
FundRequest: ICO Smart
Contracts
Updated Security Audit Report

Overview
FundRequest requested Least Authority perform a security audit of the token sale smart
contracts for the upcoming ICO on February 12, 2018. The audit was performed the week of
February 5, 2018, changes verified and the current version of the report was updated on
February 8, 2018.

Target Code and Revision
For this audit, we reviewed the following repositories:

● https://github.com/FundRequest/contracts/tree/master/contracts/token/*.sol (standard
MiniMe token)

● https://github.com/FundRequest/contracts/tree/master/contracts/crowdsale/FundReq
uestTokenGeneration.sol

● Third party vendor code is considered out of scope.

Specifically, we examined the Git revisions:

74b28af65b98df348041563a95934339a0d243fd

All file references in this document use Unix-style paths relative to the project’s root
directory.

Code Review
In manually reviewing all of the contract code, we looked for any potential issues with code
logic, error handling, and interaction with contracts that are dependencies. We also
considered areas where more defensive programming could reduce the risk of future
mistakes and speed up future audits. Although our primary focus was on the contract code,
we examined some dependency code and behavior when it was relevant to a particular line
of investigation.

This audit makes no statements or warranties and is for discussion purposes only. 1

https://github.com/FundRequest/contracts/tree/master/contracts/token/*.sol
https://github.com/FundRequest/contracts/tree/master/contracts/crowdsale/FundRequestTokenGeneration.sol
https://github.com/FundRequest/contracts/tree/master/contracts/crowdsale/FundRequestTokenGeneration.sol

Findings
The code is well organized and not too long, follows Ethereum best practices, and avoids
known bugs such as re-entrancy.

Issues
We list the issues we found in the code in the order we reported them.

Issue / Suggestion Status

Issue A: FundRequestTokenGeneration#withdraw can be used
to move/steal funds if the contract is ever intended in the future to
store value

Reported:
07.02.2018

Issue B: FundRequestTokenGeneration#onTransfer and
FundRequestTokenGeneration#onApprove are unimplemented
and rely on implicit behavior from the EVM

Reported:
07.02.2018

Issue C: MiniMeToken#isContract uses extcodesize check, which
can be fooled if method is called from a constructor

Reported:
07.02.2018

Issue A: FundRequestTokenGeneration#withdraw can be used to
move/steal funds if the contract is ever intended in the future to store
value
Reported: 07.02.2018

Synopsis:
https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d24
3fd/contracts/crowdsale/FundRequestTokenGeneration.sol#L183-L186

This method is implemented as a safety measure to provide recourse in the event the funds
are inadvertently sent to this contract.

Impact: While this is a pretty standard procedure, it’s important to take care in the future that
if the contract (or another that implements this method) is ever intended to store funds, this
can be used by the owner to move or steal funds.

Preconditions: In current implementation, an attacker would have to trick users into sending
funds to this contract and possess ownership of the contract in order to move or steal funds.
Without ownership, an attacker might attempt to only trick users into sending funds here for

This audit makes no statements or warranties and is for discussion purposes only. 2

https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d243fd/contracts/crowdsale/FundRequestTokenGeneration.sol#L183-L186
https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d243fd/contracts/crowdsale/FundRequestTokenGeneration.sol#L183-L186

the sole purpose of creating a large burden on the contract owner to properly resolve the
erroneous transactions.

Feasibility: Difficult to perform and with little incentive to do so.

Mitigation: None suggested for current implementation.

Remediation: None suggested for current implementation.

Verification: Verified upon receipt of report.

Issue B: FundRequestTokenGeneration#onTransfer and
FundRequestTokenGeneration#onApprove are unimplemented
and rely on implicit behavior from the EVM
Reported: 07.02.2018

Synopsis:
https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d24
3fd/contracts/control/TokenController.sol#L11-L27

The TokenController interface expects 3 methods to be implemented: proxyPayment ,
onApprove , and onTransfer . In FundRequestTokenGeneration , only
proxyPayment is implemented, leaving any calls made to the controller by the
MiniMeToken for these unimplemented methods resulting in implicit behavior.

Impact: The unimplemented function will return immediately. If any value is attached to the
call, it will be transferred.

Preconditions: The methods are left unimplemented.

Feasibility: This will occur every time onApprove or onTransfer is called:

● https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a9593433
9a0d243fd/contracts/token/MiniMeToken.sol#L233

● https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a9593433
9a0d243fd/contracts/token/MiniMeToken.sol#L188

Mitigation: Best not to rely on implicit behavior of the EVM.

Remediation: Implement the unimplemented methods to be explicit about what these
methods should do, even if only returning true.

Verification: Verified via Telegram discussion on date reported.

This audit makes no statements or warranties and is for discussion purposes only. 3

https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d243fd/contracts/control/TokenController.sol#L11-L27
https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d243fd/contracts/control/TokenController.sol#L11-L27
https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d243fd/contracts/token/MiniMeToken.sol#L233
https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d243fd/contracts/token/MiniMeToken.sol#L233
https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d243fd/contracts/token/MiniMeToken.sol#L188
https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d243fd/contracts/token/MiniMeToken.sol#L188

Issue C: MiniMeToken#isContract uses extcodesize check, which
can be fooled if method is called from a constructor
Reported: 07.02.2018

Synopsis:
https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d24
3fd/contracts/token/MiniMeToken.sol#L480-L492

This method is implemented in order to check if the controller for the MiniMeToken is a
contract to determine whether or not to call certain methods on the contract in question, but
this check can be fooled in an edge case.

Impact: In its current implementation there is no meaningful impact. However, since the
check against extcodesize will return 0 if the contract in question is still being
constructed, the check can be tricked if it’s called from a constructor.

Preconditions: MiniMeToken#isContract must be called from a constructor.

Feasibility: None, this method’s usage is okay currently.

Mitigation: Avoid using this check from constructors.

Remediation: None suggested for current implementation.

Verification: Verified upon receipt of report.

This audit makes no statements or warranties and is for discussion purposes only. 4

https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d243fd/contracts/token/MiniMeToken.sol#L480-L492
https://github.com/FundRequest/contracts/blob/74b28af65b98df348041563a95934339a0d243fd/contracts/token/MiniMeToken.sol#L480-L492

