
Hashi
Security Audit Report

Gnosis
Final Audit Report: 18 July 2024

Table of Contents
Overview

Background
Project Dates
Review Team

Coverage
Target Code and Revision
Supporting Documentation
Areas of Concern

Findings
General Comments

System Design
Code Quality
Documentation and Code Comments
Scope

Specific Issues & Suggestions
Issue A: Hashi System May Confirm Messages Without Meeting Threshold of Adaptors
Issue B: Gnosis Canonical Bridges May Allow Confirmation of Messages Without Waiting for
Agreement From a Sensible Quorum of Adaptors
Issue C: Native Tokens May Be Locked in Hashi Contracts Indefinitely
Issue D: HashiManger Can Be Configured With a Threshold of 0

Suggestions
Suggestion 1: Replace Deprecated safeApprove Function With approve Function
Suggestion 2: Update Solidity Compiler Version
Suggestion 3: Consider Using call Function Instead of transfer Function
Suggestion 4: Check Equality of Array Length
Suggestion 5: Implement Two-Step Ownership Transfer for Ownable Contracts
Suggestion 6: Consider Migrating JavaScript Files to TypeScript
Suggestion 7: Update Broken NPM Scripts
Suggestion 8: Abstract RPC URL Equality Check Into Helper Function
Suggestion 9: Abstract chainIds Into Constants
Suggestion 10: Rename the Argument _adapters to adaptorSettings (Out of Scope)
Suggestion 11: Check for Zero Address When Setting Bond Recipient (Out of Scope)
Suggestion 12: Comment Public Functions as onlyOwner Where Applicable (Out of Scope)
Suggestion 13: Update Naming of bondRecipient Variable (Out of Scope)

About Least Authority
Our Methodology

Security Audit Report | Hashi | Gnosis 1
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Gnosis has requested that Least Authority perform a security audit of Hashi and its integration with the
Gnosis canonical bridges.

Project Dates
● May 20, 2024 - June 10, 2024: Initial Code Review (Completed)
● June 12, 2024: Delivery of Initial Audit Report (Completed)
● July 18, 2024: Verification Review (Completed)
● July 18, 2024: Delivery of Final Audit Report (Completed)

Review Team
● Nikos Iliakis, Security Researcher and Engineer
● Will Sklenars, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Hashi system and bridge
integrations, followed by issue reporting, along with mitigation and remediation instructions as outlined in
this report.

The following code repository and branches are considered in scope for the review:
● Gnosis - Hash repository:

https://github.com/gnosis/hashi
○ except for GiriGiriBashi.sol

● Gnosis Canonical Bridges and the Hashi integration:
○ AMB:

https://github.com/crosschain-alliance/tokenbridge-contracts/tree/feat/hashi-integration
-amb

○ XDAI:
https://github.com/crosschain-alliance/tokenbridge-contracts/tree/feat/hashi-integration
-xdai-bridge

Specifically, we examined the Git revisions for our initial review:

● Hashi: e2f46eb2b8133add47badee9bdcffa380ab5e392
● AMB: 0cef7054be1be91203b09333aac8f7621b07afd5
● xDai: 7e60b0c46e168d1b73e766877c0d24cedbad6db6

For the verification, we examined the Git revisions:

● Hashi: 6f140ec0b4b8b17a4170fcd6e2dbc9da2f096990
● AMB: 14e330ed2705539147b3bb7ac106589a8ae1473c
● xDai: fb6bae7589a102613b48c12addb425b72836574e

Security Audit Report | Hashi | Gnosis 2
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/gnosis/hashi
https://github.com/crosschain-alliance/tokenbridge-contracts/tree/feat/hashi-integration-amb
https://github.com/crosschain-alliance/tokenbridge-contracts/tree/feat/hashi-integration-amb
https://github.com/crosschain-alliance/tokenbridge-contracts/tree/feat/hashi-integration-xdai-bridge
https://github.com/crosschain-alliance/tokenbridge-contracts/tree/feat/hashi-integration-xdai-bridge

