
Smart Contracts
Security Audit Report

Cube3
Updated Final Audit Report: 09 October 2023

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: _updateIntegrationProtectionStatus Does Not Check Whether Integration Is

Pre-registered

Issue B: Incorrect Parameter Passed in updateIntegrationProtectionStatus

Issue C: Incorrect Cutting of Cube Secure Payload From Message Data

Issue D: An Already Protected Integration Can Be Re-Registered

Suggestions

Suggestion 1: Check EVM Version Before Upgrading to New Solidity Version

Suggestion 2: Create Clear Deployment Guidelines for Users

Suggestion 3: Restrict getSignatureAuthorityFromInvalidatedSet Function to Only Return

Invalidated Signing Authorities

Suggestion 4: Minimize or Potentially Remove the Use of _self

Suggestion 5: Perform Zero Address Check

Suggestion 6: Prevent Variable Shadowing

Suggestion 7: Use Correct Error Messages

Suggestion 8: Prevent Unnecessary Overflow Check

Suggestion 9: Consider Deployer Alternatives

Suggestion 10: Use an Array of Struct Instead of Arrays

Security Audit Report | Smart Contracts | Cube3 1
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority

Our Methodology

Security Audit Report | Smart Contracts | Cube3 2
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Cube3 has requested that Least Authority perform a security audit of their smart contracts. Cube3
provides real-time smart contract security, powered by AI.

Project Dates
● May 26th - June 20th: Initial Code Review (Completed)
● June 22: Delivery of Initial Audit Report (Completed)
● July 5-6: Verification Review (Completed)
● July 7: Delivery of Final Audit Report (Completed)
● October 9: Delivery of updated Final Audit Report (Completed)

Review Team
● Mukesh Jaiswal, Security Researcher and Engineer
● Ahmad Jawid Jamiulahmadi, Security Researcher and Engineer
● Steven Jung, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the smart contracts followed by issue
reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Cube3 Protocol:

https://github.com/cube-web3/cube3-protocol.git
○ Note that after the Initial Audit Report was delivered, the repository was split into two

parts:
■ Cube3 Protocol:

https://github.com/cube-web3/cube3-protocol
■ Cube3-integration:

https://github.com/cube-web3/cube3-integration

Specifically, we examined the Git revisions for our initial review:

● Initial Commit: 364f7b4aa5693ac9c8cb7a4b70db1bdaaf112805
● Updated Commit: 76556f50672012ed9eeb5b6286953e3ac3280bd7

For the review, these repositories were cloned for use during the audit and for reference in this report:

● Cube3 Protocol:
https://github.com/LeastAuthority/cube3_protocol_initial

● Cube3 Protocol:
https://github.com/LeastAuthority/cube3_protocol

Security Audit Report | Smart Contracts | Cube3 3
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/cube-web3/cube3-protocol.git
https://github.com/cube-web3/cube3-protocol/tree/develop
https://github.com/cube-web3/cube3-integration/tree/main
https://github.com/LeastAuthority/cube3_protocol_initial
https://github.com/LeastAuthority/cube3_protocol

For the verification, we examined the repositories and Git revisions:

● Cube3 Protocol:
https://github.com/cube-web3/cube3-protocol/tree/develop
b636ceede25e81190696faa7d50a31c26687c50f

● Cube3 Integration:
https://github.com/cube-web3/cube3-integration/tree/main
5a092036f1f441a73eba2df58e195afb3201a739

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● CUBE3.AI:
https://cube3.ai

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Adversarial actions and other attacks on the network;
● Potential misuse and gaming of the smart contracts;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial of Service (DoS) and other security exploits that would impact the intended use of the

smart contracts or disrupt their execution;
● Vulnerabilities in the smart contracts’ code;
● Protection against malicious attacks and other ways to exploit the smart contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team performed a comprehensive review of the design and implementation of the Cube3 smart
contracts. The Cube3 Protocol overview in the repository README provides an accurate description of the
protocol, and the smart contracts at its core. Our findings from this review consist of implementation
issues that could result in unintended behavior.

In addition to the areas of concern listed above, our team reviewed changes proposed by the Cube3 team
that were intended to address a potential security Issue. We investigated if an attacker could register a
user's integration with the attacker’s proxy, and concluded that the Issue being addressed was not a valid
security threat. Hence, we recommend that the protective measures implemented to address the Issue be
reverted, as our team did not identify any security vulnerabilities resulting from the original

Security Audit Report | Smart Contracts | Cube3 4
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/cube-web3/cube3-protocol/tree/develop
https://github.com/cube-web3/cube3-integration/tree/main
https://cube3.ai/
https://github.com/LeastAuthority/cube3_protocol#protocol-overview

implementation (Suggestion 4). Our team also considered solutions to a deployment Issue preventing the
smart contracts from being deployed to the same address on all target chains (Suggestion 9).

