

zkBTC Circuit and Smart Contracts
Security Audit Report
zkBTC
Final Audit Report: 16 June 2025

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Smart Contracts

Circuits

Dependencies

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Issue A: Loop Out of Bounds

Issue B: No Domain Separation in Binary Merkle Tree

Issue C: Possible Zero Merkle Tree Root Propagation in Circuits

Suggestions

Suggestion 1: Improve Documentation

Suggestion 2: Audit Fingerprinting Functionality

Suggestion 3: Improve Test Suite

About Least Authority

Our Methodology

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 1
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Lightec has requested that Least Authority perform a security audit of the zkBTC Circuit Implementation
and Smart Contracts. The Circuit Implementation is for Ethereum and based on gnark, while the smart
contract manages all zkBTC tokens, is ERC-20 compliant, and is ZKP-gated.

Project Dates
● April 21, 2025 - May 23, 2025: Initial Code Review (Completed)
● May 27, 2025: Delivery of Initial Audit Report (Completed)
● June 16, 2025: Verification Review (Completed)
● June 16, 2025: Delivery of Final Audit Report (Completed)

Review Team
● Nikos Iliakis, Security Researcher and Engineer
● Anna Kaplan, Cryptography Researcher and Engineer
● Burak Atasoy, Project Manager
● Jessy Bissal, Technical Editor

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the zkBTC Circuit Implementation and
Smart Contracts followed by issue reporting, along with mitigation and remediation instructions as
outlined in this report.

The following code repositories are considered in scope for the review:
● Circuit Implementation:

https://github.com/lightec-xyz/provers
● Smart Contracts:

https://github.com/lightec-xyz/zkBTC-contracts

Specifically, we examined the following Git revisions for our initial review:

● Circuit Implementation: e016c3de22f37540cc489b72d479a282ca87439a
● Smart Contracts: f3b98c0ea67cd54061c13b09a2de2b380734e3ab

For the verification, we examined the following Git revisions:

● Circuit Implementation: bcee32fdcb81c3afa9b744998c62a65adab2a12d
● Smart Contracts: 5333d24c842814362e1d0f3246fd3a9812d0cf71

For the review, these repositories were cloned for use during the audit and for reference in this report:

● Circuit Implementation:
https://github.com/LeastAuthority/lightec-provers

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 2
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/lightec-xyz/provers
https://github.com/lightec-xyz/zkBTC-contracts
https://github.com/LeastAuthority/lightec-provers

● Smart Contracts:
https://github.com/LeastAuthority/lightec-zkBTC-contracts

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Website:
https://www.zkbtc.money

● Documentation:
https://lightec.gitbook.io/lightecxyz

● zkBTC-Security:
https://github.com/lightec-xyz/zkBTC-Security

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Vulnerabilities within each component and whether the interaction between the components is

secure;
● Adversarial actions and other attacks on the network;
● Potential misuse and gaming of the smart contracts;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial of Service (DoS) and other security exploits that would impact the intended use or disrupt

the execution of the smart contracts and other components;
● Whether requests are passed correctly to the network core and between components;
● Key management, including secure private key storage and management of encryption and

signing keys;
● Protection against malicious attacks and other ways to exploit;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
zkBTC Bridge is a native zero‐knowledge proof-based cross‐chain protocol by Lightec that enables Bitcoin
holders to convert BTC into an ERC-20 token, $zkBTC, on Ethereum at a 1:1 peg. Users lock BTC in the
zkBTC bridge on Bitcoin and submit a succinct ZK proof to mint fully backed $zkBTC tokens on Ethereum,
which can then be deployed across lending, trading, and yield-farming DeFi applications. When ready to
reclaim their Bitcoin, holders burn their $zkBTC on Ethereum, generate a corresponding ZK proof of the
burn, and unlock BTC on the Bitcoin network at parity. With its Beta V2 release, zkBTC Bridge also
introduces a “Proving-as-Mining” mechanism, decentralizing proof generation by allowing any participant
to mine ZK proofs in exchange for incentives. By applying ZKP techniques for transaction confidentiality

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 3
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/lightec-zkBTC-contracts
https://www.zkbtc.money
https://lightec.gitbook.io/lightecxyz
https://github.com/lightec-xyz/zkBTC-Security

and to minimize on-chain verification costs, the zkBTC Bridge aims to enable users to access Ethereum’s
programmable finance.

System Design
Our team examined the zkBTC Circuit Implementation and Smart Contracts and found that it has been
well-designed, with a strong focus on security. The sections below detail our observations and findings.