For the review, these repositories were cloned for use during the audit and for reference in this report:
● Gnosis - Hashi:

https://github.com/LeastAuthority/Gnosis-Hashi
● Gnosis Canonical Bridges Hashi integration:

○ https://github.com/LeastAuthority/tokenbridge-contracts/

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Gnosis Chain:
https://docs.tokenbridge.net

● Introduction to Hashi 2.0:
https://crosschain-alliance.gitbook.io/hashi/v0.2/introduction

● GIP-93: Hashi - Gnosis Chain Bridges integration - Milestone 1 (Google Doc) (shared with Least
Authority via Telegram on 28 May 2024)

● Hashi Integration Blueprint (Google Doc) (shared with Least Authority via Telegram on 22 May
2024)

● Architectural Design.pdf (shared with Least Authority via Telegram on 4 March 2024)

In addition, this audit report references the following documents:
● NatSpec Format:

https://docs.soliditylang.org/en/v0.8.26/natspec-format.html
● Ownable2StepUpgradeable.sol:

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/v4.8.1/contracts/ac
cess/Ownable2StepUpgradeable.sol

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Adversarial actions and other attacks on the bridge;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial of Service attacks and security exploits that would impact or disrupt execution of the

bridge;
● Vulnerabilities within individual components and whether the interaction between the

components is secure;
● Exposure of any critical information during interaction with any external libraries;
● Proper management of encryption and signing keys;
● Protection against malicious attacks and other methods of exploitation;
● Data privacy, data leaking, and information integrity;
● Inappropriate permissions and excess authority; and
● Anything else as identified during the initial analysis phase.

Security Audit Report | Hashi | Gnosis 3
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Gnosis-Hashi
https://github.com/LeastAuthority/tokenbridge-contracts/tree/feat/hashi-integration-amb
https://docs.tokenbridge.net/
https://crosschain-alliance.gitbook.io/hashi/v0.2/introduction
https://docs.google.com/document/d/1qyL5YBh0JpOttpGRWi4McvYaD3fiNb-0ZVsNFe32rUk/edit
https://docs.google.com/document/d/1qyL5YBh0JpOttpGRWi4McvYaD3fiNb-0ZVsNFe32rUk/edit
https://docs.soliditylang.org/en/v0.8.26/natspec-format.html
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/v4.8.1/contracts/access/Ownable2StepUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/v4.8.1/contracts/access/Ownable2StepUpgradeable.sol

Findings
General Comments
Our team performed a security audit of Gnosis Hashi — an Ethereum Virtual Machine (EVM) Hash Oracle
Aggregator that utilizes third-party hash oracles to aggregate hashed data, such as block headers or other
arbitrary messages, in order to facilitate secure cross-chain communication. Hashi can be configured to
use multiple oracles, and only confirm a message on the target chain once a threshold of oracles has
reached an agreement. By using multiple oracles, Hashi aims to reduce the risk to the end user, as an
attacker would have to compromise multiple oracles in order to affect the outcome of a message sent
with Hashi.
In our review, we investigated Hashi's core functionality and its integration with the xDAI and AMB bridges.
The integrations involve adding new functions to manage Hashi's configuration, and maintain
compatibility with existing processes.

System Design
Our team examined the design of the Hashi protocol and the integration of its components, along with
investigating how the components communicate and interact with each other. We reviewed the codebase
for common vulnerabilities (re-entrancy, access control, etc.), any bypasses of the consensus, as well as
corruptions of the storage or the messages.

