o

Least Authority

PRIVACY MATTERS

Key Management
Security Audit Report

Joey Wallet

Final Audit Report: 6 June 2025

Table of Contents

Overview

Background
Project Dates
Review Team
Coverage
Target Code and Revision
Supporting Documentation
Areas of Concern
Findings
General Comments
Code Quality
Documentation and Code Comments
Scope
Specific Issues & Suggestions
Issue A: Encryption Key for Secure Store Has Low Entropy
Issue B: Secure Store Uses Unauthenticated Encryption
Suggestions
Suggestion 1: Update Vulnerable Dependencies
Suggestion 2: Use GetOptions Type When Retrieving Data From React Native Keychain
Suggestion 3: Hash Web3Auth Private Key Before Deriving XRPL Keypair
About Least Authority
Our Methodology

Security Audit Report | Key Management | Joey Wallet
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background

Joey Wallet has requested Least Authority perform a security audit of the key management module of
their self-custodial XRP wallet.

Project Dates

May 19, 2025 - May 22, 2025: Initial Code Review (Completed)
May 23, 2025: Delivery of Initial Audit Report (Completed)
June 6, 2025: Verification Review (Completed)

June 6, 2025: Delivery of Final Audit Report (Completed)

Review Team

Paul Lorenc, Security Researcher and Engineer
Michael Rogers, Security Researcher and Engineer
Burak Atasoy, Project Manager

Jessy Bissal, Technical Editor

Coverage

Target Code and Revision

For this audit, we performed research, investigation, and review of Joey Wallet’s key management
followed by issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repository is considered in scope for the review:
e Joey Wallet:

https://qithub.com/first-ledger/first-ledger-mobile
Specifically, we examined the Git revision for our initial review:
e 586f81fbb65be36b92a3bf8b48df9324b8b9c2eb
For the verification, we examined the Git revision:
e 01fe1ba589336d2668e46f0fd07bbee218fdelee
For the review, this repository was cloned for use during the audit and for reference in this report:

e Joey Wallet:
https://github.com/LeastAuthority/first-ledger-wallet/tree/audit/xrpl/keys

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation

The following documentation was available to the review team:

Security Audit Report | Key Management | Joey Wallet
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/first-ledger/first-ledger-mobile
https://github.com/LeastAuthority/first-ledger-wallet/tree/audit/xrpl/keys

o N/A.

In addition, this audit report references the following documents:

e CryptoESlibrary
https://www.npmjs.com/package/crypto-es

e React Native Keychain library
https://github.com/oblador/react-native-keychain

e Expo documentation for the Crypto. randomUUID function
https://docs.expo.dev/versions/latest/sdk/crypto/#cryptorandomuuid

e RFC 4122 - A Universally Unique IDentifier (UUID) URN Namespace, Section 4. 4
https://datatracker.ietf.org/doc/html/rfc4122#section-4.4

e React Native Quick Crypto library
https://github.com/margelo/react-native-quick-crypto

e libsodium. js library
https://qithub.com/jedisct1/libsodium.js

e SEC 1: Elliptic Curve Cryptography, Subsection C.4
https://www.secg.org/sec1-v2.pdf#subsection.C.4

e CryptoES Cipher Algorithms
https://qgithub.com/entronad/crypto-es?tab=readme-ov-file#ciphers

Areas of Concern

Our investigation focused on the following areas:

Correctness of the implementation;

Adversarial actions and other attacks on the wallet;

Attacks that impacts funds, such as the draining or manipulation of funds;
Mismanagement of funds via transactions;

Malicious attacks and security exploits that would impact the wallet;

Vulnerabilities in the wallet code and whether the interaction between the related network
components is secure;

Exposure of any critical or sensitive information during user interactions with the wallet and use
of external libraries and dependencies;

Proper management of encryption and storage of private keys;

Inappropriate permissions and excess authority;

Data privacy, data leaking, and information integrity; and

Anything else as identified during the initial analysis phase.

