
Octant Smart Contracts
Security Audit Report

Golem Foundation
Final Audit Report: 20 July 2023

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Specific Issues & Suggestions

Suggestions

Suggestion 1: Emit Event When Multi-Sig Address Is Updated

Suggestion 2: Check the Contract Balance Before Sending ETH to the Multi-Sig Address

Suggestion 3: Check the Input Parameter in the SetMerkleRoot Function

Suggestion 4: Add Checks for Array Elements

Suggestion 5: Perform Zero Address Check

Suggestion 6: Prevent Locking Zero Amount

Suggestion 7: Prevent the Setting of the initialize Function in the Implementation

Suggestion 8: Use a Non-Floating Pragma Version Consistently Across the Project

Suggestion 9: Set Function Visibility Appropriately

About Least Authority

Our Methodology

Security Audit Report | Octant Smart Contracts | Golem Foundation 1
20 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Golem Foundation has requested that Least Authority perform a third security audit of their Octant Smart
Contracts.

Project Dates
● June 22, 2023 - June 28, 2023: Initial Code Review (Completed)
● June 30, 2023: Delivery of Initial Audit Report (Completed)
● July 19, 2023: Verification Review (Completed)
● July 20, 2023: Delivery of Final Audit Report (Completed)

Review Team
● Mukesh Jaiswal, Security Researcher and Engineer
● Ahmad Jawid Jamiulahmadi, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Octant Smart Contracts followed by
issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Octant Contracts-v1:

https://gitlab.com/wildland/governance/octant/-/tree/master/contracts-v1

Specifically, we examined the Git revision for our initial review:

● 418ab9f16eb3b2c21d9f0a6d46dc580f5d38dfb4

For the verification, we examined the Git revision:

● e1e5945bcd2e9f438e4b84ad0accb177335969e7

For the review, this repository was cloned for use during the audit and for reference in this report:

● Octant-smart-contracts:
https://github.com/LeastAuthority/octant-smart-contracts/tree/master/contracts

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Projects | Octant:
https://golem.foundation/projects#Octant

Security Audit Report | Octant Smart Contracts | Golem Foundation 2
20 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://gitlab.com/wildland/governance/octant/-/tree/master/contracts-v1
https://github.com/LeastAuthority/octant-smart-contracts/tree/master/contracts
https://golem.foundation/projects#Octant

In addition, this audit report references the following documents:
● OpenZeppelin:

https://wizard.openzeppelin.com

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Adversarial actions and other attacks on the network;
● Potential misuse and gaming of the smart contracts;
● Attacks that impacts funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial of Service (DoS) and other security exploits that would impact the intended use of the

smart contracts or disrupt their execution;
● Vulnerabilities in the smart contracts’ code;
● Protection against malicious attacks and other ways to exploit the smart contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
The Octant Smart Contracts compose the on-chain component of Golem Foundation’s Octant Governance
Experiment.

The project leverages the existing community of Golem Network Token (GLM) holders and offers staking
rewards for users who perform specific activities within various experiments initiated by the Golem
Foundation. The amount of total rewards is determined by the amount of GLMs locked by a user. The
rewards are then split into user rewards and matched rewards, which can be donated to proposals
selected by the Golem Foundation for public good purposes.

Our team initially performed a security audit of the Octant Smart Contracts with the audit report delivered
on March 15, 2023. This audit was followed by a design review of the Octant Smart Contracts with a
design review summary delivered on April 14, 2023.

In this engagement, our team performed a comprehensive security audit of the Octant Smart Contracts’
design and implementation, investigating the areas of concern listed above. Our team noted that our
recommendations from the previous reviews have been implemented. Additionally, we did not identify
issues in the design and implementation of the smart contracts. Our team identified some suggestions
for the improvement of the overall security and quality of the implementation.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

Security Audit Report | Octant Smart Contracts | Golem Foundation 3
20 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://wizard.openzeppelin.com

ISSUE / SUGGESTION STATUS

Suggestion 1: Emit Event When Multi-Sig Address Is Updated Resolved

Suggestion 2: Check the Contract Balance Before Sending ETH to the
Multi-Sig Address

Resolved

Suggestion 3: Check the Input Parameter in the SetMerkleRoot Function Resolved

Suggestion 4: Add Checks for Array Elements Partially Resolved

Suggestion 5: Perform Zero Address Check Resolved

Suggestion 6: Prevent Locking Zero Amount Resolved

Suggestion 7: Prevent the Setting of the initialize Function in the
Implementation

Resolved

Suggestion 8: Use a Non-Floating Pragma Version Consistently Across the
Project

Resolved

Suggestion 9: Set Function Visibility Appropriately Resolved

Suggestions

Suggestion 1: Emit Event When Multi-Sig Address Is Updated

Location

contracts/Auth.sol#L31

Synopsis

Events should be emitted for critical parameter changes. However, an event is not emitted in the
constructor when the Multi-Sig address is updated.

Mitigation

We recommend emitting an event when the Multi-Sig address is updated.

Status

The Octant team has implemented the mitigation as recommended.

Verification

Resolved.

Security Audit Report | Octant Smart Contracts | Golem Foundation 4
20 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/Auth.sol#L31

Suggestion 2: Check the Contract Balance Before Sending ETH to the
Multi-Sig Address

Location

contracts/withdrawals/WithdrawalsTarget.sol#L39

Synopsis

In the withdraw function, low-level calls are performed to send ETH to the Multi-Sig address. However,
there is no check to verify if the contract has enough balance, due to which the call function will fail.