The ShoyuBashi and GiriGiriBashi contracts (Hashi codebase), and HashiManager contract,
(Gnosis canonical bridges) provide controls for the system owner, enabling them to add and remove
oracles for different domains and set the thresholds for consensus. Yaho dispatches cross-chain
messages from the source chain, while Yaru executes messages on the destination chain. Hashi
facilitates domain-specific hash queries, allowing users to retrieve hashed data by providing a chainID and
messageID. The threshold consensus mechanism allows Hashi to reach a high-confidence conclusion,
increasing the reliability of the retrieved data. Once a majority of adaptors has relayed a hash from the
source chain to the destination chain, the information is considered valid by the Hashi system, and users
or contracts on the destination chain can access the agreed upon hash. Hashi's redundant approach
prioritizes security and reliability, seeking to mitigate the issues present in traditional trusted bridge
solutions.

In our review, we discovered some potential issues relating to a race condition, which were present in both
the Hashi codebase (Issue A) and the tokenbridge-contracts codebase (Issue B). We also found
that hashiManagermay be misconfigured, and suggested adding input validations for functions that
update the Hashi configuration (Issue D, Suggestion 4, Suggestion 11).

Our team additionally found that some parts of the codebase use the deprecated function safeApprove
(Suggestion 1), and that the codebase uses the Solidity transfer function, which has the potential to
revert when sending funds to a smart contract (Suggestion 3).

Hashi utilizes the OpenZeppelin OwnableUpgradeablemodule, which facilitates transfer of ownership.
We suggest using two-step ownership transfer to mitigate the risk of transferring contract ownership to
an invalid address (Suggestion 5).

Code Quality
We performed a manual review of the contracts in scope and found the code to be clean, well-organized,
and in adherence to Solidity best practices. The code was generally easy to follow, and the separation of

Security Audit Report | Hashi | Gnosis 4
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

the code into modules followed logical patterns. We identified some potential areas where repeated logic
and strings could be abstracted and reused (Suggestion 8, Suggestion 9).

The Hashi codebase uses TypeScript for the testing and deployment logic. We found that the
tokenbridge-contracts codebase uses vanilla JavaScript. We recommend that the Gnosis
development team consider migrating to TypeScript for added type safety (Suggestion 6).

In the Hashi codebase, we found the function naming to be clear, but identified some cases where naming
could be improved (Suggestion 10, Suggestion 13).

Tests

Our team found that sufficient test coverage of the smart contracts (100% in contracts and 99.37% in
contracts/ownable) has been implemented.

Documentation and Code Comments
The project documentation provided for this review provided a clear overview of the system and its
intended behavior. Additionally, code comments sufficiently describe the intended behavior of
security-critical components and adhere to NatSpec guidelines. We identified one instance where
commenting could be improved regarding public onlyOwner functions (Suggestion 12).

Scope
The scope of this review was sufficient and included all the contracts in packages/evm/contracts,
(with the exception of GiriGiriBashi.sol) as well the changes implemented for the integration on the
hashi-integration-amb and hashi-integration-xdai-bridge repositories. However, our team
recommends performing a comprehensive, follow-up audit once more integrations or functionality are
added or updated.

Dependencies

Our team did not identify any security issues in the use of dependencies. The Gnosis team uses the
well-audited OpenZeppelin libraries, which are a standard for smart contracts development.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Hashi System May Confirm Messages Without Meeting Threshold
of Adaptors

Unresolved

Issue B: Gnosis Canonical Bridges May Allow Confirmation of Messages
Without Waiting for Agreement From a Sensible Quorum of Adaptors

Resolved

Issue C: Native Tokens May Be Locked in Hashi Contracts Indefinitely Unresolved

Issue D: HashiManger Can Be Configured With a Threshold of 0 Unresolved

Suggestion 1: Replace Deprecated safeApprove Function With approve Unresolved

Security Audit Report | Hashi | Gnosis 5
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.soliditylang.org/en/v0.8.26/natspec-format.html
https://github.com/LeastAuthority/Gnosis-Hashi/blob/feat/v0.2.0/packages/evm/contracts
https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/GiriGiriBashi.sol
https://github.com/LeastAuthority/tokenbridge-contracts/tree/feat/hashi-integration-amb
https://github.com/LeastAuthority/tokenbridge-contracts/tree/feat/hashi-integration-xdai-bridge