Findings

General Comments

Our team performed a security audit of the Joey Wallet's key management, focusing on the proper
implementation of key derivation, management, and storage. The lower-level key management primitives
include Deriver.ts, a class that derives XRPL accounts from various seed sources; Encryptor.ts,
which handles encryption and decryption using the CryptokES library; and SecureStore.ts, an
interface which uses Encryptor and react-native-keychain to build an interface which holds keys
associated with XRPL accounts in the device’s native keychain.

Security Audit Report | Key Management | Joey Wallet 3
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.npmjs.com/package/crypto-es
https://github.com/oblador/react-native-keychain
https://docs.expo.dev/versions/latest/sdk/crypto/#cryptorandomuuid
https://datatracker.ietf.org/doc/html/rfc4122#section-4.4
https://github.com/margelo/react-native-quick-crypto
https://github.com/jedisct1/libsodium.js/
https://www.secg.org/sec1-v2.pdf#subsection.C.4
https://github.com/entronad/crypto-es?tab=readme-ov-file#ciphers
https://www.npmjs.com/package/crypto-es
https://github.com/oblador/react-native-keychain

These primitive interfaces are then composed into KeyBox . ts, which exports the primary keyBox
singleton object used by other components in the application to manage XRPL accounts, and interface
with the stored keys to perform actions such as signing transactions and creating or deleting additional
keys.

Our team examined the Joey Wallet's key management module and found the system to be
well-structured, with security clearly prioritized. The team implemented TypeScript interfaces for the core
components, dividing the codebase into clear modular units that significantly improve readability.
Throughout the codebase, there is constant use of TypeScript modifiers such as readonly and const,
which introduce additional compile-time checks and reinforce expected code behavior. During our audit,
we did not identify any issues at the system design level. We recommend that the Joey Wallet team
continue with their current approach to composing their key management system, as it reflects a
well-considered design and attention to security best practices.

As part of the review process, we also reviewed the implementation for vulnerabilities, coding errors, and
adherence to best practice recommendations. We found two low-severity issues relating to the secure
store implementation (Issue A, Issue B). We also identified three suggestions related to dependency

management (Suggestion 1), code clarity (Suggestion 2), and key derivation (Suggestion 3).

Dependencies
We examined the implemented dependencies in the codebase and identified two developer dependencies
with known issues. We recommend improving dependency management (Suggestion 1).

Code Quality

The code is well-organized and clear, with effective use of type declarations to aid readability and detect
programming errors. Interfaces have been used for encapsulation and to enable unit testing.

However, our team found that some functions handle error conditions by either returning a null value or
throwing an Error, requiring their callers to handle both possibilities, which leads to a small amount of
unnecessary code.

Tests

The code includes unit tests for key derivation, covering the expected cases as well as error cases. The
tests for the encryption code are minimal, testing only that a plaintext can be encrypted and decrypted to
produce an identical plaintext. There are no tests for the secure storage code, nor for the utility functions
that are used for validation and for deriving an XRPL keypair from a Web3Auth private key.

Documentation and Code Comments

There was no documentation provided for the key management code. A lack of documentation hinders
the ability to understand the intention of the code, which is critical for assessing the security and the
correctness of the implementation. We recommend creating comprehensive project documentation.

In addition to the missing documentation, the code is not heavily commented. However, because the code
is well-structured and variable names are clear, the limited number of comments is generally sufficient. In
particular, some comments explain the rationale behind the code where needed, such as when
platform-specific behaviors must be handled.

Scope

The scope of this review was limited to the key management module. The Joey team was also helpful in
assisting our team with building and running the entire codebase to facilitate an understanding of how the

Security Audit Report | Key Management | Joey Wallet 4
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

reviewed code is used in context.

