o

Least Authority

PRIVACY MATTERS

Namada Interface
Security Audit Report

Heliax

Final Audit Report: 3 July 2023

Table of Contents

Overview

Background
Project Dates
Review Team
Coverage
Target Code and Revision
Supporting Documentation
Areas of Concern
Findings
General Comments
System Design
Code Quality
Documentation
Scope
Specific Issues & Suggestions
Issue A: Memory Parameter of Argon2 Is Too Low
Issue B: Several Cases of Problematic Unused Code
Issue C: Seed Phrase Stored in Clipboard
Issue D: Usage of Strong Passwords Not Enforced

Issue E: No Option To Change User Passwords

Issue F: No Option To Delete Wallets

Issue G: Secrets Stored in Memory in Rust Code
Issue H: Insufficient Sanitization of Parameters
Suggestions
Suggestion 1: Make All Tests Succeed (Known Issue)
Suggestion 2: Include Additional Instructions for Running and Testing the Project
Suggestion 3: Add a Linter Into the CI
Suggestion 4: Improve Code Comments
About Least Authority

Our Methodology

Security Audit Report | Namada Interface | Heliax
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background

Heliax has requested that Least Authority perform a security audit of the Namada Interface and extension
for the Anoma Protocol. Anoma is an intent-centric, privacy-preserving protocol for decentralized
counterparty discovery, solving, and multi-chain atomic settlement.

Project Dates

January 11, 2023 - February 21, 2023: Initial Code Review (Completed)
February 23, 2023: Delivery of Initial Audit Report (Completed)

June 6, 2023: Verification Review (Completed)

July 3, 2023: Delivery of Final Audit Report (Completed)

Review Team

Jehad Baeth, Security Researcher and Engineer

Nicole Ernst, Security Researcher and Engineer
Alejandro Flores, Security Researcher and Engineer
Mehmet Gonen, Cryptography Researcher and Engineer
Steven Jung, Security Researcher and Engineer

Jan Winkelmann, Cryptography Researcher and Engineer

Coverage

Target Code and Revision

For this audit, we performed research, investigation, and review of the Namada Interface and extension
for the Anoma Protocol followed by issue reporting, along with mitigation and remediation instructions as
outlined in this report.

The following code repository is considered in scope for the review:
e Namada Interface:
https://github.com/anoma/namada-interface

Specifically, we examined the Git revision for our initial review:

e 69e9beleba7451bbefdce2ce0c696897475d9dc3

For the review, this repository was cloned for use during the audit and for reference in this report:

e Namada Interface:

https://github.com/LeastAuthority/namada-interface

For the verification, we examined the Git revision:

e 43024f4b2cb38d61396286e2640d6f432ab086cd

All file references in this document use Unix-style paths relative to the project’s root directory.

Security Audit Report | Namada Interface | Heliax 2
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/anoma/namada-interface
https://github.com/LeastAuthority/namada-interface

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation

The following documentation was available to the review team:

Heliax Website:
https://heliax.dev
Namada Website:
https://namada.net
Namada Documentation:
https://docs.namada.net
Specs:
https://specs.namada.net
Anoma whitepaper.pdf

In addition, this audit report references the following documents:

A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson, “RFC 9106: Argon2 Memory-Hard Function
for Password Hashing and Proof-of-Work Applications.” IRTF, 2021, [BDK+21]

D. Khovratovich and J. Law, “BIP32-Ed25519: Hierarchical Deterministic Keys over a Non-linear
Keyspace.” IEEE, 2017, [KL17]

D. L. Wheeler, “zxcvbn: Low-Budget Password Strength Estimation.” USENIX, 2016, [Wheeler16]
Key recovery attack on BIP32-Ed25519:
https://web.archive.org/web/20210513183118/https:/forum.w3f.community/t/key-recovery-atta
ck-on-bip32-ed25519/44

Zeroize Library:

https://crates.io/crates/zeroize

Areas of Concern

Our investigation focused on the following areas:

e Correctness of the implementation;

e Adversarial actions and other attacks on the wallet;

e Attacks that impacts funds, such as the draining or manipulation of funds;

e Mismanagement of funds via transactions;

e Malicious attacks and security exploits that would impact the wallet;

e Vulnerabilities in the wallet code and whether the interactions between the related and network
components are secure;

e Exposure of any critical or sensitive information during user interactions with the wallet;
Use of external libraries and dependencies;
Proper management of encryption and storage of private keys, including the key derivation
process;
Whether the workflow, as it relates to dependencies, is secure;
Whether the workflow, as it relates to the internal review process of code during the development
process, is secure;
Inappropriate permissions and excess authority;
Data privacy, data leaking, and information integrity; and
Anything else as identified during the initial analysis phase.

