

zkBTC Bridge Cryptography
Security Audit Report
zkBTC
FInal Audit Report: 17 April 2025

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Issue A: Exposure of Secret Through Logging

Issue B: InsecureSkipVerify Set To True for TLSConfig

Issue C: Verification Ignores an Invalid Report With a TCB Level Error

Suggestions

Suggestion 1: Update Documentation

Suggestion 2: Include Tests for Edge and Failure Cases

Suggestion 3: Improve Error Handling and Avoid Using Panics

Suggestion 4: Correct Typographical Errors in Function Names and Code Comments

Suggestion 5: Use Functions With Appropriate Names

About Least Authority

Our Methodology

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 1
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Lightec Ltd. has requested that Least Authority perform a security audit of zkBTC, a ZKP-based bridge for
enabling Bitcoin in the Ethereum ecosystem.

Project Dates
● March 3, 2025 - March 17, 2025: Initial Code Review (Completed)
● March 19, 2025: Delivery of Initial Audit Report (Completed)
● April 14, 2025 - April 16, 2025: Verification Review (Completed)
● April 16, 2025: Delivery of Final Audit Report (Completed)

Review Team
● Poulami Das, Security / Cryptography Researcher and Engineer
● Anna Kaplan, Cryptography Researcher and Engineer
● Burak Atasoy, Project Manager
● Jessy Bissal, Technical Editor and Writer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the zkBTC followed by issue reporting,
along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in-scope for the review:

● Recursive Length Prefix (RLP) Library:
○ RLPark-0.2.3.zip sent via email on February 28, 2025, and including:

■ ListRlpCheck (and all circuit functions it needs)
■ RotateLeft
■ utils/util.go
■ Excluding:

● http://github.com/lightec-xyz/chainark v0.5.7
● http://github.com/lightec-xyz/common v0.2.7

● Merkle Patricia Trie (MPT) Library:
○ gMPTark-0.2.5.zip sent via email on February 28, 2025, and including:

■ mpt.go, nibble.go, node.go
■ keccak/keccak256.go keccak/hash.go

● Excluding sha3.go which is replicated from gnark
■ Excluding:

● http://github.com/lightec-xyz/chainark v0.5.7
● http://github.com/lightec-xyz/common v0.2.7

● BLS12-381 G2 signature verification:
○ PR: https://github.com/Consensys/gnark/pull/1040

■ Excluding the _test.go files
● SGX Enclave:

○ zkbtcSgxServer-audit.b0228.zip sent via email on February 28, 2025
■ Excluding the ZKP verifier from gnark

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 2
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

http://github.com/lightec-xyz/chainark
http://github.com/lightec-xyz/common
http://github.com/lightec-xyz/chainark
http://github.com/lightec-xyz/common
https://github.com/Consensys/gnark/pull/1040

● Plonk verifier implemented in Rust:
○ Repo:

https://github.com/lightec-xyz/plonk_verifier_on_icp/tree/main/src/plonk_verifier_on_icp
_backend

For the review, the code was provided via shared folders and cloned into the following repositories for use
during the audit and as a reference in this report:

● https://github.com/LeastAuthority/lightec-gMPTark
● https://github.com/LeastAuthority/lightec-RLPark
● https://github.com/LeastAuthority/lightec-zkbtc-SgxServer
● https://github.com/LeastAuthority/lightec-plonk-verifier-on-icp

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Website:
https://www.zkbtc.money

● Documentation:
https://lightec.gitbook.io/lightecxyz/zkbtc-bridge

● Security document:
https://github.com/lightec-xyz/zkBTC-Security

In addition, this audit report references the following documents and links:
● A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK: Permutations over Lagrange-bases for

Oecumenical Noninteractive arguments of Knowledge.” IACR Cryptology ePrint Archive, 2019,
[GWC19]

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Adversarial actions and other attacks on the bridge;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial-of-service attacks and security exploits that would impact or disrupt execution of the

bridge;
● Vulnerabilities within individual components and whether the interaction between the

components is secure;
● Exposure of critical information during interaction with external libraries;
● Proper management of encryption and signing keys;
● Protection against malicious attacks and other methods of exploitation;
● Data privacy, data leaking, and information integrity;
● Inappropriate permissions and excess authority; and
● Anything else as identified during the initial analysis phase.

