iacr.org/2019/1021.pdf
https://eprint.iacr.org/2019/953.pdf
https://o1-labs.github.io/proof-systems/plonk/fiat_shamir.html
https://eprint.iacr.org/2023/691.pdf
https://pdfcoffee.com/initial-algebras-and-terminal-coalgebras-pdf-free.html


Documentation and Code Comments
The project documentation provided for this review offers a generally sufficient overview of the system
and its intended behavior. However, our team found that the Mina book had multiple typographical errors
and deviated from the code and reference papers in certain places. A lack of clear and comprehensive
documentation hinders the ability to understand the intention of the code, which is critical for assessing
the security and correctness of the implementation. We recommend improving the documentation
(Suggestion 1).

During the review, the Mina team was readily available and addressed our team’s questions and concerns
by updating the documentation (e.g. in pull requests here and here) and adding comments to the Pickles
codebases (e.g. in an open pull request here).

Our team noted that code comments have been improved since our previous audit of the Mina
Foundation’s Transaction Logic and Pool, which our team completed and delivered on August 28, 2023.
We found that code comments sufficiently describe the intended behavior of security-critical components
and functions.

Scope
While the Kimchi proof system was out of scope for this audit, our team had to partially review it in order
to build a better understanding of proof creation and the Fiat Shamir heuristic to effectively audit Pickles.
Due to the scope definition, our team was unable to analyze the implementation and security of the
lookup functionality as well as the custom gates.

We recommend that Kimchi, and in particular the correct implementation and security of the lookup
functionality and the custom gates, be comprehensively audited by an independent security company
familiar with the Mina codebase to improve the security of the system.

Dependencies

Our team found that outdated libraries are used, as we noted in Suggestion 1 in our previous report on
Mina’s Transaction Logic and Pool. We recommend that well-audited and maintained dependencies be
used.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Suggestion 1: Improve Documentation Partially Resolved

Suggestion 2: Improve Variable Name Consistency and Update TODOs Planned

Security Audit Report | Pickles | Mina Foundation 5
13 December 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/o1-labs/proof-systems/pull/1253
https://github.com/o1-labs/proof-systems/pull/1293
https://github.com/MinaProtocol/mina/pull/14304


Suggestions

Suggestion 1: Improve Documentation

Location

Mina book

src/evaluation_proof.rs#L331-L335

Synopsis

Mina is a highly complex system that implements state-of-the art cryptography and provides crypto
assets for its users. Although the code is written in OCaml – a programming language characterized by its
functional programming features and high security in terms of type system features – the complexity of
the language reduces the readability of the code and, thus, makes reasoning about the security of the
system more difficult.
As a result, it is highly important that both future developers and auditors have clear and precise
specifications, in addition to detailed documentation, to easily understand the different components of
the system.
For this purpose, the Mina team created the Mina book, which is currently a work in progress.

However, during the audit, our team discovered multiple typographical errors, imprecisions, deviations
from the code, and missing documentation. For example, we identified:

● Outdated sections on snarky-rs in the Mina book (the team has removed this already in this PR);
● Typographical errors in the Mina book (the team has already fixed them in this PR);
● Deviation from the definition in [BGH19] of r' in the Kimchi code (due to the respective changes

of a^j, b^j, and G^j, as described here in the Halo 2 book);
● Missing meOnly in the documentation (see here); and
● Missing documentation on critical cryptographic roles (e.g., the use of hash functions, such as

md5).

Therefore, in its current state, the book cannot fully serve as a reliable specification for future developers
implementing new features and fixing bugs, as well as auditors conducting a comprehensive security
audit of Mina.

Mitigation

We recommend addressing the aforementioned suggestions to improve the documentation.

Status

The Mina team stated that the documentation was out of scope for this audit. However, our team noted
that auditors often refer to the project documentation during the review to build a comprehensive
understanding of the system and, hence, it cannot be entirely excluded from the scope considerations. As
such, we recommend that the Mina team continue to look for opportunities to improve the documentation
to allow for better maintenance and future audits.

Verification

Partially Resolved.

Security Audit Report | Pickles | Mina Foundation 6
13 December 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://o1-labs.github.io/proof-systems/introduction.html
https://github.com/o1-labs/proof-systems/blob/f9fd3fcea25422108a6e4da8a9529f9f5b737571/poly-commitment/src/evaluation_proof.rs#L331-L335
https://o1-labs.github.io/proof-systems/introduction.html
https://github.com/o1-labs/proof-systems/pull/1293
https://github.com/o1-labs/proof-systems/pull/1253
https://eprint.iacr.org/2019/1021.pdf
https://github.com/o1-labs/proof-systems/blob/f9fd3fcea25422108a6e4da8a9529f9f5b737571/poly-commitment/src/evaluation_proof.rs#L331-L335
https://zcash.github.io/halo2/background/pc-ipa.html
https://github.com/MinaProtocol/mina/pull/11630


Suggestion 2: Improve Variable Name Consistency and Update TODOs

Location

Examples (non-exhaustive):

lib/pickles/wrap.ml#L126-L127

pickles/plonk_checks/plonk_checks.ml#L309

Synopsis

During our review, we found that variables often have different names in the specification, the underlying
research papers, the Kimchi proof system code, and the Pickles code. This significantly increases the
effort needed to understand potentially security-critical components of the system and hence makes
reasoning about the security of the system more difficult. For example, in the code: v, z1, polyscale,
and xi all refer to the same variable across Pickles and Kimchi.

In addition, we found unresolved TODOs in the codebase. Addressing TODOs prior to a comprehensive
security audit of the code allows security researchers to better understand the full intended functionality
of the code, indicates completion, and increases readability and comprehension.

Mitigation

We recommend updating the names of the variables, such that they have accurate, descriptive, and
consistent names and removing the TODOs.

Status

The Mina team acknowledged that the naming of variables and comments can and should be improved in
Pickles and Kimchi but noted that they can only start planning the renaming of code-churn after their
Berkeley release is finished.

Verification

Planned.

Security Audit Report | Pickles | Mina Foundation 7
13 December 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/MinaProtocol/mina/blob/214b250c3b0a0f0af174f9d96ed374d5332cf629/src/lib/pickles/wrap.ml#L126-L127
https://github.com/MinaProtocol/mina/blob/214b250c3b0a0f0af174f9d96ed374d5332cf629/src/lib/pickles/plonk_checks/plonk_checks.ml#L309


About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Pickles | Mina Foundation 8
13 December 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/


Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Pickles | Mina Foundation 9
13 December 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.