Security Audit Report | Namada Interface | Heliax 3

3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://heliax.dev/
https://heliax.dev/
https://namada.net
https://docs.namada.net
https://specs.namada.net/
https://specs.namada.net/
https://www.rfc-editor.org/rfc/rfc9106.html
https://ieeexplore.ieee.org/document/7966967
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_wheeler.pdf
https://web.archive.org/web/20210513183118/https://forum.w3f.community/t/key-recovery-attack-on-bip32-ed25519/44
https://web.archive.org/web/20210513183118/https://forum.w3f.community/t/key-recovery-attack-on-bip32-ed25519/44
https://crates.io/crates/zeroize

Findings

General Comments

Namada is a Proof-of-Stake (PoS) blockchain that utilizes the Tendermint BFT Consensus. The Namada
Interface and Browser Extension composes a multi-asset shielded transfer wallet intended to facilitate
user interaction with the Namada blockchain. Our team performed a comprehensive review of the
Namada interface and browser extension as well as the dependencies packages in the application
repository (with the exception of masp-web).

In addition to examining the areas of concern listed above and those shared by the Heliax team, we
investigated the key generation mechanism and its susceptibility to key recovery attacks. We also
attempted to circumvent the locking mechanism of the wallet extension and could not find a way to
achieve this.

Our team found that the architecture of the application and the libraries generally follows security best
practice, and the application is generally well-implemented. However, we identified issues in the use of
cryptography, in addition to insufficient safeguards implemented to optimize the security of users. We
also found the tests, code comments, and project documentation are in need of improvement.

System Design

Our team found that security has generally been taken into consideration in the design of the interface
and wallet extension as demonstrated by the detailed areas of concern presented by the Heliax team at
the beginning of the code review. Our team identified ways to further optimize the design choices
implemented in the system. If the remediations are implemented, this will decrease the vulnerability of
users of the wallet to attacks. For example, the wallet allows users to store secret data to the clipboard
(Issue C). We also found that the wallet does not implement any functionality to allow users to easily
change their password (Issue E), or delete secret data from the device (Issue F).

In addition, our team found that user-selected passwords are not constrained, which would enable users
to select passwords that are insufficiently secure. This could make these users' devices vulnerable to
brute-force attacks (Issue D). Although the application uses a recommended memory-hard key derivation
function, the function is not configured to provide optimal security and could make weak passwords
vulnerable to attacks (Issue A).

In addition, our team found a pattern of insufficient zeroization of secret data being implemented to
prevent the leakage of secrets (Issue G). We also identified an instance of insufficient input validation to
prevent unintended inputs from causing unexpected behavior (Issue H).

To further improve the system design, we recommend implementing a linter into the Cl (Suggestion 3).

Code Quality

Our team performed a manual review of the codebase and found it to be well-organized, easy to read, and
generally adhering to Rust development best practices. However, our team identified many instances of
unused code in the system, which can cause issues with the encryption and the derivation of keys used
for encryption. We recommend this code be removed (Issue B).

Security Audit Report | Namada Interface | Heliax 4
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://web.archive.org/web/20210513183118/https://forum.w3f.community/t/key-recovery-attack-on-bip32-ed25519/44

Tests

The in-scope repository included unit tests, a significant amount of which failed. Sufficient test coverage
allows development and security teams to identify implementation errors and verify that the
implementation behaves as expected. We recommend making all tests succeed (Suggestion 1).

Documentation

The project documentation provided for this security review was insufficient in describing the general
architecture of the system, each of the components, and how those components interact with each other.
We recommend that the project documentation be improved to include additional information about
dependencies related to Rust and the OpenSSL library needed to test and run the project. Moreover, the
instructions for installation outlined in the README were not accurate for MacOS, making the process of
installation difficult for the auditors. Documentation on how components of the system function serves as
a critical reference point that can be compared against what has been implemented in the codebase

(Suggestion 2).

Code Comments

During our review, we found that there is a lack of code comments in the browser extension. Furthermore,
there are significant amounts of code related to cryptographic functions that do not have any code
comments explaining the system design and workflows used. We recommend that code comments be

improved (Suggestion 4).

Scope

The scope of this review included all security-critical components of the application. However, our
findings show that Namada Interface is still in its early stages of implementation. We recommend that the
Heliax team commission a comprehensive security audit of the entire system once development is
finalized and design features are complete.

Dependencies

Relevant code for this project, while out of scope for this audit, is included in
namada-interface/packages/masp-web. This includes the librustzcash library, which was
previously audited by Least Authority. However, it is not clear if 1ibrustzcash has been recently
audited. As such, we recommend this be reaudited alongside new design and feature implementations.