Function

Suggestion 2: Update Solidity Compiler Version Unresolved

Suggestion 3: Consider Using call Function Instead of transfer Function Unresolved

Suggestion 4: Check Equality of Array Length Unresolved

Suggestion 5: Implement Two-Step Ownership Transfer for Ownable
Contracts

Unresolved

Suggestion 6: Consider Migrating JavaScript Files to TypeScript Unresolved

Suggestion 7: Update Broken NPM Scripts Unresolved

Suggestion 8: Abstract RPC URL Equality Check Into Helper Function Unresolved

Suggestion 9: Abstract chainIds Into Constants Unresolved

Suggestion 10: Rename the Argument _adapters to adaptorSettings (Out of
Scope)

Unresolved

Suggestion 11: Check for the Zero Address When Setting Bond Recipient
(Out of Scope)

Unresolved

Suggestion 12: Comment Public Functions as onlyOwner Where Applicable
(Out of Scope)

Unresolved

Suggestion 13: Update Naming of bondRecipient Variable (Out of Scope) Unresolved

Issue A: Hashi System May Confirm Messages Without Meeting Threshold
of Adaptors

Location

contracts/ownable/ShuSo.sol#L77

contracts/ownable/ShuSo.sol#L103

contracts/ownable/ShuSo.sol#L216

Synopsis

ShuSho provides the functionality to add or remove adapters and reporters, and update the threshold.
However, there is currently no way to do so in an atomic transaction. If a Hashi user sends a transaction
concurrently with an administrator updating adapters, reports, and the threshold, the user’s transaction
could interact with Hashi while it is in an inconsistent state.

Impact

If a Hashi administrator were to add new adaptors and reporters, and increase the threshold to suit the
new configuration, a user’s concurrent transaction could be sandwiched between the administrator’s
transactions, resulting in the user’s transaction running on Hashi while it has an inconsistently high or low

Security Audit Report | Hashi | Gnosis 6
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/ShuSo.sol#L77
https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/ShuSo.sol#L103
https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/ShuSo.sol#L216

threshold. This could either result in hashes being confirmed when they should not have been, or not
being confirmed when they should, depending on the order in which the concurrent transactions are
executed on the EVM.

Preconditions

This Issue occurs when an administrator updates the Hashi configuration concurrently with a user calling
the getHash function.

Feasibility

This scenario is somewhat likely to occur in the event of a Hashi configuration update, presuming that
calls to the getHash function occur regularly.

Remediation

We suggest extending ShuSho.sol, such that adaptors, reportors, and the threshold can be updated
atomically.

Status

The Gnosis team has provided a solution for the bridge tokens; however, the Issue still persists for the
Hashi contracts.The Gnosis team has stated that ShuSho will not be used in the gnosis bridge migration

Verification

Unresolved.

Issue B: Gnosis Canonical Bridges May Allow Confirmation of Messages
Without Waiting for Agreement From a Sensible Quorum of Adaptors

Location

contracts/upgradeable_contracts/HashiManager.sol

Synopsis

This Issue relates to the same scenario reported in Issue A, but concerns HashiManager.sol in the
tokenbridge-contracts. HashiManager provides the functionality to update adapters, reporters,
and the threshold. However, there is no functionality to do so in an atomic transaction. If a user of Gnosis
canonical bridges had their transaction executed on the EVM as the adaptors are updated and when the
threshold is set, their transaction would interact with the bridge while Hashi is in an inconsistent state.

Impact

A message could be passed without a reasonable amount of adaptor confirmations, or a message could
be denied from being passed despite a reasonable threshold of adaptors.

Preconditions

This Issue can occur when a user interacts with Gnosis canonical bridges concurrently with an
administrator updating the Hashi configuration.

Feasibility

Presuming that the Gnosis canonical bridges are used regularly, it is likely that any time
HashiManager.sol adaptors, reporters, or the threshold are updated, some user transactions may be
executed on an inconsistently configured bridge.