Smart Contracts

The smart contracts use strict role-based access control to restrict sensitive operations to authorized
parties, and implement a checkpoint mechanism to verify that only well-confirmed Bitcoin transactions
are accepted. Zero-knowledge proof verification is required for deposits and redemptions, and there are
checks to prevent UTXO duplication and replay attacks. Additionally, the code uses assertions and
require statements to enforce correct behavior and includes comments addressing potential
denial-of-service risks.

As part of our review of smart contracts, we evaluated the protocol’s UTXO management logic to assess
susceptibility to double-spending and replay attacks, and found that while the contract enforces strict
role-based access, the complexity of array handling and reliance on admin roles could present risks if not
carefully managed.

We examined the Bitcoin transaction verification and checkpoint mechanisms for potential proof forgery
or manipulation, and noted that security depends heavily on the correctness of the zero-knowledge proof
integration and checkpoint rotation logic.

We also analyzed the contract’s handling of large data structures and sorting operations for potential
denial-of-service vectors, observing that gas exhaustion could be a concern if the UTXO set grows
excessively.

Finally, we assessed migration and upgrade procedures for risks of state inconsistency or privilege
escalation, and found that while access controls are in place, the migration process must be carefully
monitored to prevent operational or security lapses.

Circuits

We reviewed the corresponding circuits for the zero-knowledge proof used within the system on the
Ethereum side to burn the $zkBTC token (redeeming mechanism). The system is designed through five
distinct circuits: TxInEth2, BeaconHeader, BeaconHeaderFinality, Sync-Committee, and the
unifying circuit Redeem. The TxInEth2 circuit checks for a block containing the redeem transaction. The
BeaconHeader circuit checks for continuity between blocks, and the BlockHeaderFinality circuit
checks for a correct signature by the sync committee for the latest block. The Sync-Committee circuit
checks the continuity of the latest sync committee. The underlying zero-knowledge functionality is
delivered through gnark and gnark-crypto with PLONK proofs over the BN254 curve.

In these circuits, gadgets from gnark are used, for example, a circuit representation of the MiMC hash to
represent public keys. Additionally, the provers repository implements an SSZ gadget. Within these
gadgets, we did not identify any issues. However, a Binary Merkle Tree gadget is implemented as well,
where we identified two issues (Issue B, Issue C).

As part of our review, we also analyzed the circuits for missing constraints against their statement
description in the README of the repository but did not identify any.

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 4
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/gnark
https://github.com/consensys/gnark-crypto/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/ssz/

Dependencies
Our team examined the implemented dependencies in the codebase and identified no security issues in
their use. For the smart contracts, the team utilizes the well-audited OpenZeppelin libraries, as well as
actively maintained libraries from OasisProtocol. For the circuits, the project uses the audited
Consensus gnark and gnark-crypto projects, and correctly applies SSZ, MiMC, Keccak, SHA256 and both
the BLS12-381 curve (for signatures) and the BN254 curve.

Code Quality
We performed a manual review of the in-scope repositories and found that the smart contract code is well
organized and generally follows standard Solidity best practices, while the circuits implementation
adheres to best practices for gnark usage. Functions are logically structured, access control is
consistently enforced, and core operations are separated into clear modules. Additionally, the use of
comments, require and assert statements, and established patterns such as role-based permissions
and input validation are consistently applied.

Tests

The repositories in scope for the circuits are well-tested for correctness but lack failure tests. Additionally,
while tests for the smart contracts exist, they rely on logs and manual inspection without incorporating
assertions, which we suggest adding. We recommend improving the test suite for both the circuits and
smart contracts (Suggestion 3).

Documentation and Code Comments
The project documentation provided by the Lightec team for the smart contracts was sufficient in
describing the intended functionality of the system. For the circuits, the documentation was generally
adequate and provided the necessary information to understand the complex circuit structure, although
there were some typos and areas for improvement (Suggestion 1).

Additionally, for the smart contracts, comments were included in some cases to explain critical
functionality, but the codebase could benefit from more comprehensive comments and clearer
descriptions of function intentions. For the circuits, the code comments were sufficient, with function
names appropriately selected and comments provided where necessary.

Scope
The scope of this review was sufficient for the smart contracts and included all security-critical
components. However, our team noted that the common component of Lightec (common/tree/master)
was not assessed as part of this review. This gap in coverage impacts the overall audit quality, as the
fingerprint checking functionality is implemented within this component (Suggestion 2). Our team
strongly recommends a comprehensive follow-up security audit focused on this area.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Loop Out of Bounds Resolved

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 5
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/lightec-xyz/common/tree/master

Issue B: No Domain Separation in Binary Merkle Tree Resolved

Issue C: Possible Zero Merkle Tree Root Propagation in Circuits Resolved

Suggestion 1: Improve Documentation Implemented

Suggestion 2: Audit Fingerprinting Functionality Implemented

Suggestion 3: Improve Test Suite Implemented

Issue A: Loop Out of Bounds

Location

contracts/deposit-redeem/zkBTCBridge.sol#L148

Synopsis

The array loop will revert if a result is not found, due to arithmetic overflow.