System Design
Our team found that security has been taken into consideration in the design of Cube3 as demonstrated
by the safeguards implemented to recover a compromised server by invalidating the existing key pairs,
and reassigning fresh keys. However, the server performs security-critical functionality, and is a single
point of failure in the system. We recommend a comprehensive review of the system that includes all
components. In this review, our team investigated the design of the Cube3 smart contracts for security
vulnerabilities and found missing checks that could lead to unintended behavior (Issue A, Issue D).

Code Quality
Our team performed a manual review of the Cube3 smart contracts and found the code to be
well-organized and adhering to best practice. However, we identified instances of implementation errors
that could lead to unintended behavior (Issue B, Issue C). Our team also found opportunities for efficiency
improvements (Suggestion 7, Suggestion 8, Suggestion 10).

Tests

Sufficient test coverage has been implemented to test for implementation errors that could lead to
security vulnerabilities.

Documentation
Our team found that the documentation provided for this review was sufficient. We recommend that the
deployment documentation be improved (Suggestion 2).

Code Comments

Sufficient code comments adhering to NatSpec guidelines describe security-critical functions and
components.

Scope
Our team found that the scope of this review included all on-chain security-critical components. During
the review, our team was asked to update the scope of the review to include changes to the smart
contract. As a result, our team initiated the review with a commit hash of the repository in scope, and
subsequently integrated a later commit of the repository into the review. Both commits are referenced
above.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: _updateIntegrationProtectionStatus Does Not Check Whether
Integration Is Pre-Registered

Resolved

Issue B: Incorrect Parameter Passed in updateIntegrationProtectionStatus Resolved

Security Audit Report | Smart Contracts | Cube3 5
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue C: Incorrect Cutting of Cube Secure Payload From Message Data Resolved

Issue D: An Already Protected Integration Can Be Re-Registered Resolved

Suggestion 1: Check EVM Version Before Upgrading to New Solidity Version Resolved

Suggestion 2: Create Clear Deployment Guidelines for Users Acknowledged

Suggestion 3: Restrict getSignatureAuthorityFromInvalidatedSet Function to
Only Return Invalidated Signing Authorities

Resolved

Suggestion 4: Minimize or Potentially Remove the Use of _self Acknowledged

Suggestion 5: Perform Zero Address Check Resolved

Suggestion 6: Prevent Variable Shadowing Resolved

Suggestion 7: Use Correct Error Messages Resolved

Suggestion 8: Prevent Unnecessary Overflow Check Resolved

Suggestion 9: Consider Deployer Alternatives Resolved

Suggestion 10: Use an Array of Struct Instead of Arrays Resolved

Issue A: _updateIntegrationProtectionStatus Does Not Check Whether
Integration Is Pre-registered

Location

contracts/Cube3GateKeeper.sol#LL60C14-L60C48

Synopsis

The _updateIntegrationProtectionStatus function does not check if the integration is
preRegistered.

Impact

_updateIntegrationProtectionStatus can update the integration status that is not pre-registered
through the protocol.

Remediation

We recommend adding checks to verify that a given integration is pre-registered with the protocol.

Status

The Cube3 team has added two different statuses for the integration state, which are checked by the
functions preRegisterAsIntegration and complete2StepIntegrationRegistration to
ensure that the integration is registered with the protocol before its authorized statuses are updated
through the function _updateIngrationProtectionStatus.

Security Audit Report | Smart Contracts | Cube3 6
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/cube3_protocol/blob/364f7b4aa5693ac9c8cb7a4b70db1bdaaf112805/contracts/Cube3GateKeeper.sol#LL60C14-L60C48

Verification

Resolved.

Issue B: Incorrect Parameter Passed in updateIntegrationProtectionStatus

Location

contracts/Cube3RouterLogic.sol#L275

contracts/Cube3RouterLogic.sol#L286

Synopsis

The _updateIntegrationProtectionStatus function expects proxy as the first parameter and
implementation as the second. However, in the functions bypassIntegrationProtectionStatus
and revokeIntegrationProtectionStatus, the first parameter is passed as implementation and
the second as proxy.

Impact

The mapping _integrationProtectionStatus function will not be updated as intended.
Additionally, it will emit an event with incorrect parameters, which can affect off-chain services.

Remediation

We recommend passing the correct parameter to _updateIntegrationProtectionStatus.

Status

The Cube3 team acknowledged the finding but stated that it is no longer relevant. Therefore, we consider
this Issue resolved.

Verification

Resolved.

