

Limitless Prover
Security Audit Report
Linea zkEVM
Final Audit Report: 1 August 2025

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Suggestions

Suggestion 1: Use Library Operators Instead of Default Go Operators

Suggestion 2: Improve Code Quality

Suggestion 3: [Horner Query] Add Missing Booleanity Check on Last Column Selector

Suggestion 4: Improve Code Coverage

Suggestion 5: Improve Documentation

Appendix

Appendix A: In-scope Components

About Least Authority

Our Methodology

Security Audit Report | Limitless Prover | Linea zkEVM ​ 1
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Consensys Software, Inc. has requested that Least Authority perform security audits of the Linea zkEVM
Limitless Prover.

Project Dates
●​ May 14, 2025 - June 17, 2025: Initial Code Review (Completed)
●​ June 20, 2025: Delivery of Initial Audit Report (Completed)
●​ August 1, 2025: Verification Review (Completed)
●​ August 1, 2025: Delivery of Final Audit Report (Completed)​

Review Team
●​ George Gkitsas, Security / Cryptography Researcher and Engineer
●​ Miguel Quaresma, Security Researcher and Engineer
●​ Burak Atasoy, Project Manager
●​ Jessy Bissal, Technical Editor

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Limitless Prover followed by issue
reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
●​ See Appendix A.

Specifically, we examined the Git revision for our initial review:

●​ b79456551aad55b8fb5f83950f12fe8863d78ad6

For the verification, we examined the Git revision:

●​ f2486950df0f1fa8a8b9af376bbc5f204274d319​

For the review, this repository was cloned for use during the audit and for reference in this report:

●​ https://github.com/LeastAuthority/linea-monorepo

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

●​ Website: ​
https://linea.build

Security Audit Report | Limitless Prover | Linea zkEVM ​ 2
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/linea-monorepo
https://linea.build

●​ Limitless Prover Audit Scope Google Spreadsheet (shared with Least Authority via email on 14
March 2025):
https://docs.google.com/spreadsheets/d/1nhwsJqDKNR4x57HZAFibfMrlXHl-cJzFRf-DzrqvlaA/e
dit

●​ Limitless Prover Specification:
https://docs.google.com/document/d/1Jf7TfmmjNLklFTLptfFAx98HXlRITUoHQkD7rcjDjwc

●​ Linea gnark Cryptographic Library Security Audit Report:
https://leastauthority.com/blog/audits/gnark-cryptographic-library

●​ Linea zkEVM Crypto Beta v1 Security Audit Report:
https://leastauthority.com/blog/audits/linea-zkevm-cryto-beta-v1

In addition, this audit report references the following document:

●​ Linea (Prover Team), ”Linea Prover Documentation." IACR Cryptology ePrint Archive, 2022,
[Linea22]

Areas of Concern
Our investigation focused on the following areas:

●​ Correctness of the implementation;
●​ Soundness and completeness of the proving system;
●​ Common and case-specific implementation errors;
●​ Performance problems or other potential impacts on performance;
●​ Data privacy, data leaking, and information integrity;
●​ Vulnerabilities in the code leading to adversarial actions and other attacks;
●​ Protection against malicious attacks and other methods of exploitation; and
●​ Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team performed a security audit of Linea’s Limitless Prover. The Linea team implements a zkEVM
based on the Wizard protocol. The zkEVM aims to provide an execution environment equivalent to the
Ethereum Virtual Machine (EVM), allowing Ethereum transactions and smart contract executions.

The Limitless Prover feature enables proof generation without the need to impose limits due to the
underlying arithmetization. In the previous design, the number of instructions that could be proved was
constrained by the prover’s computational resources. The current design includes a mechanism for
distributing the proving effort. This is achieved by breaking the trace into subtraces and generating proofs
for each one in a distributed manner, followed by a final conglomeration step that combines the resulting
subproofs into a single proof.

System Design
Our team examined the design of the Linea zkEVM Limitless Prover and found a clear emphasis on
maintaining soundness and completeness across all queries. The Fiat-Shamir heuristic and randomness
generation were both thoughtfully implemented, and common vulnerability types were explicitly
considered and avoided.