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 3
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/lightec-xyz/plonk_verifier_on_icp/tree/main/src/plonk_verifier_on_icp_backend
https://github.com/lightec-xyz/plonk_verifier_on_icp/tree/main/src/plonk_verifier_on_icp_backend
https://github.com/LeastAuthority/lightec-gMPTark
https://github.com/LeastAuthority/lightec-RLPark
https://github.com/LeastAuthority/lightec-zkbtc-SgxServer
https://github.com/LeastAuthority/lightec-plonk-verifier-on-icp
https://www.zkbtc.money/
https://lightec.gitbook.io/lightecxyz/zkbtc-bridge
https://github.com/lightec-xyz/zkBTC-Security
https://eprint.iacr.org/2019/953

Findings
General Comments
We reviewed several components of the zkBTC protocol, which is a bridge between Bitcoin and Ethereum,
using techniques from zero-knowledge proofs. The bridge allows a Bitcoin user to mint a zkBTC token,
use this token in the Ethereum ecosystem, and eventually redeem the Bitcoin from the zkBTC token. When
a Bitcoin is transferred into a zkBTC token, a proof is generated using a Succinct Non-interactive
Argument of Knowledge (SNARK), in particular the PLONK SNARK [GWC19]. The PLONK proof verifies
that the transfer was executed correctly, with the relevant inputs and outputs, without revealing any
sensitive information. This proof is generated offline and verified via an Ethereum smart contract. When
the zkBTC token needs to be redeemed at a later stage, this token is destroyed through an Ethereum
smart contract. A PLONK proof is then generated offline that proves the zkBTC tokens were destroyed
appropriately. The proof validation is followed by paying the user through a UTXO containing the
transferred Bitcoins. The PLONK proof for redemption is validated either by the Bitcoin network or in a
tamper-proof container. Once the proof is deemed to be valid, the UTXO is signed through a 2-out-of-3
multisignature, which entails the following three entities: a smart contract on the OASIS Sapphire
blockchain, ICP tECDSA, and an Intel SGX enclave.

This protocol consists of several underlying components, and we examined a subset of them during this
audit. In particular, we reviewed two libraries–RLPark (Recursive Length Prefix) and gMPT (Merkle
Patricia Trie)–that contain utility functions for checking conditions associated with a transaction
belonging to a specific Ethereum block, based on certain key parameters. Additionally, we reviewed the
PLONK verification protocol, BLS signature verification process as per the Ethereum light client protocol,
and the key generation process along with clients’ connection to the SGX server. Further details are
provided in the following section.

System Design
Our team examined the design of the zkBTC and found that security has generally been taken into
consideration.

We reviewed the RLPark library, which contains utility functions for checking the correct formatting of
Ethereum transactions in Recursive Length Prefix (RLP) format. We reviewed the gMPTark library, which
implements a Patricia Merkle Trie. The gMPT library is used to check membership proofs of an Ethereum
transaction within a certain Ethereum block, that the transaction receipts belong to the same block, and
that the transactions and their corresponding receipts have the same MPT key.

We identified several utility functions within the RLP and MPT libraries where the code panics when
handling invalid inputs. This behavior could lead to frequent system crashes if an attacker deliberately
provides such inputs. We recommend implementing proper error handling to allow the code to manage
external input validation more gracefully (Suggestion 3).

We additionally examined the PLONK verification protocol implemented in Rust, designed to run within a
Dfinity-based ICP canister. We checked for the correctness of a Fiat-Shamir transcript and did not identify
any issues in this regard. However, our team encourages adding thorough documentation of the proof
circuit statement to help prevent future attacks resulting from unintended changes to the proof
(Suggestion 1).

In addition, we analyzed the pull request adding BLS signature verification on the BLS12-381 curve to
Consensys’ gnark library. This included the hashing-to-G2 functionality and the newly implemented
AddUnified function. Edge cases, such as identity element checks and subgroup validation, were
implemented correctly.

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 4
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2019/953

During our review, we also assessed the private key generation and management process within an SGX
enclave along with the related TLS-based client/server connection for sending and receiving
SGX-generated private keys. We identified a few issues in this area of investigation: the secret value that
leads to the private key is printed in plaintext in a log file (Issue A), and when an enclave report is invalid
due to a TCB-level error, the code ignores this error and continues execution without interruption (Issue
C).