The Heliax team stated that they want to remove some of the functionality from its current location and
implement it into the Software Development Kit (SDK). As a result, we recommend that these changes
and implementations be audited by an independent team familiar with the design and implementation of
the interface and browser extension, once the functionalities are reimplemented.

Specific Issues & Suggestions

We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Memory Parameter of Argon2 Is Too Low Resolved
Issue B: Several Cases of Problematic Unused Code Resolved
Security Audit Report | Namada Interface | Heliax 5

3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/namada-interface

Issue C: Seed Phrase Stored in Clipboard Resolved

Issue D: Usage of Strong Passwords Not Enforced Resolved
Issue E: No Option To Change User Passwords Resolved
Issue F: No Option To Delete Wallets Resolved
Issue G: Secrets Stored in Memory in Rust Code Resolved
Issue H: Insufficient Sanitization of Parameters Resolved
Suggestion 1: Make All Tests Succeed (Known Issue) Resolved
Resolved
Suggestion 3: Add a Linter Into the CI Resolved
Suggestion 4: Improve Code Comments Unresolved

Issue A: Memory Parameter of Argon2 Is Too Low

Location

src/config/argon.ts#L5
lib/src/utils.rs#L11

Synopsis
The Namada Interface uses an Argon2 memory parameter of 4 MiB, which is far below the
recommendations prescribed in [BDK+21].

Impact

A low memory parameter reduces the attacker’s costs of brute-forcing weak passwords.

Preconditions
This Issue is likely if the user-selected password has low entropy, and the attacker has access to the
encrypted wallet data.

Feasibility

The attack is straightforward, if profitable. Given measurements of around 19 ms/hash (on a single core
virtual private server) and VPS service offerings of around 1 cent per hour for a single-core VM, we
estimate the costs of brute-forcing a wallet to be below 17,000 USD. There are likely better value offers, so
the real cost is probably lower.

Technical Details

Argon2 is a memory-hard function commonly used for deriving keys and hashes from passwords and is
particularly resistant to brute-force attacks. However, the memory parameter must be high enough to
sufficiently slow down an attacker.

Security Audit Report | Namada Interface | Heliax 6
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/namada-interface/blob/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/apps/extension/src/config/argon2.ts#L5
https://github.com/LeastAuthority/namada-interface/blob/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/packages/crypto/lib/src/utils.rs#L11
https://www.rfc-editor.org/rfc/rfc9106.html

Remediation

We recommend following the guidelines detailed in [BDK+21] and using 64 MiB for memory-constrained
applications. Hashing with these parameters takes between 600 and 1500 ms. However, even if some
computers are slower, this might still be acceptable.

Status
The Heliax team has increased the memory parameter to 64MiB.

Verification
Resolved.

Issue B: Several Cases of Problematic Unused Code

Location

packages/utils/src/crypto/index.ts

packages/crypto/lib/src/utils.rs

packages/crypto/lib/src/crypto/scrypt.rs

packages/crypto/lib/src/crypto/aead.rs

Synopsis
There are several pieces of code that have problems of varying severity but are not used anywhere.

Impact
All problems relate to either encryption or the derivation of keys used for encryption. As such, the most
likely impact would be a failure of confidentiality or authenticity of encrypted data.

Preconditions

Since the problematic code is not currently being used, it only poses a vulnerability if it remains in the
repository. In such a case, if new code is added in the future that uses this problematic code, then the
leftover code could be exploitable.

Technical Details

e The encryption and decryption functions in packages/utils/src/crypto usecrypto-js
without a message authentication code (MAC). Since the Cipher Block Chaining (CBC) mode is

malleable, this is not secure.

e The parameters used in packages/crypto/lib/src/crypto/scrypt.rsand
packages/crypto/lib/src/utils.rs aretoo low.

e The encryption functions in packages/crypto/lib/src/crypto/aead.rs use the code in
packages/crypto/lib/src/utils.rs and inherit the vulnerabilities.

Remediation

We recommend removing problematic and unnecessary lines of code.

Status
The Heliax team has removed all of the problematic code in question.