Security Audit Report | Limitless Prover | Linea zkEVM ​ 3
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.google.com/spreadsheets/d/1nhwsJqDKNR4x57HZAFibfMrlXHl-cJzFRf-DzrqvlaA/edit
https://docs.google.com/spreadsheets/d/1nhwsJqDKNR4x57HZAFibfMrlXHl-cJzFRf-DzrqvlaA/edit
https://docs.google.com/document/d/1Jf7TfmmjNLklFTLptfFAx98HXlRITUoHQkD7rcjDjwc
https://leastauthority.com/blog/audits/gnark-cryptographic-library
https://leastauthority.com/blog/audits/linea-zkevm-cryto-beta-v1
https://eprint.iacr.org/2022/1633.pdf

We reviewed the compilation process and the prover-verifier subprotocols for the grand product, Horner,
log-derivative sum, and Plonk-in-Wizard queries. ​
​
We also examined whether any data required by the Fiat-Shamir heuristic was missing and did not identify
any omissions.

During the audit, the Linea team independently discovered that the one-to-many correspondence between
LPP and GL modules had not been accounted for in the Fiat-Shamir heuristic, resulting in a soundness
issue. We validated this finding and reviewed their proposed remediation, which we confirmed resolves
the issue.

We further evaluated the segmentation, conglomeration, and recursion components for correctness and
soundness and did not identify any issues. Our team also assessed the use of shared randomness across
LPP modules and found no concerns.

In addition, while the current use of types from dependencies does not pose an issue, conflating
specialized type operators with default language operators is generally discouraged (Suggestion 1). If the
underlying library changes its type representation or handling, this practice could introduce subtle bugs
that may impact correctness and soundness.

Dependencies

Running govulncheck on the prover’s dependencies revealed no reported vulnerabilities. Accordingly,
our team did not identify any issues in the implementation's use of those dependencies.

Code Quality
We performed a manual review of the repositories in scope and found the codebases to be generally
organized. However, we observed that library-defined operators should be used in place of the default Go
operators (Suggestion 1), and identified multiple opportunities to improve overall code quality (Suggestion
2).

Tests

The analyzed queries include end-to-end tests; however, our team found that unit tests do not provide
adequate code coverage for some parts, which we recommend improving (Suggestion 4).

Documentation and Code Comments
The project documentation provided by the Linea team was under active development throughout the
audit period and, as a result, remains incomplete. Nevertheless, it is accurate and informative for the
areas it currently addresses and provides an adequate description of the system's intended functionality.
However, our team observed that a threat model is currently missing, which we recommend creating
(Suggestion 5).

Additionally, the codebase includes descriptive comments that aid in understanding the intended behavior
of the relevant components.

Scope
The scope of this review was sufficient and included all security-critical components, some of which
required prior knowledge of certain Linea prover internals. However, the communication between the
distributed provers could not be assessed, as the architecture has not yet been finalized and the
operational details remain undefined.​

Security Audit Report | Limitless Prover | Linea zkEVM ​ 4
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Suggestion 1: Use Library Operators Instead of Default Go Operators Resolved

Suggestion 2: Improve Code Quality Resolved

Suggestion 3: [Horner Query] Add Missing Booleanity Check on Last Column
Selector

Resolved

Suggestion 4: Improve Code Coverage Resolved

Suggestion 5: Improve Documentation Resolved

Suggestions

Suggestion 1: Use Library Operators Instead of Default Go Operators

Location

compiler/logderivativesum/logderivativesum.go#L106

protocol/query/logderiv_sum.go#L189

protocol/query/horner.go#L212

compiler/horner/horner.go#L241

compiler/horner/horner.go#L346

protocol/query/permutation.go#L112

protocol/query/permutation.go#L172

protocol/query/grand_product.go#L195

compiler/permutation/verifier.go#L202

compiler/permutation/verifier.go#L37

Synopsis

The default Go != operator is used for the field.Element type defined within a dependency. The
library offers the Equal()/NotEqual() functions. While this does not cause any issues in the current
version, the dependency may eventually change the underlying representation of the type, which could
cause discrepancies in future versions. As some of these comparisons are critical to correctness and
soundness properties, we recommend preemptively fixing them due to their potential impact.