Issue C: Incorrect Cutting of Cube Secure Payload From Message Data

Location

contracts/Cube3Integration.sol#L83-L88

Synopsis

cube3SecurePayload is intended to be added as the last parameter in any Cube3-protected function. In
order to extract the calldata of the function being called, cube3SecurePayload should be cut from
msg.data. In the current implementation, it is assumed that the structure of cube3SecurePayload in
the msg.data is as follows:

payload offset <32> | payload length <32> | payload

Therefore, to cut cube3SecurePayload, it is assumed that 64 additional bytes (offset <32> +
length <32>) should be cut from msg.data as well as payload. However, if there are other dynamic
parameters preceding cube3SecurePayload, the payload offset will not precede the length but may be
encoded elsewhere in msg.data. Hence, incorrect data will be cut from the end of msg.data.

Impact

An incorrectly cut cube3SecurePayload would result in unintended behavior.

Security Audit Report | Smart Contracts | Cube3 7
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/cube3_protocol/blob/364f7b4aa5693ac9c8cb7a4b70db1bdaaf112805/contracts/Cube3RouterLogic.sol#LL274C10-L274C41
https://github.com/LeastAuthority/cube3_protocol/blob/364f7b4aa5693ac9c8cb7a4b70db1bdaaf112805/contracts/Cube3RouterLogic.sol#L286
https://github.com/LeastAuthority/cube3_protocol_initial/blob/364f7b4aa5693ac9c8cb7a4b70db1bdaaf112805/contracts/Cube3Integration.sol#L83-L88

Preconditions

This Issue is likely if dynamic parameters precede cube3SecurePayload.

Remediation

We recommend changing the implementation to take into consideration the dynamic parameters
preceding the cube3SecurePayload.

Status

The Cube3 team has resolved this Issue by cutting only 32 additional bytes (i.e. the length) from the end
of msg.data, which will always precede the actual payload. Additionally, the team has modified the
generation of payload off-chain to match the implemented fix on-chain.

Verification

Resolved.

Issue D: An Already Protected Integration Can Be Re-Registered

Location

contracts/Cube3GateKeeper.sol#L122-L125

Synopsis

The function preRegisterAsIntegration can pre-register an already-registered (protected)
integration.

Impact

Re-registering a protected integration is unintended behavior, which might result in replacing an already
protected integration.

Remediation

We recommend checking if an integration is already registered before pre-registering it to avoid replacing
an already protected integration.

Status

The Cube3 team has implemented the remediation as recommended.

Verification

Resolved.

Suggestions

Suggestion 1: Check EVM Version Before Upgrading to New Solidity
Version

Synopsis

In the Solidity 0.8.20 release, the compiler automatically upgrades from the EVM version to Shanghai. As
a result, the generated bytecode will include the PUSH0 opcode. Hence, if other chains do not support the
PUSH0 opcode, the deployment will fail.

Security Audit Report | Smart Contracts | Cube3 8
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/cube3_protocol_initial/blob/364f7b4aa5693ac9c8cb7a4b70db1bdaaf112805/contracts/Cube3GateKeeper.sol#L122-L125

Mitigation

Since the contracts are deployed on different EVM-compatible chains, we recommend ensuring that the
appropriate EVM version is implemented.

Status

The Cube3 team has added a warning to the README.md file under the #Deployment section.

Verification

Resolved.

Suggestion 2: Create Clear Deployment Guidelines for Users

Synopsis

The Cube3Integration smart contract is intended to be used only by singleton contracts. However, it
can be extended and utilized by upgradeable contracts since there is no check to disallow it. A user could
mistakenly extend the wrong smart contract for the purpose intended, resulting in an unfavorable user
experience.

Mitigation

Although it might not be possible to completely prevent it, we recommend reducing this occurrence as
much as possible by creating very clear set up documentation, such as a deployment guideline.

Status

The Cube3 team acknowledged that documentation can and should be updated to reflect the final state of
the protocol and code, as creating clear documentation and guides is a prerequisite for launching the
product.

Verification

The Cube3 acknowledged the suggestion, however at the time of the verification it remained unresolved.

Suggestion 3: Restrict getSignatureAuthorityFromInvalidatedSet Function
to Only Return Invalidated Signing Authorities

Location

contracts/Cube3RegistryLogic.sol#L230-L235

Synopsis

It is possible to obtain valid signing authorities using the aforementioned function. However, the name of
the function and related comments in the interface imply that only invalidated signing authorities can be
obtained.

Mitigation

We recommend restricting the getSignatureAuthorityFromInvalidatedSet function to only
return invalidated signing authorities.

Status

The Cube3 team has updated the function to return whether the integration’s signing authority that is
returned for a given nonce is active, instead of (incorrectly) returning from an invalidated set.