Security Audit Report | Hashi | Gnosis 7
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/tokenbridge-contracts/blob/feat/hashi-integration-amb/contracts/upgradeable_contracts/HashiManager.sol
https://github.com/LeastAuthority/tokenbridge-contracts

Remediation

We suggest extending HashiManager.sol, such that adaptors, reporters, and the threshold can be
configured in an atomic transaction.

Status

The Gnosis team has added the function setReportersAdaptersAndThreshold, which resolves the
Issue. Additionally, the team has also added a new functionality with which a message that has been sent
already can be resubmitted.

Verification

Resolved.

Issue C: Native Tokens May Be Locked in Hashi Contracts Indefinitely

Location

evm/contracts/Yaho.sol

evm/contracts/ownable/GiriGiriBashi.sol

Synopsis

Multiple functions within the Hashi codebase are payable. Due to misconfigured transactions by a user, or
subtle bugs in the current implementations, native tokens could end up locked in the Hashi contracts.
Without the presence of a backup withdrawal mechanism, these funds could remain locked in the
contracts indefinitely.

Impact

A user interacting with the Hashi payable functions could have their native tokens locked in the contract.

Preconditions

A user would have to unwittingly send native tokens to a payable function.

Feasibility

Not likely to occur.

Remediation

For contracts with payable functions, we recommend implementing a generic withdrawal mechanism with
appropriate access control to facilitate the withdrawal of funds in the event of mistakes or failures.

Status

The Gnosis team has acknowledged the issue. However, the issue remains unresolved at the time of
verification.

Verification

Unresolved.

Issue D: HashiManger Can Be Configured With a Threshold of 0

Location

contracts/upgradeable_contracts/HashiManager.sol#L23

Security Audit Report | Hashi | Gnosis 8
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Gnosis-Hashi/blob/feat/v0.2.0/packages/evm/contracts/Yaho.sol
https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/GiriGiriBashi.sol
https://github.com/LeastAuthority/tokenbridge-contracts/blob/ac3a731d30032906c974030bc2e9f626f57647e9/contracts/upgradeable_contracts/HashiManager.sol#L23

Synopsis

In the function setReportersAdaptersAndThreshold, it is possible to pass an inappropriate
threshold, such as 0 or 1.

Impact

An overly low threshold could lead to messages being confirmed without reaching a reasonable quorum
of adaptor confirmations.

Preconditions

An administrator of the Gnosis canonical bridges would have to unwittingly pass an inappropriate value
when setting the threshold.

Feasibility

As the incorrect configuration would be due to an unintentional action performed by an administrator, this
Issue is not considered likely to occur. However, the risk scales with the frequency of configuration
updates.

Technical Details

function setReportersAdaptersAndThreshold(address[] reporters, address[]
adapters, uint256 threshold)

external

onlyOwner

{

// missing threshold check

_setArray(N_REPORTERS, "reporters", reporters);

_setArray(N_ADAPTERS, "adapters", adapters);

uintStorage[THRESHOLD] = threshold;

}

Remediation

Upon setting the threshold, we recommend checking that the supplied parameter is a reasonable value.
For example, contracts/ownable/GiriGiriBashi.sol#L219 checks that the threshold is greater
than 50% of the count of adapters.

Status

The Gnosis team has acknowledged the issue. However, the issue remains unresolved at the time of
verification.

Verification

Unresolved.

Security Audit Report | Hashi | Gnosis 9
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/GiriGiriBashi.sol#L219

Suggestions

Suggestion 1: Replace Deprecated safeApprove Function With approve
Function

Location

adapters/ZetaChain/ZetaReporter.sol#L37

Synopsis

The safeApprove function was added to OpenZeppelin as a solution to a front running vulnerability
associated with the approve function. However, the safeApprove function has issues of its own, which
are similar to the issues relating to the approve function. Consequently, it has the potential to convey a
false sense of security. Because of this, it was deprecated by OpenZeppelin, who recommended the use
of the approve function instead.