Specific Issues & Suggestions

We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

[A: Encryption Key for r re Has Low Entr Resolved
Issue B: Secure Store Uses Unauthenticated Encryption Resolved
Suggestion 1: Update Vulnerable Dependencies Implemented

Suggestion 2: Use GetOptions Type When Retrieving Data From React Native = Implemented
Keychain

Suggestion 3: Hash Web3Auth Private Key Before Deriving XRPL Keypair Implemented

Issue A: Encryption Key for Secure Store Has Low Entropy

Location

xrpl/keys/impl/Encryptor.ts#lL7

Synopsis

The encryption key for the secure store is derived from a random UUID (Universally Unique Identifier),
which contains 122 bits of entropy. However, keys for symmetric encryption should contain at least 128
bits of entropy and ideally 256 bits.

Impact

High.

An attacker able to decrypt the information stored in the secure store would gain access to the user’s
XRPL private keys, giving the attacker control over the user's XRPL accounts.

Feasibility
Low.

To carry out an attack, the attacker would first need to gain access to the encrypted information stored in
the secure store, and would then need to exploit the low entropy of the encryption key in combination with
a hypothetical cryptanalytic attack that would be infeasible if the key's entropy were higher.

At 122 bits, the entropy of the encryption key is high enough to resist a brute-force attack or any known
cryptanalytic attack. Reducing the entropy from the recommended 128 bits to 122 bits merely reduces
the safety margin against potential future attacks. Maintaining this safety margin is important for the

long-term security of encrypted information, but the reduced margin does not pose any immediate risk.

Security Audit Report | Key Management | Joey Wallet 5
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/first-ledger-wallet/blob/586f81fbb65be36b92a3bf8b48df9324b8b9c2eb/xrpl/keys/impl/Encryptor.ts#L7

Severity

Low.

Preconditions

The attacker would need to gain access to the encrypted information stored in the secure store, which is
held in the keychain of the user’s device. The attacker would then need to carry out a currently unknown
cryptanalytic attack against the secure store’s AES encryption, aided by the low entropy of the key. As
noted above, it is not currently feasible to meet these preconditions, so the issue does not pose an
immediate risk.

Technical Details

The encryption key for the secure store is generated by first creating a random UUID and then hashing the
UUID with the SHA-256 hash function to produce a 256-bit key. The UUID is generated using the
randomUUID function from the expo-crypto module, which, according to its documentation, uses a
cryptographically strong source of randomness. A UUID is a 128-bit value, but REC 4122 specifies that all
UUIDs, including those generated from random values, must have six of their bits set to known values to
indicate the format and version of the UUID. This leaves 122 random bits, and the 256-bit key contains
only 122 bits of entropy rather than the expected 256.

Mitigation
It is not necessary to mitigate this issue in the short term.

Remediation

We recommend that the encryption key contain 256 bits of entropy, which can be obtained from the
getRandomBytes function of the expo-crypto module or any other cryptographically secure source of
randomness.

Status
The Joey Wallet team has implemented the remediation as recommended.

Verification

Resolved.

Issue B: Secure Store Uses Unauthenticated Encryption

Location

xrpl/keys/impl/Encryptor.ts#l20

Synopsis

The secure store uses the default block cipher mode provided by the CryptoES library, which is
AES-256-CBC. This block cipher mode lacks authentication and is partially malleable, allowing
modifications to the ciphertext to pass undetected.

Impact

Low.

The secure store is currently used for storing two kinds of encrypted data: account private keys and
mnemonics. Both types of data are represented as strings when in their plaintext form, with private keys
represented as hexadecimal strings and mnemonics represented as words separated by spaces.

Security Audit Report | Key Management | Joey Wallet 6
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.expo.dev/versions/latest/sdk/crypto/#cryptorandomuuid
https://datatracker.ietf.org/doc/html/rfc4122#section-4.4
https://github.com/LeastAuthority/first-ledger-wallet/blob/586f81fbb65be36b92a3bf8b48df9324b8b9c2eb/xrpl/keys/impl/Encryptor.ts#L20

If an attacker were to modify the ciphertext of an account private key, the modified ciphertext would be
unlikely to decrypt to a valid hexadecimal string. An invalid hexadecimal string would not be immediately
detected by the key management code, but would cause any subsequent cryptographic operations using
the key to fail. There is a small probability of the ciphertext decrypting to a valid hexadecimal string with a
value unknown to the attacker. In such a case, it is highly likely the string would correspond to a valid
private key, also unknown to the attacker. Any XRPL transactions signed with the private key would be
rejected by the network, as the signature would not match the public key included in the transaction,
having been generated with the modified private key instead of the original private key.