Security Audit Report | Namada Interface | Heliax
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.rfc-editor.org/rfc/rfc9106.html
https://github.com/LeastAuthority/namada-interface/blob/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/packages/utils/src/crypto/index.ts
https://github.com/LeastAuthority/namada-interface/blob/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/packages/crypto/lib/src/utils.rs
https://github.com/LeastAuthority/namada-interface/blob/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/packages/crypto/lib/src/crypto/scrypt.rs
https://github.com/LeastAuthority/namada-interface/blob/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/packages/crypto/lib/src/crypto/aead.rs
https://github.com/LeastAuthority/namada-interface/tree/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/packages/utils/src/crypto
https://github.com/LeastAuthority/namada-interface/blob/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/packages/crypto/lib/src/crypto/scrypt.rs
https://github.com/LeastAuthority/namada-interface/blob/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/packages/crypto/lib/src/utils.rs
https://github.com/LeastAuthority/namada-interface/blob/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/packages/crypto/lib/src/crypto/aead.rs
https://github.com/LeastAuthority/namada-interface/blob/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/packages/crypto/lib/src/utils.rs

Verification

Resolved.

Issue C: Seed Phrase Stored in Clipboard

Location

AccountCreating/Steps/SeedPhrase.components.ts#l 89

Synopsis

The wallet currently features a button that allows users to copy the seed phrase to the system clipboard.
Since all processes running on the system can read the clipboard, this presents a security risk when
malicious programs are present on the system.

Impact
The seed phrase allows the attacker control over the wallet, which can result in a complete loss of funds.

Preconditions
For this Issue to occur, the attacker would need to have a malicious program or browser extension running
on the target’s system.

Feasibility
The attack itself is trivial. For example, scripts that scan for seed phrases are available online, and
restoring a wallet from a seed phrase is possible using the Namada Interface Extension.

Remediation
We recommend removing the function from the extension and warning users against screenshotting the
seed phrase.

Status
The Heliax team has implemented the remediation as recommended.

Verification
Resolved.

Issue D: Usage of Strong Passwords Not Enforced

Location

Steps/Password/Password.tsx

Synopsis

In the current implementation, there are no restrictions on user-selected passwords. This could result in a
user selecting an insufficiently secure password, which would enable an attacker with access to the
target’s machine to decrypt secrets or unlock the wallet.

Impact
A decrypted seed phrase gives full control over the wallet. Similarly, an attacker with access to the
browser of the target can unlock the wallet and gain full access.

Security Audit Report | Namada Interface | Heliax 8
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/namada-interface/blob/namada-interface/apps/extension/src/Setup/AccountCreation/Steps/SeedPhrase/SeedPhrase.components.ts#L89
https://github.com/LeastAuthority/namada-interface/blob/namada-interface/apps/extension/src/Setup/AccountCreation/Steps/Password/Password.tsx

Preconditions
This issue is likely to occur if the user selects an insufficiently secure password, and the attacker is either
in possession of the encrypted secrets or in control of the target’s browser.

Feasibility
Attackers with encrypted secrets can easily guess the password using a brute-force algorithm.

Remediation

We recommend using a library such as zxcvbn, as noted in [Wheeler16], or libpwquality to estimate the
strength of user-selected passwords, and requiring passwords to have the maximum strength of 4.

Status
The Heliax team has incorporated the zxcvbn-based password strength feedback into the password
creation process.

Verification
Resolved.

Issue E: No Option To Change User Passwords

Synopsis
Once a user selects a password when creating an account, they are indefinitely unable to change their
password. This presents an issue when a user's password gets compromised.

Impact

See Issue D.

Preconditions

As in Issue D, the attacker would need access to the target’s browser or to have their encrypted seed
phrase in their possession. Additionally, in this case, they would also need to know the target's
compromised password.

Feasibility
If the preconditions are met, the attack is trivial.

Remediation
We recommend adding an option allowing users to change their password, and re-encrypt the secrets,
using the new password.

Status
The Heliax team has implemented the remediation as recommended.

Verification

Resolved.

Security Audit Report | Namada Interface | Heliax 9
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_wheeler.pdf
https://github.com/libpwquality/libpwquality

Issue F: No Option To Delete Wallets

Synopsis
Users are only able to delete wallets and associated secrets from their machine by deleting the browser
extension. While this is technically possible, it is also difficult and unintuitive.

Impact

A user who wants to delete their secrets may find themselves unable to do so. Consequently, this might
lead to their secrets being stolen from the hard drive, which could further result in a complete loss of
funds.

Preconditions
An attacker would need to either infiltrate the target machine remotely with malicious software or come
into physical possession of a discarded hard drive.

Feasibility
Once the attacker has the secret in their possession, they would have to break the encryption, which might
be easy given Issue D and Issue E.

Remediation
We recommend adding an option to the interface that deletes any secrets associated with the wallet from
the user’s hard drive.

Status
The Heliax team has added a button to the settings page, allowing users to delete their accounts.

Verification

Resolved.