Impact

Low.

The observed behavior results from a bug, not a security issue.

Feasibility

Medium.

Severity

Low.

Preconditions

This issue occurs when a search for an item in the array that does not exist is performed.

Technical Details

The loop termination condition is incorrectly defined. It should reversely iterate all elements until element
zero, but the condition (>=0) will attempt to find a subsequent element, which, due to Solidity’s overflow
checks, results in a revert.

Remediation

We recommend modifying the logic such that the loop decrements the index only for elements greater
than zero.

Status

The Lightec team has fixed the loop.

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 6
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/lightec-zkBTC-contracts/blob/f3b98c0ea67cd54061c13b09a2de2b380734e3ab/contracts/deposit-redeem/zkBTCBridge.sol#L148

Go

Verification

Resolved.

Issue B: No Domain Separation in Binary Merkle Tree

Location

circuits/types/binary_merkle_tree.go#L13-L26

circuits/utils/merkle.go#L50-L64

Synopsis

Due to the lack of domain separation, it is possible to forge a Binary Merkle Tree for a Binary Merkle Tree
root.

Impact

High.

This issue could result in forged proofs for a Binary Merkle Tree without all data being verified. This
undermines the integrity guarantees of the Binary Merkle Tree, which is being utilized in the
BeaconHeader and Sync-Committee Update circuits.

Feasibility

Medium.

Severity

High.

Preconditions

The attacker must be able to provide the leaves input.

Technical Details

Within the code of the BuildBinaryMerkleTree function in binary_merkle_tree.go, the Binary
Merkle Tree is constructed through this for loop:

for i := l - 1; i > 0; i-- {
 tree[i] = sha256.Sum256(append(tree[2*i][:], tree[2*i+1][:]...))
 }

(Similar to, for example, in merkle.go).

Conceptually, this results in the leaves with hash values h0=SHA256(l0) and h1=SHA256(l1) (and
data l0 and l1) being hashed together into the internal node n1=SHA256(h0||h1), and the leaves with
hash values h2=SHA256(l2) and h3=SHA256(l3) (and data l0 and l1) being hashed together into
n2=SHA256(h2||h3). In this simple example, the Merkle tree root would then be r=SHA256(n1||n2).

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 7
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/lightec-provers/blob/e016c3de22f37540cc489b72d479a282ca87439a/circuits/types/binary_merkle_tree.go#L13-L26
https://github.com/LeastAuthority/lightec-provers/blob/e016c3de22f37540cc489b72d479a282ca87439a/circuits/utils/merkle.go#L50-L64

Go

However, this leads to a possible attack where the attacker can find a second preimage to the same
Merkle tree root r: The tree consisting of only 2 leaves with hash values n1 and n2 (and not all h0, …, h3
and respective l0, …, l3) since SHA256(n1||n2)=r.

Remediation

We recommend prefixing leaves with one value (e.g., 0), and internal nodes with another value (e.g., 1).
Through this domain separation, it is not possible to generate a second preimage to a hash value within
the tree. (Alternatively, two distinct hash functions could also be used instead of prefixing).

Status

The Lightec team stated that the functionality within circuits/utils/merkle.go will not be used and
has been removed.

Verification

Resolved.

Issue C: Possible Zero Merkle Tree Root Propagation in Circuits

Location

circuits/types/binary_merkle_tree.go#L13-L26

Synopsis

If the leaves input to the function generating the Binary Merkle Tree is empty, the SHA256 hashing
functionality is not executed and a Merkle tree root of zero is computed.

Impact

Medium.

This issue could result in constraints being incorrectly managed within the circuits of BeaconHeader and
Sync-Committee Update against this Merkle Tree root due to it being zero.

Feasibility

Medium.

Severity

Medium.

Preconditions

The attacker must be able to provide the leaves input, which is a realistic scenario since the attacker
would have access to the data to be proven through the circuits.

Technical Details

In the BuildBinaryMerkleTree function, the value l is computed through gnark-crypto's
NextPowerOfTwo function:

l := int(ecc.NextPowerOfTwo(uint64(len(leaves))))

If len(leaves) == 0, l will be set to 1. This then results in a tree being initialized with a root of zero

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 8
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/lightec-provers/blob/e016c3de22f37540cc489b72d479a282ca87439a/circuits/utils/merkle.go
https://github.com/LeastAuthority/lightec-provers/blob/e016c3de22f37540cc489b72d479a282ca87439a/circuits/types/binary_merkle_tree.go#L13-L26
https://github.com/Consensys/gnark-crypto/blob/56600883e0e9f9b159e9c7000b94e76185ec3d0d/ecc/utils.go#L181-L196

without ever entering the for loop. The output value will be a slice of two elements, each with a value of
zero. However, this is not intended behavior for supplying an empty slice for leaves and can result in
further problems within the constraint system for this Merkle tree with root zero.