Thus, regardless of whether the modified ciphertext were to decrypt to a valid hexadecimal string, the only
impact of modifying the ciphertext would be that the account becomes unusable. An attacker with access
to the secure store could achieve the same impact more simply by deleting or overwriting the entire
ciphertext, so the use of unauthenticated and malleable encryption would give the attacker little or no
advantage.

Similarly, if an attacker were to modify the ciphertext of a mnemonic, the modified ciphertext would be
very unlikely to decrypt to a valid mnemonic, and so the only impact of modifying the ciphertext would be
to render the mnemonic unusable, which the attacker could achieve more simply by deleting or
overwriting the entire ciphertext.

Our team also considered a second attack in which the attacker would not modify the encrypted values
stored in the secure store but would instead swap the encrypted values without otherwise modifying
them. For example, the private keys of two accounts could be swapped, so that when the application
attempted to retrieve the private key for one of the accounts, the secure store would instead return the
other account’s private key. Again, the only impact of this attack would be the creation of invalid
transactions that would be rejected by the network due to a mismatch between the public and private
keys.

Despite the issue’s lack of impact on the kinds of data currently stored in the secure store, our team has
included it in this report, as it could affect the use of the secure store for storing other kinds of data in the
future. In particular, any plaintext up to 16 bytes in length could be modified in a predictable manner by an
attacker, due to the partial malleability of the CBC block cipher mode.

Feasibility
Low.

Severity
Low.

Preconditions
The attacker would need to be able to modify values stored in the keychain of the user’s device.

Technical Details

By default, the CryptoES library uses the AES-256-CBC block cipher mode for encryption. This mode
lacks authentication, resulting in modifications to the ciphertext going undetected during decryption.

The AES-256-CBC mode is also partially malleable: modifications to the first 16 bytes of the ciphertext
have predictable effects on the first 16 bytes of the decrypted plaintext. Any such modification also
affects every subsequent block of the plaintext. As a result, the overall effect on the plaintext is not fully
under the attacker’s control when the plaintext exceeds 16 bytes.

Security Audit Report | Key Management | Joey Wallet 7
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/entronad/crypto-es?tab=readme-ov-file#ciphers

Remediation

We recommend replacing the AES-256-CBC mode with an authenticated encryption mode, such as
AES-256-GCM, which is provided by the react-native-quick-crypto library, or
XSalsa20/Poly1305, which is provided by the 1libsodium. js library.

To remove the risk of an attacker swapping encrypted values without modifying them, we recommend
including the key' under which the value will be stored in the plaintext of the encrypted value, so that it is
covered by the authenticated encryption. When retrieving the value, this key should be checked to confirm
that it matches the expected key.

Status
The Joey Wallet team has implemented the remediation as recommended.

Verification

Resolved.

Suggestions

Suggestion 1: Update Vulnerable Dependencies

Location

first-ledger-wallet/package.json

Synopsis

Analyzing package. json for dependency versions revealed two developer dependencies with known
issues. The static code analyzer eslint is currently locked to version 8.57.1, which is deprecated.
Additionally, the supporting library eslint-config-standard-with-typescript has been
deprecated in favor of a new package: eslint-config-1love.

Mitigation
For this specific case, we recommend updating eslint to a maintained version, and migrating from
eslint-config-standard-with-typescripttoeslint-config-love.

