
MetaMask Snap
Security Audit Report

Generative Labs
Final Audit Report: 30 August 2023

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Weak Key Derivation Algorithm Used

Issue B: Unnecessary Usage of Non-Standard Libraries

Issue C: Initialization Vector Used Does Not Meet Recommended Best Practices

Issue D: Vulnerable and Unused Dependencies Detected in the Codebase

Suggestions

Suggestion 1: Replace Deprecated escape Function

Suggestion 2: Implement a Test Suite

Suggestion 3: Use the External Time Server

Suggestion 4: Improve Error Handling

Suggestion 5: Avoid Using console.log

Suggestion 6: Improve Code Comments

Suggestion 7: Do Not Allow Low Entropy Passwords

Suggestion 8: Consider Using the Entropy Provided by MetaMask

About Least Authority

Our Methodology

Security Audit Report | MetaMask Snap | Generative Labs 1
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Generative Labs has requested that Least Authority perform a security audit of their MetaMask Snap.

Project Dates
● August 16, 2023 - August 18, 2023: Initial Code Review (Completed)
● August 22, 2023: Delivery of Initial Audit Report (Completed)
● August 29, 2023: Verification Review (Completed)
● August 30, 2023: Delivery of Final Audit Report (Completed)

Review Team
● Jehad Baeth, Security Researcher and Engineer
● Mukesh Jaiswal, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the MetaMask Snap followed by issue
reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Web3MQ Snap:

https://github.com/Generative-Labs/Web3MQ-Snap

Specifically, we examined the Git revision for our initial review:

● b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a

For the verification, we examined the Git revision:

● 41ce45227e064944b089750166d23f99

For the review, this repository was cloned for use during the audit and for reference in this report:

● Web3MQ Snap:
https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Website:
https://www.generativelabs.co

● Intro | Web3MQ Documentation:
https://docs.web3mq.com/docs/Intro

Security Audit Report | MetaMask Snap | Generative Labs 2
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Generative-Labs/Web3MQ-Snap
https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap
https://www.generativelabs.co/
https://docs.web3mq.com/docs/Intro

In addition, this audit report references the following documents:
● M. Dworkin, “Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM)

and GMAC.” NIST Special Publication 800-38D, 2007, [Dworkin07]
● PBKDF2:

https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/deriveKey#pbkdf2
● escape():

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/escape
● encodeURIComponent():

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURI
Component

● encodeURI:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeUR

● snap_getEntropy
https://docs.metamask.io/snaps/reference/rpc-api/#snap_getentropy

● zxcvbn:
https://github.com/dropbox/zxcvbn

● SubtleCrypto:
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the Snap implementation;
● Potential misuse and gaming of the Snap;
● Attacks that impacts funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Adversarial actions and other attacks on the network;
● Denial of Service (DoS) and other security exploits that would impact the intended use of the

Snap or disrupt the execution of the Snap capabilities;
● Vulnerabilities in the Snap code;
● Protection against malicious attacks and other ways to exploit Snap code;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team performed a security review of the Web3MQ Snap, a client interface that allows its users to
interact with the Web3MQ social messaging network.

We investigated the coded implementation to identify security vulnerabilities and implementation errors
and reviewed Web3MQ’s utilization of the MetaMask security framework and adherence to the security
best practices. In our review, we investigated the handling of sensitive data, secure use of libraries, input
validation, as well as the use of permissions.

We identified several issues and suggestions that would improve the quality of the code and contribute to
the overall security of the implementation, as detailed below.

Security Audit Report | MetaMask Snap | Generative Labs 3
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38d.pdf
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/deriveKey#pbkdf2
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/escape
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURI
https://docs.metamask.io/snaps/reference/rpc-api/#snap_getentropy
https://github.com/dropbox/zxcvbn
https://github.com/dropbox/zxcvbn
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto

System Design
During our review, we found a series of issues related to the use of cryptography and key generation.
Security guarantees offered by the implemented encryption function AES-GCM are dependent on the
entropy of the password, the key derivation function (KDF) used, and the quality of the randomness of the
Initialization Vector (IV). Our team found that HKDF, the key derivation function based on the hash-based
message authentication code (HMAC), is used to derive keys, which is not a sufficiently secure algorithm
for the purpose of deriving keys from user-selected passwords (Issue A). Furthermore, the initialization
factor used is not unique, and we recommend using a cryptographically strong pseudorandom number
generator (PRNG) instead (Issue C). Our team also found that there are no constraints on passwords that
a user may select, which would allow users to select a low entropy password (Suggestion 7). Additionally,
we investigated the libraries used and found that non-standard libraries are implemented to handle
sensitive functionalities (Issue B).