Furthermore, when creating a new client, the flag InsecureSkipVerify is set to true. This results in a
TLS connection being established without certificate validation, potentially enabling a man-in-the-middle
attack (Issue B). Given the security-critical nature of this component, particularly its role in handling the
communication of sensitive private keys, we also recommend adding detailed documentation to further
clarify its design and security implications (Suggestion 1).

Dependencies

Our team did not identify any security issues in the use of dependencies. The zkBTC team utilizes a
variety of tools, which are considered valid with no identified security risks. BLS12-381 is a well-known
curve in the ecosystem, and gnark and arkworks are reliable frameworks for generating PLONK proofs.
While the use of Intel's SGX poses some considerations, it remains a suitable choice for this type of
operation.

Code Quality
We performed a manual review of the repositories in scope and found the codebases to be generally
organized and well-written. The zkBTC team utilizes gnark for proof generation and follows commonly
used practices in the Bitcoin and Ethereum ecosystem, such as BLS signatures and a script opcode to
verify the validity of a multisig transaction. However, we identified unresolved TODOs, as well as unused
code and packages, which we recommend resolving or removing (Suggestion 3, Suggestion 4, and
Suggestion 5).

Tests

Our team found the test coverage of the repositories in scope to be insufficient. A robust test suite should
include, at a minimum, unit tests and integration tests that cover both success and failure cases. This
helps identify errors and bugs and protect against potential edge cases, which could lead to
security-critical vulnerabilities or exploits. We recommend improving the overall test coverage
(Suggestion 2).

Documentation and Code Comments
The project documentation provided for this security review was insufficient in describing the general
architecture of the system, each of the components, and how those components interact with each other.
We recommend improving the project documentation to include a high-level protocol overview, given the
complexity of the bridge between Bitcoin and Ethereum. Additionally, we suggest providing a detailed
architecture diagram and refining the system specification.

While the codebase includes some code comments describing the intended behavior of security-critical
components and functions, our team identified numerous typographical errors in comments and function
names, which we recommend correcting (Suggestion 3, Suggestion 4, and Suggestion 5).

Scope
The scope of the review was limited, as we assessed only specific components of the overall system.
While this allowed us to focus on the correctness of key factors, other critical aspects remained beyond

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 5
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

the scope of this review. We recommend conducting a follow-up audit, particularly for the smart contract.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Exposure of Secret Through Logging Resolved

Issue B: InsecureSkipVerify Set To True for TLSConfig Resolved

Issue C: Verification Ignores an Invalid Report With a TCB Level Error Resolved

Suggestion 1: Update Documentation Implemented

Suggestion 2: Include Tests for Edge and Failure Cases Implemented

Suggestion 3: Improve Error Handling and Avoid Using Panics Not Implemented

Suggestion 4: Correct Typographical Errors in Function Names and Code
Comments

Implemented

Suggestion 5: Use Functions With Appropriate Names Implemented

Issue A: Exposure of Secret Through Logging

Location

lightec-zkbtc-SgxServer/blob/main/keyAgent.go#L49

Synopsis

The function backupSecret takes the secret variable as input and writes it into a log file.

Impact

High.

An attacker who gains access to the log file can read the secret value in plaintext. Since this secret value
is directly used for private key generation, the attacker would be able to control one of the keys for
2-out-of-3 signature generation. This poses a direct risk of allowing an attacker to forge transactions of
their choice.

Feasibility

Given access to the log file, the attack can be executed immediately since the secret value is stored in
plaintext in the log file.

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 6
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/lightec-zkbtc-SgxServer/blob/main/keyAgent.go#L49

Severity

Medium.

This rating reflects the high impact but low feasibility, as obtaining access to the log file remains
challenging.

Preconditions

The attacker must have access to the log file.

Remediation

We recommend refraining from printing the secret value in the log file.

Status

The zkBTC team has resolved this issue by removing the printing of the secret value.

Verification

Resolved.

Issue B: InsecureSkipVerify Set To True for TLSConfig

Location

lightec-zkbtc-SgxServer/blob/main/client/client.go#L20

Synopsis

Through the function NewClient, a new client is created with a TLS configuration where
InsecureSkipVerify is set to true. This enables establishing a connection with a server without
verifying its certificate.