Mitigation

We recommend using the approve function instead of the deprecated safeApprove function.

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Verification

Unresolved.

Suggestion 2: Update Solidity Compiler Version

Location

packages/evm/hardhat.config.ts#L126

truffle-config.js#L41

Synopsis

The Hashi hardhat.config.js file in Hashi references Solidity version 0.8.21, and the Gnosis
canonical bridges reference version 0.4.24. The current version, as of the writing of this report, is
version 0.8.25. Older compiler versions may have known and fixed issues that could be leveraged for an
attack.

Mitigation

We recommend updating the Solidity compiler to version 0.8.24. This minimizes exposure to unknown
issues that may have been introduced in the latest release, while also including recent bug fixes.

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Verification

Unresolved.

Security Audit Report | Hashi | Gnosis 10
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/adapters/ZetaChain/ZetaReporter.sol#L37
https://github.com/LeastAuthority/Gnosis-Hashi/blob/feat/v0.2.0/packages/evm/hardhat.config.ts#L126
https://github.com/LeastAuthority/tokenbridge-contracts/blob/ac3a731d30032906c974030bc2e9f626f57647e9/truffle-config.js#L41

Suggestion 3: Consider Using call Function Instead of transfer Function

Location

Multiple occurrences throughout the Gnosis-Hashi and tokenbridge-contracts codebases

Synopsis

The Solidity transfer function allows only 2300 gas. In the event that the receiving account is a smart
contract, the transaction may run out of gas and revert. Failure could occur if the receiving contract is an
upgradable contract, or if the receiving contract’s fallback function has custom logic. By default, the call
function allows the maximum gas available, but the call function can also be passed a gas allowance as
an argument.

Mitigation

We recommend checking all occurrences of the transfer function and investigating the likelihood that
the recipient may be a smart contract. If it is possible that the recipient could be a smart contract, we
recommend using the call function instead. Note that if the call function is used, extra caution should
be taken to protect against re-entrancy.

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Verification

Unresolved.

Suggestion 4: Check Equality of Array Length

Location

contracts/upgradeable_contracts/HashiManager.sol#L27

Synopsis

The function setReportersAdaptersAndThreshold in the HashiManager contract does not check
whether the array lengths of reporters and adapters are equal. This could lead to an inconsistent
configuration of the HashiManager contract.

Mitigation

We recommend checking that reporters.length == adapters.length, and throwing an exception
if not.

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Verification

Unresolved.

Security Audit Report | Hashi | Gnosis 11
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Gnosis-Hashi
https://github.com/LeastAuthority/tokenbridge-contracts
https://github.com/LeastAuthority/tokenbridge-contracts/blob/feat/hashi-integration-amb/contracts/upgradeable_contracts/HashiManager.sol#L27

Suggestion 5: Implement Two-Step Ownership Transfer for Ownable
Contracts

Location

contracts/ownable/ShuSo.sol

contracts/upgradeable_contracts/HashiManager.sol

contracts/upgradeable_contracts/BasicBridge.sol

Synopsis

Having a two-step claimable ownership reduces the risk of transferring ownership to an invalid address.

Mitigation

We recommend using OpenZepplin’s Ownable2StepUpgradeable.sol instead of
OwnableUpgradeable.sol.

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Verification

Unresolved

Suggestion 6: Consider Migrating JavaScript Files to TypeScript

Location

hashi-integration-amb/deploy/src

hashi-integration-amb/test

Synopsis

The tokenbridge-contracts use JavaScript files for testing and deployment. JavaScript lacks a
static type system, due to which sublte errors are sometimes not discovered until runtime.

Mitigation

We recommend migrating the testing and deployment scripts to TypeScript. This would add static typing,
which could help eliminate potential, unknown bugs in the testing and deployment scripts. It would also
improve code readability and maintainability, and facilitate safer refactoring.

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Verification

Unresolved.