Code Quality
We performed a manual review of the repositories in scope and found the codebases to be generally
organized and well-written.

Tests

During our review, our team found no tests within the codebase. We recommend implementing a test
suite, which helps identify implementation errors that could lead to security vulnerabilities (Suggestion 2).

Documentation
The project documentation provided for this review provides a generally sufficient overview of the
protocol and its intended behavior.

Code Comments

There are insufficient code comments describing security-critical components and functions in the
codebase. We recommend improving code comments (Suggestion 6).

Scope
The scope of this review was sufficient and included all security-critical components.

Dependencies

We examined all the dependencies implemented in the codebase and identified several instances of
unused dependencies and devDependencies. We recommend improving dependency management (Issue
D).

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Weak Key Derivation Algorithm Used Resolved

Issue B: Unnecessary Usage of Non-Standard Libraries Unresolved

Security Audit Report | MetaMask Snap | Generative Labs 4
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue C: Initialization Vector Used Does Not Meet Recommended Best
Practices

Unresolved

Issue D: Vulnerable and Unused Dependencies Detected in the Codebase Resolved

Suggestion 1: Replace Deprecated escape Function Partially Resolved

Suggestion 2: Implement a Test Suite Unresolved

Suggestion 3: Use the External Time Server Unresolved

Suggestion 4: Improve Error Handling Resolved

Suggestion 5: Avoid Using console.log Resolved

Suggestion 6: Improve Code Comments Unresolved

Suggestion 7: Do Not Allow Low Entropy Passwords Unresolved

Suggestion 8: Consider Using the Entropy Provided by MetaMask Unresolved

Issue A: Weak Key Derivation Algorithm Used

Location

snap/src/encryption/index.ts#L84

Synopsis

In the GetAESBase64Key function, the password is used as input for keydata in the
crypto.subtel.importKey function, which can result in weak key generation.

Impact

In the GetAESBase64Key function, crypto.subtel.importKey(format, keyData, algorithm,
extractable, keyUsage) uses HKDF as an algorithm for key derivation. However, since HKDF is not
designed for low entropy input, the derived master key will not be secure enough.

Remediation

We recommend using PBKDF2, instead of HKDF, as it is specifically designed for deriving keys from
passwords.

Status

The Generative Labs team has implemented the remediation as recommended.

Verification

Resolved.

Security Audit Report | MetaMask Snap | Generative Labs 5
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/encryption/index.ts#L84

Issue B: Unnecessary Usage of Non-Standard Libraries

Location

snap/src/utils.ts#L31

snap/src/utils.ts#L270

Synopsis

While the libraries used do not appear to be insecure, there are standard libraries available that should be
used instead.

Impact

The use of non-standard libraries to handle sensitive functionalities introduces the potential for
implementation errors and increases the possibility of a supply chain attack that may result in serious
vulnerabilities.

Remediation

We recommend the use of standardized, trusted, and audited alternatives, such as SubtleCrypto.

Additionally, for the cases where the implementation uses SHA3-224, although it is not implemented in
any of the WebAPI libraries to the best of our knowledge, SHA256 can be utilized instead, and the output
hash can be trimmed with negligible impact on performance.

Status

The Generative Labs team responded that the npm package @noble/ed25519 is both recommended and
user-friendly. While our team agrees with this statement, this Issue was identified in order to suggest
alternatives for the usage of libraries, such as js-sha224 and js-sha3. Our team continues to
recommend the usage of SHA256 instead of SHA3-224.

Verification

Unresolved.

Issue C: Initialization Vector Used Does Not Meet Recommended Best
Practices

Location

src/register/index.ts#L257

Synopsis

A key is a piece of information used in ciphering data and must remain secret, while an Initialization
Vector (IV) is used to ensure that the same plaintext encrypted with the same key results in different
ciphertexts, thus providing semantic security. In addition, in specific cases, the IV can be public and
retaining uniqueness can be sufficient, according to [Dworkin07]. However, the current implementation
uses parts of the derived secret key as an IV. Mixing the roles of the aforementioned two inputs can
jeopardize the strength of the symmetric encryption algorithm used.