We also recommend adopting a process that emphasizes secure dependency usage to avoid introducing
vulnerabilities to the application and to mitigate supply-chain attacks. This process should include:

Manually reviewing and assessing currently used dependencies;

Upgrading dependencies with known vulnerabilities to patched versions with fixes;

Replacing unmaintained dependencies with secure and battle-tested alternatives, if possible;

Pinning dependencies to specific versions, including pinning build-level dependencies in the

package. json file to a specific version;

e Only upgrading dependencies upon careful internal review for potential backward compatibility
issues and vulnerabilities; and

e Including Automated Dependency auditing reports in the project’'s Cl/CD workflow.

Status

The Joey Wallet team has implemented this suggestion by pinning dependency versions. However, our
team notes that three dependencies currently have recently published vulnerabilities:

' “Key” is used here in the context of a “key-value store,” rather than referring to an “encryption key.”

Security Audit Report | Key Management | Joey Wallet 8
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/margelo/react-native-quick-crypto
https://github.com/jedisct1/libsodium.js/
https://github.com/LeastAuthority/first-ledger-wallet/blob/audit/package.json

http-proxy-middleware, image-size, and vite. We encourage the Joey Wallet team to regularly
review and upgrade dependencies.

Verification

Implemented.

Suggestion 2: Use GetOptions Type When Retrieving Data From React
Native Keychain

Location

xrpl/keys/ReactNativeKeychain.ts#L43
Synopsis
The ReactNativeKeychain class incorrectly uses the SetOptions type for both storing and retrieving

data.

Mitigation
We recommend using the GetOptions type for retrieving data.

Status
The Joey Wallet team has implemented this suggestion.

Verification
Implemented.

Suggestion 3: Hash Web3Auth Private Key Before Deriving XRPL Keypair

Location
xrpl/keys/utils.ts#L55

Synopsis

A private key from Web3Auth is used to derive an XRPL keypair by passing it to the generateSeed
function of the ripple-keypairs library. This function ignores all but the first 16 bytes of the data
passed to it. With the current version of Web3Auth, this behavior does not pose a risk, as the private key
is a raw 256-bit scalar, and the first 16 bytes of the key should contain 128 bits of entropy. However, this
format is not documented and may change in the future. If a future version of Web3Auth were to use a
different format, such as the SEC1 format that is standard for secp256k1 private keys, the first seven
bytes of that format would be predictable, and the seed returned by the generateSeed function would
only have 72 bits of entropy.

Mitigation

We recommend hashing the Web3Auth private key before passing it to the generateSeed function, to
allow the first 16 bytes of the data passed to generateSeed to contain 128 bits of entropy regardless of
the format of the private key.

Status
The Joey Wallet team has implemented this suggestion.

Security Audit Report | Key Management | Joey Wallet 9
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/first-ledger-wallet/blob/586f81fbb65be36b92a3bf8b48df9324b8b9c2eb/xrpl/keys/ReactNativeKeychain.ts#L43
https://github.com/LeastAuthority/first-ledger-wallet/blob/586f81fbb65be36b92a3bf8b48df9324b8b9c2eb/xrpl/keys/utils.ts#L55
https://www.secg.org/sec1-v2.pdf#subsection.C.4

Verification

Implemented.

Security Audit Report | Key Management | Joey Wallet
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

10

About Least Authority

We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis

Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Security Audit Report | Key Management | Joey Wallet 11
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results

We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions

We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing

Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Key Management | Joey Wallet 12
6 June 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Key Management
	Overview
	Background
	Project Dates
	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	Dependencies
	Code Quality
	Tests

	Documentation and Code Comments
	Scope

	Specific Issues & Suggestions
	​Issue A: Encryption Key for Secure Store Has Low Entropy
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Mitigation
	Remediation
	Status
	Verification

	Issue B: Secure Store Uses Unauthenticated Encryption
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Remediation
	Status
	Verification

	Suggestions
	Suggestion 1: Update Vulnerable Dependencies
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 2: Use GetOptions Type When Retrieving Data From React Native Keychain
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: Hash Web3Auth Private Key Before Deriving XRPL Keypair
	Location
	Synopsis
	Mitigation
	Status
	Verification

	
	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