Security Audit Report | Hashi | Gnosis 12
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Gnosis-Hashi/blob/feat/v0.2.0/packages/evm/contracts/ownable/ShuSo.sol
https://github.com/LeastAuthority/tokenbridge-contracts/blob/feat/hashi-integration-amb/contracts/upgradeable_contracts/HashiManager.sol
https://github.com/LeastAuthority/tokenbridge-contracts/blob/feat/hashi-integration-amb/contracts/upgradeable_contracts/BasicBridge.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/v4.8.1/contracts/access/Ownable2StepUpgradeable.sol
https://github.com/LeastAuthority/tokenbridge-contracts/tree/feat/hashi-integration-amb/deploy/src
https://github.com/LeastAuthority/tokenbridge-contracts/tree/feat/hashi-integration-amb/test
https://github.com/LeastAuthority/tokenbridge-contracts

Suggestion 7: Update Broken NPM Scripts

Location

hashi-integration-amb/deploy/package.json#L8

hashi-integration-amb/deploy/package.json#L9

hashi-integration-amb/deploy/package.json#L18

Synopsis

Some of the scripts defined in the tokenbridge-contracts package.json (test:gasreport,
test:gasreport:ci, and coverage) do not function correctly.

Mitigation

We recommend either fixing the scripts or deleting them if they are no longer required.

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Verification

Unresolved.

Suggestion 8: Abstract RPC URL Equality Check Into Helper Function

Location

deploy/src/deploymentUtils.js#L240

deploy/src/deploymentUtils.js#L259

deploy/src/deploymentUtils.js#L326

Synopsis

The equality check url === HOME_RPC_URL is performed multiple times, making it a good candidate
for abstraction.

Mitigation

We recommend creating the new helper function isHomeRPCUrl and using it instead of the equality
checks to improve readability, as follows:

function isHomeRPCUrl (url) {

return url === HOME_RPC_URL;

}

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Security Audit Report | Hashi | Gnosis 13
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/tokenbridge-contracts/blob/0cef7054be1be91203b09333aac8f7621b07afd5/package.json#L8
https://github.com/LeastAuthority/tokenbridge-contracts/blob/feat/hashi-integration-amb/package.json#L9
https://github.com/LeastAuthority/tokenbridge-contracts/blob/feat/hashi-integration-amb/package.json#L18
https://github.com/LeastAuthority/tokenbridge-contracts
https://github.com/LeastAuthority/tokenbridge-contracts/blob/7e60b0c46e168d1b73e766877c0d24cedbad6db6/deploy/src/deploymentUtils.js#L240
https://github.com/LeastAuthority/tokenbridge-contracts/blob/7e60b0c46e168d1b73e766877c0d24cedbad6db6/deploy/src/deploymentUtils.js#L259
https://github.com/LeastAuthority/tokenbridge-contracts/blob/7e60b0c46e168d1b73e766877c0d24cedbad6db6/deploy/src/deploymentUtils.js#L326

Verification

Unresolved.

Suggestion 9: Abstract chainIds Into Constants

Location

deploy/src/deploymentUtils.js#L240

deploy/src/deploymentUtils.js#L259

Synopsis

Strings representing chain IDs are defined in multiple instances in deploymentUtils.js. To improve
code readability and maintainability, these could be abstracted into constant variables and defined at the
top of the file.

Mitigation

We recommend defining constant variables for the chain IDs, as follows:

const HOME_CHAIN_ID = "0x27d8";

const FOREIGN_CHAIN_ID = "0xaa36a7";

These constants can then be referenced in the code, as such:

const chainId = isHomeRPCUrl(url) ? HOME_CHAIN_ID : FOREIGN_CHAIN_ID;

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Verification

Unresolved.

Suggestion 10: Rename the Argument _adapters to adaptorSettings (Out
of Scope)

Location

evm/contracts/ownable/GiriGiriBashi.sol#L252

Synopsis

In GiriGiriBashi’s initSettings, an array of adapter settings is passed in. However, the argument is
named _adaptors.