Impact

The purpose of an IV is to add randomness to the encryption process. If IVs are not unique, the security of
the encryption is weakened. Attackers might be able to predict or manipulate the ciphertext, leading to
potential data leakage.

Security Audit Report | MetaMask Snap | Generative Labs 6
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/utils.ts#L31
https://github.com/Generative-Labs/Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/utils.ts#L270
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto
https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/register/index.ts#L257
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38d.pdf

Remediation

We recommend using a pseudorandom number generator (PRNG) to generate an IV instead of reusing
parts of the secret key.

Status

The Generative Labs team stated that decoding and encoding require consistent IV parameters, so the
user's password is used as the original parameter for SHA256.
However, our team found that the IV is still being derived from the password using SHA256 and is then
converted to a Base64 string. While this approach is better than using a plaintext password as an IV, it is
still not ideal. As noted in the synopsis of this Issue, it is generally recommended to use a randomly
generated IV for each encryption operation, and to ensure that there is no overlap between the secret key
and the IV (which can be public or safely stored in plaintext format).

Verification

Unresolved.

Issue D: Vulnerable and Unused Dependencies Detected in the Codebase

Synopsis

Analyzing the code using npm audit and depcheck shows that the dependencies used have 10 known
vulnerabilities (1 Critical, 9 Moderate). According to npx depcheck, the following unused dependencies
and devDependencies were identified:

Unused dependencies:

● @metamask/snaps-ui
● @protobuf-ts/plugin
● buffer
● web3

Unused devDependencies:

● @lavamoat/allow-scripts
● @metamask/auto-changelog
● prettier-plugin-packagejson

Impact

Using unmaintained and outdated dependencies and devDependencies may lead to critical security
vulnerabilities in the codebase.

Remediation

We recommend proper management and maintenance of dependencies and devDependencies, as
detailed below:

● Manually auditing and updating dependencies, in order to avoid known issues in unmaintained
and outdated dependencies and conducting extensive testing to confirm there are no backward
compatibility issues introduced by upgrading dependencies;

● Including the automated dependency auditing into the CI workflow or enabling Dependabot on
GitHub, which automatically notifies developers about published security advisories relevant to
the codebase;

● Acting on published advisories and updating dependencies accordingly when fixes are released;
and

Security Audit Report | MetaMask Snap | Generative Labs 7
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

● Pinning specific dependency versions to mitigate any potential supply chain attacks or the
possibility of newer versions of dependencies breaking the code.

Status

The Generative Labs team has implemented the remediation as recommended.

Verification

Resolved.

Suggestions

Suggestion 1: Replace Deprecated escape Function

Location

snap/src/utils.ts#L127

Synopsis

The escape function has been deprecated and should be replaced.

Mitigation

We recommend using encodeURIComponent or encodeURI instead.

Status

The Generative Labs team has removed the deprecated function but does not verify the result of the
window.atob function.

Verification

Partially Resolved.

Suggestion 2: Implement a Test Suite

Synopsis

Our team found no tests in the repository in scope. Sufficient test coverage should include tests for
success and failure cases, which helps identify potential edge cases, and protect against errors and bugs
that may lead to vulnerabilities or exploits. A test suite that includes a minimum of unit tests and
integration tests adheres to development best practices. In addition, end-to-end testing is also
recommended to assess if the implementation behaves as intended.

Mitigation

We recommend creating a test suite for the Snap implementation to facilitate identifying implementation
errors and potential security vulnerabilities by developers and security researchers.

Status

The Generative Labs team stated that they plan on improving test coverage in the future. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Security Audit Report | MetaMask Snap | Generative Labs 8
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/utils.ts#L127
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/escape
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURI

Suggestion 3: Use the External Time Server

Location

snap/src/register/index.ts#L150

Synopsis

The JavaScript Date object fetches the date and time from the host system, which can be changed by
changing the time in the host machine.

Mitigation

We recommend fetching the date and time from the external time server instead.

Status

The Generative Labs team stated that the developer can regenerate a new temporary key pair by
encrypting the private key, and the Snap-SDK simply sets a default value when the developer does not
enter this parameter.

Additionally, the team noted that clients are generally incentivized to use whatever timeout value suits
them, and the length of the session key is determined by the frontend. Therefore, the team believes that
relying on the backend time would not resolve the suggestion. Additionally, they noted that there is not
much incentive and gain resulting from the use of an incorrect time because if the frontend client wanted
to change length of timeout time, they could always do so by passing in a different and desired honest
time.