Security Audit Report | Limitless Prover | Linea zkEVM ​ 5
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/compiler/logderivativesum/logderivativesum.go#L106
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/query/logderiv_sum.go#L189
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/query/horner.go#L212
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/compiler/horner/horner.go#L241
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/compiler/horner/horner.go#L346
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/query/permutation.go#L112
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/query/permutation.go#L172
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/query/grand_product.go#L195
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/compiler/permutation/verifier.go#L202
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/compiler/permutation/verifier.go#L37

Mitigation

We recommend using the library’s dedicated operators instead of the default Go operators.

Status

Using the default Go operator depends on the uniqueness of field representations. The Linea team has
correctly argued that if uniqueness were lost, it would also break gnark, making the issue detectable.

Verification

Resolved.

Suggestion 2: Improve Code Quality

Location

●​ Avoid incorrect logging:
○​ protocol/distributed/distribute.go#L138
○​ protocol/distributed/distribute.go#L147​

●​ Enforce stricter typing:

○​ protocol/query/projection.go#L25​

●​ Prevent error propagation shadowing:
○​ protocol/query/logderiv_sum.go#L185-L187 ​

●​ Improve performance:

○​ protocol/query/logderiv_sum.go#L142-L168 ​

●​ Use available library primitives:
○​ protocol/query/grand_product.go#L139
○​ protocol/compiler/permutation/verifier.go#L112-L113 ​

●​ Remove unused or redundant logic:

○​ protocol/compiler/horner/projection_to_horner.go#L22
○​ protocol/compiler/horner/projection_to_horner.go#L61

Synopsis

During our extensive review of the codebase, our team identified practices that impact the quality,
readability, and maintainability of the codebase. Below, we share a non-exhaustive list of remediation
measures addressing the code quality issues we observed:

●​ Replace incorrect usage of “LPP” and “GL” strings in log messages by interchanging them where
applicable.

●​ Use a stricter type than int for the round variable, as it cannot be negative and is expected to
have a small maximum.

●​ Propagate errors from callee functions directly, rather than shadowing them in caller
functions, to preserve accurate error reporting.

●​ Exit parallel tasks immediately upon encountering an error, instead of allowing all parallel
processes to continue, for a minor performance improvement.

●​ Use appropriate primitives provided by dependency libraries. For example, use field.One()
instead of field.NewElement(1), and Div() instead of a combination of Invert() and
Mul().

Security Audit Report | Limitless Prover | Linea zkEVM ​ 6
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/distributed/distribute.go#L138
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/distributed/distribute.go#L147
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/query/projection.go#L25
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/query/logderiv_sum.go#L185-L187
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/query/logderiv_sum.go#L142-L168
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/query/grand_product.go#L139
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/compiler/permutation/verifier.go#L112-L113
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/compiler/horner/projection_to_horner.go#L22
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/compiler/horner/projection_to_horner.go#L61

●​ Remove unused code to reduce code footprint and simplify code reviews. Namely, rather than
fetching the round value from the register, use the one stored in the previously fetched
Projection query to prevent redundant lookups.

Mitigation

We recommend addressing the items listed above to improve code quality, and using them as a baseline
for identifying and remediating similar issues across the codebase.

Status

The Linea team has addressed all the above concerns in this PR.

Verification

Resolved.

Suggestion 3: [Horner Query] Add Missing Booleanity Check on Last
Column Selector

Location

compiler/horner/horner.go#L199

Synopsis

The Booleanity check on the selector field in the Horner queries skips the last column.

Mitigation

We recommend performing the Booleanity check on the last column and triggering a panic if the selector
is not binary.

Status

The Linea team has added the missing Booleanity check in this PR.

Verification

Resolved.

Suggestion 4: Improve Code Coverage

Location

protocol/distributed/conglomeration.go#L43

protocol/distributed/distribute.go#L177

protocol/distributed/distribute.go#L128

Synopsis

The codebase uses a combination of end-to-end and unit tests. For components
protocol/compiler/logderivativesum, protocol/dedicated, and
protocol/compiler/plonkinwizard, the test coverage was adequate, at 87.2%, 70.9%, and
77.4%, respectively. Coverage for protocol/compiler/permutation and
protocol/compiler/recursion can be improved, with current levels at 67.4% and 64.7%.
Components protocol/query (39%) and protocol/compiler/horner (0%) require significant

Security Audit Report | Limitless Prover | Linea zkEVM ​ 7
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/linea-monorepo/pull/1258/files
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/compiler/horner/horner.go#L199
https://github.com/Consensys/linea-monorepo/pull/1258/files
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/distributed/conglomeration.go#L43
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/distributed/distribute.go#L177
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/distributed/distribute.go#L128

improvement. Finally, our team was unable to assess protocol/distributed due to computational
restrictions.