Mitigation

We recommend renaming the argument to adaptorSettings to improve readability.

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Security Audit Report | Hashi | Gnosis 14
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/tokenbridge-contracts/blob/7e60b0c46e168d1b73e766877c0d24cedbad6db6/deploy/src/deploymentUtils.js#L240
https://github.com/LeastAuthority/tokenbridge-contracts/blob/7e60b0c46e168d1b73e766877c0d24cedbad6db6/deploy/src/deploymentUtils.js#L259
https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/GiriGiriBashi.sol#L252

Verification

Unresolved.

Suggestion 11: Check for Zero Address When Setting Bond Recipient (Out
of Scope)

Location

contracts/ownable/GiriGiriBashi.sol#L18

contracts/ownable/GiriGiriBashi.sol#L231

Synopsis

When setting the bond recipient, there is no zero address check validating the correctness of the supplied
address, thereby preventing an incorrectly set bondRecipient value.

Mitigation

We recommend checking the referenced parameters against the zero address.

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Verification

Unresolved.

Suggestion 12: Comment Public Functions as onlyOwner Where
Applicable (Out of Scope)

Location

contracts/ownable/ShoyuBashi.sol#L17

contracts/ownable/ShoyuBashi.sol#L22

contracts/ownable/ShoyuBashi.sol#L27

contracts/ownable/GiriGiriBashi.sol#L63

contracts/ownable/GiriGiriBashi.sol#L105

contracts/ownable/GiriGiriBashi.sol#L248

Synopsis

When reading the code, it is not instantly apparent that the functions enableAdapters,
disableAdaptors, and setThreshold will reject non-owner access, as the onlyOwnermodifier is
applied to internal functions that are called by the public function.

Mitigation

To improve code readability, we recommend either updating the public function comments to state that
they are onlyOwner, or applying the onlyOwnermodifier to the public functions.

Security Audit Report | Hashi | Gnosis 15
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/GiriGiriBashi.sol#L18
https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/GiriGiriBashi.sol#L231
https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/ShoyuBashi.sol#L17
https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/ShoyuBashi.sol#L22
https://github.com/LeastAuthority/Gnosis-Hashi/blob/e2f46eb2b8133add47badee9bdcffa380ab5e392/packages/evm/contracts/ownable/ShoyuBashi.sol#L27
https://github.com/LeastAuthority/Gnosis-Hashi/blob/feat/v0.2.0/packages/evm/contracts/ownable/GiriGiriBashi.sol#L63
https://github.com/LeastAuthority/Gnosis-Hashi/blob/feat/v0.2.0/packages/evm/contracts/ownable/GiriGiriBashi.sol#L105
https://github.com/LeastAuthority/Gnosis-Hashi/blob/feat/v0.2.0/packages/evm/contracts/ownable/GiriGiriBashi.sol#L248

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Verification

Unresolved.

Suggestion 13: Update Naming of bondRecipient Variable (Out of Scope)

Location

contracts/ownable/GiriGiriBashi.sol#L10

Synopsis

The storage variable bondRecipient is intended to be a Hashi-controlled address, which would receive
a challenger's bond in the event that the challenge is rejected. Although this functionality can be clearly
understood upon reading the code, the bondRecipient variable could be better named to more
effectively communicate its purpose, as a bondRecipient could be interpreted as either the challenging
user, or the bridge authority.

Mitigation

We recommend updating the naming of the bondRecipient variable to a more descriptive variable
name, such as bondForfeitureAddress.

Status

The Gnosis team has not addressed this suggestion. As such, it remains unresolved at the time of
verification.

Verification

Unresolved.

Security Audit Report | Hashi | Gnosis 16
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Gnosis-Hashi/blob/feat/v0.2.0/packages/evm/contracts/ownable/GiriGiriBashi.sol#L10

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be

Security Audit Report | Hashi | Gnosis 17
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Hashi | Gnosis 18
18 July 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