Verification

Unresolved.

Suggestion 4: Improve Error Handling

Location

Examples (non-exhaustive):

snap/src/utils.ts#L75

snap/src/utils.ts#L120

Synopsis

If the call to the endpoint fails in the aforementioned locations, it could result in unexpected behavior.
Error handling can be improved in similar cases in order to provide user-friendly feedback, further aid
developers in debugging possible issues, and enhance code maintainability and quality.

Mitigation

We suggest implementing sufficient error handling, such that errors are handled consistently and useful
information is provided to help users resolve errors.

Status

The Generative Labs team stated that only nodes with successful requests are added to the selected list.
Hence, when all nodes fail, an error is thrown indicating that the user's network connection has failed.

Security Audit Report | MetaMask Snap | Generative Labs 9
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/register/index.ts#L150
https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/utils.ts#L75
https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/utils.ts#L120

Verification

Resolved.

Suggestion 5: Avoid Using console.log

Location

Examples (non-exhaustive):

snap/src/utils.ts#L104

src/register/index.ts#L194

Synopsis

Using console.log in a production environment can lead to the leakage of sensitive information like
user data, which can cause significant security risk.

Mitigation

We recommend refraining from using console.log in a production environment.

Status

The Generative Labs team has removed console.log from the production environment.

Verification

Resolved.

Suggestion 6: Improve Code Comments

Synopsis

Currently, the codebase lacks explanation in areas that handle sensitive functionalities, such as the use of
cryptography and authentication. In addition, the utils package is also insufficiently commented.
This reduces the readability of the code and, as a result, makes reasoning about the security of the
system more difficult. Comprehensive in-line documentation explaining, for example, expected function
behavior and usage, input arguments, variables, and code branches can greatly benefit the readability,
maintainability, and auditability of the codebase. This allows both maintainers and reviewers of the
codebase to comprehensively understand the intended functionality of the implementation and system
design, which increases the likelihood for identifying potential errors that may lead to security
vulnerabilities.

Mitigation

We recommend expanding and improving the code comments within the aforementioned areas to
facilitate reasoning about the security properties of the system.

Status

At the time of the verification, the suggested mitigation has not been resolved.

Verification

Unresolved.

Security Audit Report | MetaMask Snap | Generative Labs 10
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/utils.ts#L104
https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/register/index.ts#L194

Suggestion 7: Do Not Allow Low Entropy Passwords

Location

src/register/index.ts#L256C44-L256C44

Synopsis

Encryption keys that are derived from weak passwords are susceptible to dictionary attacks.

Remediation

We recommend using the zxcvbn library for a password composition policy intended to prevent the use
of passwords obtained from previous breaches, common passwords, and passwords containing
repetitive or sequential characters, as recommended by the NIST guidelines. We suggest requiring that all
passwords meet zxcvbn’s strength rating of 4.

Status

The Generative Labs team stated that they prefer to delegate this to the frontend application instead of
implementing a hard requirement at the protocol layer. They further noted that they might add some user
interface feedback for password strength to improve communication.

Verification

Unresolved.

Suggestion 8: Consider Using the Entropy Provided by MetaMask

Location

src/register/index.ts#L224-L244

Synopsis

The current implementation derives the main key pair from the output obtained after signing the hash
output of a message with a user-specified password. This can be replaced with an improved flow that
better achieves account coupling with an Ethereum account while being locked with a user-specified
password.

Remediation

We recommend using the snap-specific, deterministic 256-bit entropy value provided by Metamask, which
can be used to generate a private key.

Status

The Generative Labs team stated that although the entropy provided by MetaMask would theoretically
solve their business needs, since Web3MQ accounts need to be interoperable across multiple clients and
not just Snaps, they cannot implement this method outside of Snaps. Therefore, this suggestion conflicts
with the broader Web3MQ ecosystem.

Verification

Unresolved.

Security Audit Report | MetaMask Snap | Generative Labs 11
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/register/index.ts#L256C44-L256C44
https://github.com/dropbox/zxcvbn
https://github.com/LeastAuthority/generative-labs-Web3MQ-Snap/blob/b12e6ec9cac02d7d98e63f41b33b7d4d1590d02a/packages/snap/src/register/index.ts#L224-L244
https://docs.metamask.io/snaps/reference/rpc-api/#snap_getentropy

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | MetaMask Snap | Generative Labs 12
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | MetaMask Snap | Generative Labs 13
30 August 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