Mitigation

We recommend adding more unit tests to improve code coverage in the aforementioned areas.

Status

The Linea team has recently moved the testing outside of the package and confirmed that the library is
now thoroughly tested.

Verification

Resolved.

Suggestion 5: Improve Documentation

Synopsis

High-level documentation describing the design of the Limitless Prover was still under development
during the audit and, as a result, did not cover all aspects of the system. However, the portions that were
available were consistent with the implementation.

Additionally, the documentation lacks a threat model outlining the trust assumptions underlying the
conglomeration and distributed provers.

The code documentation had some minor inconsistencies, such as mismatches between field and
function names and their actual usage in the codebase. Some examples include:

●​ protocol/distributed/conglomeration.go#L43
●​ protocol/distributed/distribute.go#L177
●​ protocol/distributed/distribute.go#L128

Mitigation

We recommend improving and completing the high-level documentation. We also recommend correcting
any existing errors within the code documentation, similar to those noted above, to maintain clarity and
alignment with the current implementation.

Status

The Linea team has corrected the code comments, and the high-level documentation has also been
improved.

Verification

Resolved.

Appendix

Appendix A: In-scope Components
​
This review will include the following scope:

Security Audit Report | Limitless Prover | Linea zkEVM ​ 8
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/distributed/conglomeration.go#L43
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/distributed/distribute.go#L177
https://github.com/Consensys/linea-monorepo/blob/b79456551aad55b8fb5f83950f12fe8863d78ad6/prover/protocol/distributed/distribute.go#L128

●​ The main implementation:

prover/protocol/distributed/

●​ The new queries:

protocol/query

├── grand_product.go

├── horner.go

├── logderiv_sum.go

├── plonk_in_wizard.go

├── projection.go

●​ The compilers:

prover/protocol/compiler

├── horner

│ ├── horner.go

│ ├── projection.go

│ └── projection_to_horner.go

├── logderivativesum

│ ├── context.go

│ ├── logderivativesum.go

│ ├── lookup.go

│ ├── lookup2logderivsum.go

│ ├── prover_tasks.go

│ ├── utils.go

│ └── z_packing.go

├── permutation

│ ├── grand_product.go

│ ├── permutation.go

│ ├── prover.go

│ ├── utils.go

│ ├── verifier.go

│ └── z.go

├── plonkinwizard

│ ├── compile.go

Security Audit Report | Limitless Prover | Linea zkEVM ​ 9
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

│ ├── prover.go

│ └── verifier.go

├── recursion

 ├── actions.go

 ├── circuit.go

 ├── fake_column.go

 ├── recursion.go

 └── translator.go

●​ Dedicated columns:

prover/protocol/dedicated

├── counter.go

├── hearbeat.go

├── is_zero.go

├── manual_shift.go

├── repeated_pattern.go

The above in-scope audit target was provided by the Linea team to Least Authority and assessed for the
purposes of this report.

In addition, any dependency and third-party code, unless specifically included above, were considered out
of the scope of this audit.

Security Audit Report | Limitless Prover | Linea zkEVM ​ 10
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.​

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Security Audit Report | Limitless Prover | Linea zkEVM ​ 11
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Limitless Prover | Linea zkEVM ​ 12
1 August 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Limitless Prover
	Overview
	Background
	Project Dates
	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	System Design
	Dependencies

	Code Quality
	Tests

	Documentation and Code Comments
	Scope

	Specific Issues & Suggestions
	Suggestions
	Suggestion 1: Use Library Operators Instead of Default Go Operators
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 2: Improve Code Quality
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: [Horner Query] Add Missing Booleanity Check on Last Column Selector
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 4: Improve Code Coverage
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 5: Improve Documentation
	Synopsis
	Mitigation
	Status
	Verification

	Appendix
	Appendix A: In-scope Components

	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