Impact

Medium.

This rating is based on the issue enabling a man-in-the-middle attack by allowing a connection to be
established with a malicious client.

Feasibility

This exploit is moderately feasible, as skipping certificate verification allows a malicious connection to be
established.

Severity

Medium.

Remediation

We recommend setting InsecureSkipVerify to false and using a proper certificate pool. When
establishing a connection, we further recommend checking that the client certificate verifies to true.

Status

The zkBTC team opted to use an exported certificate instead of setting InsecureSkipVerify to true, thereby
establishing two-way TLS authentication and allowing the TLS server to verify the client certificate. The
code change can be found here.

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 7
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/lightec-zkbtc-SgxServer/blob/main/client/client.go#L20
https://github.com/LeastAuthority/lightec-zkbtc-SgxServer/blob/verification/client/client.go#L20-L36

Verification

Resolved.

Issue C: Verification Ignores an Invalid Report With a TCB Level Error

Location

lightec-zkbtc-SgxServer/blob/main/enclave.go#L64-L73

Synopsis

If the report contains an invalid TCB level, the code only throws a warning and proceeds without
interruption.

Impact

High.

This rating reflects the potential for an attacker to gain access to sensitive data through the submission
of an invalid report.

Feasibility

This attack is moderately feasible.

Severity

Medium.

Remediation

Rather than ignoring an invalid TCB level, we recommend defining a set of acceptable TCB statuses and
failing the verification if the report does not meet the required security level.

Status

The zkBTC team has updated the code to return an error report when the TCB status is invalid, in
accordance with the TCB levels defined here.

Verification

Resolved.

Suggestions

Suggestion 1: Update Documentation

Location

Throughout the codebase.

Synopsis

We reviewed the existing documentation provided for this review, and while it was helpful, we recommend
expanding it to improve clarity and offer a more complete understanding of the bridge protocol.

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 8
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/lightec-zkbtc-SgxServer/blob/main/enclave.go#L64-L73
https://github.com/edgelesssys/ego/blob/master/attestation/tcbstatus/tcbstatus.go

Mitigation

We recommend updating the documentation to include a complete architecture diagram and a full
technical specification, including a detailed description of the algorithms used, a PLONK proof statement,
and the client/server protocol for communicating the SGX-generated private keys.

Status

The documentation has been updated to include the SGX-related client/server protocol. Details on the
protocol, architecture, and proof statement can be found here and here.

Verification

Implemented.

Suggestion 2: Include Tests for Edge and Failure Cases

Location

lightec-gMPTark/main/mpt_test.go

lightec-RLPark/main/rlp_test.go

Synopsis

While the gMPTark and RLPark libraries include sufficient tests for success and correctness cases, the
codebase lacks tests for edge and failure cases.

Sufficient test coverage should include tests for success and failure cases (all possible branches), which
helps identify potential edge cases, and protect against errors and bugs that may lead to vulnerabilities. A
test suite that includes sufficient coverage of unit tests and integration tests adheres to development best
practices. In addition, end-to-end testing is also recommended to assess whether the implementation
behaves as intended.

Mitigation

We recommend implementing comprehensive unit test coverage, including edge and failure cases, to
detect any implementation errors and verify that the implementation behaves as expected.

Status

 The zkBTC team has added tests for edge and failure cases in the RLP library.

Verification

Implemented.

Suggestion 3: Improve Error Handling and Avoid Using Panics

Location

Examples (non-exhaustive):

lightec-RLPark/blob/main/rlp.go#L47-48

lightec-RLPark/blob/main/utils/util.go#L54-55

lightec-RLPark/blob/main/utils/util.go#L14-15

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 9
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/lightec-xyz/zkbtc-Security
https://github.com/LeastAuthority/lightec-provers
https://lightec.gitbook.io/lightecxyz/zkbtc-bridge/the-technical-architecture
https://github.com/LeastAuthority/lightec-gMPTark/blob/main/mpt_test.go
https://github.com/LeastAuthority/lightec-RLPark/blob/main/rlp_test.go
https://github.com/LeastAuthority/lightec-RLPark/blob/verification/rlp_test.go
https://github.com/LeastAuthority/lightec-RLPark/blob/main/rlp.go#L47-48
https://github.com/LeastAuthority/lightec-RLPark/blob/main/utils/util.go#L54-55
https://github.com/LeastAuthority/lightec-RLPark/blob/main/utils/util.go#L14-15

Synopsis

Several functions (as listed above) immediately call panic when input parameters do not satisfy
expected conditions. Although this method of handling invalid inputs does not directly enable an attack, it
allows an attacker controlling the inputs to trigger a system crash, potentially resulting in a
denial-of-service attack.