Remediation

We recommend adding an input check for the edge case of leaves being empty, as well as defining and
documenting a canonical empty Merkle tree, if necessary, and constraining it within the circuits of
BeaconHeader and Sync-Committee Update.

Status

The Lightec team stated that the functionality within circuits/utils/merkle.go will not be used
and has been removed.

Verification

Resolved.

Suggestions

Suggestion 1: Improve Documentation

Location

lightec-provers/README.md

Synopsis

During the audit, our team discovered imprecisions in the documentation, which reduce the readability of
the code and, thus, make reasoning about the security of the system more difficult. Below we list some of
our observations and recommendations:

● Update the diagram in the Architecture section by removing the duplicate Block m+1 and adding
Block m;

● Correct typographical errors in text passages for clarity (e.g., “conner” to “corner”); and
● Add data from the Google Sheet to the unified documentation doc.

Mitigation

We recommend clarifying the documentation in the README.md file by addressing the items listed above.

Status

The Lightec team has implemented the changes in PR#108.

Verification

Implemented.

Suggestion 2: Audit Fingerprinting Functionality

Location

Examples (non-exhaustive):

redeem/core/redeem.go#L73

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 9
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/lightec-provers/blob/e016c3de22f37540cc489b72d479a282ca87439a/circuits/utils/merkle.go
https://github.com/LeastAuthority/lightec-provers/blob/e016c3de22f37540cc489b72d479a282ca87439a/README.md
https://docs.google.com/spreadsheets/d/1zgWZbK3SdzpjMZ0CxA1ER8we3tolDg50aGUCEXbJR4o/edit?gid=389371382#gid=389371382
http://readme.md
https://github.com/lightec-xyz/provers/pull/108
https://github.com/LeastAuthority/lightec-provers/blob/e016c3de22f37540cc489b72d479a282ca87439a/circuits/redeem/core/redeem.go#L73

sync-committee/core/outer.go#L47

Synopsis

The fingerprinting functionality is used across various parts of the code to recursively verify a verifying
key, such as in the Redeem and BeaconHeader circuits. However, this functionality is not included in the
provers repository but is located in an extra repository called common.

Mitigation

We recommend performing an independent audit of common.

Status

The Lightec team stated that the common functionality underwent a third-party audit in March 2025.

Verification

Implemented.

Suggestion 3: Improve Test Suite

Synopsis

The circuit repositories are thoroughly tested for correct behavior but do not include any tests for
handling invalid inputs as well as edge cases. Similarly, while there are tests for the smart contracts, they
rely on log output and manual review instead of assertions.

Mitigation

For the circuits, we recommend adding tests that handle failing and edge cases. (Within the circuit part,
adding failure case testing is not crucial and is primarily intended for development and debugging, as
proofs on invalid data will not be verified cryptographically. Edge case testing, however, is necessary to
confirm that the circuits are correctly constrained). Additionally, instead of relying on manual inspection
of the outputs of the tests, we recommend improving the tests for the smart contracts by incorporating
assertion-based checks.

Status

The Lightec team has added edge case tests in PR#112.

Verification

Implemented.

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 10
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/lightec-provers/blob/e016c3de22f37540cc489b72d479a282ca87439a/circuits/sync-committee/core/outer.go#L47
https://github.com/lightec-xyz/common
https://github.com/lightec-xyz/common
https://github.com/lightec-xyz/provers/pull/112

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 11
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | zkBTC Circuit and Smart Contracts | zkBTC 12
16 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	zkBTC Circuit and Smart Contracts
	Overview
	Background
	Project Dates
	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	System Design
	Smart Contracts
	Circuits

	Dependencies
	Code Quality
	Tests

	Documentation and Code Comments
	Scope

	Specific Issues & Suggestions
	Issue A: Loop Out of Bounds
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Remediation
	Status
	Verification

	Issue B: No Domain Separation in Binary Merkle Tree
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Remediation
	Status
	Verification

	Issue C: Possible Zero Merkle Tree Root Propagation in Circuits
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Remediation
	Status
	Verification

	Suggestions
	Suggestion 1: Improve Documentation
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 2: Audit Fingerprinting Functionality
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: Improve Test Suite
	Synopsis
	Mitigation
	Status
	Verification

	
	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