Mitigation

We recommend checking the contract balance before sending ETH to the Multi-Sig address.

Status

The Octant team has added the following check to determine if the contract has enough balance before
sending ETH to the Multi-Sig address:

require(address(this).balance >= amount, CommonErrors.FAILED_TO_SEND);

Verification

Resolved.

Suggestion 3: Check the Input Parameter in the SetMerkleRoot Function

Location

contracts/Vault.sol#L40

Synopsis

There are no checks for the function parameter root value in SetMerkleRoot, due to which an invalid
value of root can be set.

Mitigation

We recommend adding checks for the root value in setMerkleRoot, as follows:

require(root ! = bytes32(0))

Status

The Octant team has added checks to verify that the root value is not equal to bytes32(0).

Verification

Resolved.

Suggestion 4: Add Checks for Array Elements

Location

contracts/Proposals.sol#L33

contracts/Proposals.sol#L60

Security Audit Report | Octant Smart Contracts | Golem Foundation 5
20 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/withdrawals/WithdrawalsTarget.sol#L39
https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/Vault.sol#L40
https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/Proposals.sol#L33
https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/Proposals.sol#L60

Synopsis

While setting the proposal address for the epoch, it does not check whether the elements of the
Proposal array are different and not address(0), which can affect the calculation of funds donated by
the user for a proposal.

Mitigation

We recommend adding checks to verify that a given array neither has a similar address nor contains
address(0) in it.

Status

The Octant team has added an address(0) check for the array. However, there are still no checks
implemented to verify the similar values in an array.

Verification

Partially Resolved.

Suggestion 5: Perform Zero Address Check

Location

contracts-v1/contracts/OctantBase.sol#L18

contracts-v1/contracts/Deposits.sol#L41

Synopsis

There is no zero address check validating the correctness of the _auth and glmAddress parameters in
the constructors, thereby preventing incorrectly set values.

Mitigation

We recommend checking the referenced parameters against zero addresses.

Status

The Octant team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 6: Prevent Locking Zero Amount

Location

contracts-v1/contracts/Deposits.sol#L47-L55

Synopsis

The lock function does not check if the amount being locked is greater than zero, resulting in the
completion of an unnecessary transaction.

Mitigation

We recommend adding a check to revert the transaction if the amount is not greater than zero.

Security Audit Report | Octant Smart Contracts | Golem Foundation 6
20 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/OctantBase.sol#L18
https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/Deposits.sol#L41
https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/Deposits.sol#L47-L55

Status

The Octant team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 7: Prevent the Setting of the initialize Function in the
Implementation

Location

contracts/withdrawals/WithdrawalsTarget.sol#L29-L32

Synopsis

Although the WithdrawalsTarget smart contract should be utilized as an upgradeable smart contract,
there is no clear evidence verifying that it is, in fact, upgradeable. Additionally, the initialize function
used in the contract can be called by any user initializing the implementation.

Mitigation

We recommend that the WithdrawalsTarget smart contract extend one of OpenZeppelin’s
upgradeable contracts. We further recommend following their guidelines in the implementation, which
include disabling the initialization of the implementation in the implementation’s constructor, hence
preventing potential security risks by only allowing the initialize function to be called in the
constructor of the proxy.

OpenZeppelin’s Contract Wizard can be utilized to quickly build an upgradeable contract template,
depending on the type of upgradeability.

Status

The Octant team has disabled the initialization of the contract in the constructor.

Verification

Resolved.

Suggestion 8: Use a Non-Floating Pragma Version Consistently Across the
Project

Synopsis

Smart contracts in the project have their pragma set to ^0.8.16. Compiling with different compiler
versions may cause conflicts and unexpected results, and possibly lead to the smart contracts being
deployed with an unintended compiler version, which could result in unexpected behavior.

Mitigation

In order to prevent unexpected behavior, we recommend that the Solidity compiler version be pinned by
removing "^" and updated to the latest version.

Status

The Octant team has implemented the mitigation as recommended.

Security Audit Report | Octant Smart Contracts | Golem Foundation 7
20 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/withdrawals/WithdrawalsTarget.sol#L29-L32
https://wizard.openzeppelin.com/

Verification

Resolved.

Suggestion 9: Set Function Visibility Appropriately

Location

contracts-v1/contracts/Proposals.sol#L41

contracts-v1/contracts/Proposals.sol#L61

contracts-v1/contracts/Proposals.sol#L74

contracts-v1/contracts/withdrawals/WithdrawalsTarget.sol#L29

contracts-v1/contracts/withdrawals/WithdrawalsTarget.sol#L34

Synopsis

The functions referenced above are defined as public. However, they are not being used internally. It is
considered best practice to define function visibility based on where the function will be used in order to
improve the readability of the code and make it easier to identify incorrect assumptions about who can
call the function.

Mitigation

We recommend defining the referenced public functions as external by replacing the public keyword
with external.

Status

The Octant team has updated the visibility of the referenced functions as recommended.

Verification

Resolved.

Security Audit Report | Octant Smart Contracts | Golem Foundation 8
20 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/Proposals.sol#L41
https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/Proposals.sol#L61
https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/Proposals.sol#L74
https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/withdrawals/WithdrawalsTarget.sol#L29
https://github.com/LeastAuthority/octant-smart-contracts/blob/c185da96eb365f25636a102f618716f02cc76e4d/contracts-v1/contracts/withdrawals/WithdrawalsTarget.sol#L34

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Octant Smart Contracts | Golem Foundation 9
20 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Octant Smart Contracts | Golem Foundation 10
20 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