Mitigation

Instead of panicking when validating external inputs, we recommend returning an error message for
invalid inputs. These messages should be propagated to the caller, allowing the calling code to handle
errors appropriately.

Status

The zkBTC team acknowledged this suggestion but chose not to implement it for the following reasons:

They indicated that, as they are not currently hosting proving as a service, they do not expect to encounter
related denial-of-service (DoS) attacks. Furthermore, they noted that even if errors were propagated to the
caller, there would be limited ability to recover from them in practice. The client also pointed out that the
gnark library itself frequently handles invalid inputs by triggering a panic, which aligns with their current
handling approach.

Verification

Not Implemented.

Suggestion 4: Correct Typographical Errors in Function Names and Code
Comments

Location

plonk_verifier_on_icp_backend/src/point.rs#L56

plonk_verifier_on_icp_backend/src/point.rs#L74

plonk_verifier_on_icp_backend/src/witness.rs#L7-L13

Synopsis

The functions in point.rs are incorrectly named as
ganrk_commpressed_x_to_ark_commpressed_x and ark_g1_to_gnark_unompressed_bytes.
Additionally, the comment in witness contains a typographical error.

Mitigation

We recommend renaming the functions to gnark_compressed_x_to_ark_compressed_x and
ark_g1_to_gnark_uncompressed_bytes respectively, and correcting the typographical error in the
code comment.

Status

 The zkBTC team has corrected all identified typographical errors.

Verification

Implemented.

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 10
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/lightec-plonk-verifier-on-icp/blob/main/src/plonk_verifier_on_icp_backend/src/point.rs#L56
https://github.com/LeastAuthority/lightec-plonk-verifier-on-icp/blob/main/src/plonk_verifier_on_icp_backend/src/point.rs#L74
https://github.com/LeastAuthority/lightec-plonk-verifier-on-icp/blob/main/src/plonk_verifier_on_icp_backend/src/witness.rs#L7-L13

Suggestion 5: Use Functions With Appropriate Names

Location

lightec-zkbtc-SgxServer/blob/main/crypto/keypair.go#L21

Synopsis

The function keypair.go internally calls the function PrivKeyFromBytes from the external library
btcsuite. The function PrivKeyFromBytes is misnamed, as it returns both a private and public key
rather than only a private key.

Mitigation

If possible, we recommend coordinating with the engineers of btcsuite to assign the function a more
accurate name.

Status

The zkBTC team has requested renaming of the function to the engineers of btcsuite through this
issue.

Verification

Implemented.

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 11
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/lightec-zkbtc-SgxServer/blob/main/crypto/keypair.go#L21
https://github.com/btcsuite/btcd/tree/master/btcec/ecdsa
https://github.com/btcsuite/btcd/issues/2345
https://github.com/btcsuite/btcd/issues/2345

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 12
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | zkBTC Bridge Cryptography | zkBTC 13
17 April 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	zkBTC Bridge Cryptography
	Overview
	Background
	Project Dates
	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	System Design
	Dependencies

	Code Quality
	Tests

	Documentation and Code Comments
	Scope

	Specific Issues & Suggestions
	Issue A: Exposure of Secret Through Logging
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Remediation
	Status
	Verification

	Issue B: InsecureSkipVerify Set To True for TLSConfig
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Remediation
	Status
	Verification

	Issue C: Verification Ignores an Invalid Report With a TCB Level Error
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Remediation
	Status
	Verification

	Suggestions
	Suggestion 1: Update Documentation
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 2: Include Tests for Edge and Failure Cases
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: Improve Error Handling and Avoid Using Panics
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 4: Correct Typographical Errors in Function Names and Code Comments
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 5: Use Functions With Appropriate Names
	Location
	Synopsis
	Mitigation
	Status
	Verification

	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