Issue G: Secrets Stored in Memory in Rust Code

Location

packages/crypto

Synopsis
Our team found instances of secret data not being cleared from memory appropriately. Clearing secrets
from memory once they are no longer needed is a known mitigation to memory-dump-based attacks.

Impact
The attacker may learn secrets handled in the application, including the mnemonic or the keys used to
encrypt it, which would enable full control of the wallet.

Preconditions
The attacker would need to have access to a memory snapshot of the WebAssembly (wasm) sandbox.

Feasibility
Although this type of exploit requires skill, no computational or financial resources are needed.

Security Audit Report | Namada Interface | Heliax 10
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/namada-interface/tree/69e9be0e6a7451bbefdce2ce0c696897475d9dc3/packages/crypto

Mitigation
We recommend using the zeroize library, which is relatively easy to do in Rust.

Status
The Heliax team has implemented the remediation as recommended.

Verification

Resolved.

Issue H: Insufficient Sanitization of Parameters

Location

src/helpers/index.ts#L98

Synopsis
There is a sanitization in place for URL parameters to strip invalid characters. However, this list is not
extensive and does not cover all possible unwanted characters.

Impact

The possible impact of this short sanitization is the bypass of said list to perform attacks through the URL
parameters, which might lead to a vulnerability.

Preconditions
Any endpoint using the getUr1 function, which joins sanitization functions, would be affected by the lack
of sanitization.

Feasibility
Any attacker that launches a fuzzing scan against an unprotected URL would discover the lack of
sanitization easily.

Technical Details

By using a fuzzer or dynamic scan on a URL that is poorly sanitized, an attacker would try different
characters that could trigger different responses from the backend of the extension. Based on the input of
the user, this could either result in a disruption of the actual extension workflow or even a faulty response
that would give an attacker more information than intended.

Mitigation
Using Web Application Firewall solutions that sit in front of the extension and receive all kinds of inputs
will help the application be secure from unwanted inputs.

Remediation
We recommend creating a list of expected or wanted inputs from users and using it as a whitelist
approach to sanitize inputs against it.

Status
The Heliax team has started using DOMPurify to sanitize URL parameters.

Verification
Resolved.

Security Audit Report | Namada Interface | Heliax 11
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://crates.io/crates/zeroize
https://github.com/LeastAuthority/namada-interface/blob/namada-interface/packages/utils/src/helpers/index.ts#L98

Suggestions

Suggestion 1: Make All Tests Succeed (Known Issue)

Synopsis
Our team ran the tests and found that 5 out of 7 test suites and 1 out of 32 tests failed in the README.

Mitigation
We recommend making all tests succeed to confirm that every unit works as intended.

Status
The Heliax team has upgraded the existing tests to make them succeed.

Verification

Resolved.

Suggestion 2: Include Additional Instructions for Running and Testing the
Project

Location

Synopsis

The instructions included in the README are not sufficient, as auditors and maintainers would need to
install dependencies related to Rust and the OpenSSL library in order to successfully test and run the
project.

Mitigation

Robust and comprehensive documentation helps security teams assess the in-scope components and
understand the expected behavior of the system being audited. As a result, we recommend
supplementing the document with all the information required to run and test the project.

Status
The Heliax team has extended the build instructions.

Verification
Resolved.

Suggestion 3: Add a Linter Into the CI

Synopsis
We identified several cases of unused functions and variables as well as a general lack of code
comments.

Mitigation
We recommend adding linters, for all components of the code, to the Cl pipeline to help make these
issues visible and keep the code clean.

Security Audit Report | Namada Interface | Heliax 12
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/namada-interface#usage
https://github.com/LeastAuthority/namada-interface#-run-namada-interface-
https://github.com/LeastAuthority/namada-interface#usage

Status
The Heliax team has implemented ESLint based linting in their Cl pipeline.

Verification

Resolved.

Suggestion 4: Improve Code Comments

Synopsis

There are little to no comments explaining the rationale behind certain critical lines of code. This reduces
the readability of the code and, as a result, makes reasoning about the security of the system more
difficult. Comprehensive in-line documentation helps provide reviewers of the code with a better
understanding and ability to reason about the system design.

Mitigation
We recommend expanding and improving the code comments within the codebase to better describe the
intended functionality of the code, facilitating reasoning about the security properties of the system.

Status

The Heliax team has added the improvement of code comments to their roadmap. However, it remains an
open task at the time of verification.

Verification
Unresolved.

Security Audit Report | Namada Interface | Heliax 13
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority

We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit

https://leastauthority.com/security-consulting/.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis

Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Namada Interface | Heliax 14
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results

We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions

We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing

Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Namada Interface | Heliax 15
3 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