Security Audit Report | Smart Contracts | Cube3 9
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Cube3_Protocol_Verification/tree/main#deployment
https://github.com/LeastAuthority/cube3_protocol_initial/blob/364f7b4aa5693ac9c8cb7a4b70db1bdaaf112805/contracts/Cube3RegistryLogic.sol#L230-L235

Verification

Resolved.

Suggestion 4: Minimize or Potentially Remove the Use of _self

Synopsis

The Cube3 team asked our team to investigate a malicious delegatecall scenario, which involves an
attacker performing a delegatecall into a user’s integration.

Integration smart contracts use an immutable state variable _self to protect against malicious delegate
calls. Assuming that an attacker could phish users into calling the attacker’s proxy, it can then be
delegate-called into the customer’s integration. This scenario would result in an attacker successfully
being able to bypass the cube3Protectedmodifier.

However, in our review, our team found that implementing the _self is unnecessary. Executing a
delegatecall from an attacker’s proxy (i.e. the context) into a customer’s integration (implementation)
would not impose a security risk, as the implementation does not hold context in this particular scenario,
and all state readings and changes would occur in the attacker’s proxy. Although external calls from the
implementation to other contracts in this chain of calls appear to incur additional risks, a close
investigation shows that the calls would result in msg.sender becoming the attacker, which, in turn,
would invalidate the attack. The malicious actor can then only perform an exploit using tx.origin.

In such a case, the attacker would directly call the potentially exploitable function instead of first
performing a delegatecall into the user’s integration since the chain of calls would be shorter.

Therefore, in order to perform an exploit, an attacker would have to compromise the user’s context (which
could be a proxy) instead of an implementation.

Mitigation

We recommend minimizing or potentially removing the use of _self to reduce the complexity and gas
cost of the protocol.

Status

The Cube3 team acknowledged the suggestion and noted that the use of _self is required to
differentiate between proxies (that can be either legitimate or malicious) and different implementation
contracts.

Verification

The Cube3 acknowledged the suggestion, however at the time of the verification it remained unresolved..

Suggestion 5: Perform Zero Address Check

Location

contracts/Cube3SignatureModule.sol#L35

Synopsis

In the constructor of the Cube3SignatureModule smart contract, there is no zero address check
validating the correctness of the cube3RegistryProxy parameter, thereby preventing an incorrectly set
cube3registry value.

Security Audit Report | Smart Contracts | Cube3 10
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/cube3_protocol_initial/blob/364f7b4aa5693ac9c8cb7a4b70db1bdaaf112805/contracts/Cube3SignatureModule.sol#L35

Mitigation

We recommend checking the referenced parameter against zero address.

Status

The Cube3 team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 6: Prevent Variable Shadowing

Location

contracts/upgradeable/Cube3IntegrationUpgradeable.sol#L61

contracts/upgradeable/Cube3IntegrationUpgradeable.sol#L72

contracts/upgradeable/SecurityAdmin2StepUpgradeable.sol#L54-L56

Synopsis

The securityAdmin parameter implemented in the initialize functions inside the
Cube3IntegrationUpgradeable smart contract shadows the securityAdmin getter function
inside the SecurityAdmin2StepUpgradeable smart contract. Variable shadowing could lead to
unexpected behavior.

Mitigation

We recommend either changing the parameter name securityAdmin inside the initialize functions
in the Cube3IntegrationUpgradeable smart contract or changing the securityAdmin getter
function name inside the SecurityAdmin2StepUpgradeable smart contract.

Status

The Cube3 team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 7: Use Correct Error Messages

Location

contracts/Cube3GateKeeper.sol#L113

Synopsis

This revertmessage is inaccurate. It states that the status is not active, while the error case is
unregistered or revoked. Incorrect error messages make it difficult to analyze the cause of the error.

Mitigation

We recommend using correct revert error messages.

Status

The Cube3 team has implemented the mitigation as recommended.

Security Audit Report | Smart Contracts | Cube3 11
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/cube3_protocol/blob/76556f50672012ed9eeb5b6286953e3ac3280bd7/contracts/upgradeable/Cube3IntegrationUpgradeable.sol#L61
https://github.com/LeastAuthority/cube3_protocol/blob/76556f50672012ed9eeb5b6286953e3ac3280bd7/contracts/upgradeable/Cube3IntegrationUpgradeable.sol#L72
https://github.com/LeastAuthority/cube3_protocol/blob/76556f50672012ed9eeb5b6286953e3ac3280bd7/contracts/upgradeable/SecurityAdmin2StepUpgradeable.sol#L54-L56
https://github.com/LeastAuthority/cube3_protocol/blob/364f7b4aa5693ac9c8cb7a4b70db1bdaaf112805/contracts/Cube3GateKeeper.sol#L113

Verification

Resolved.

Suggestion 8: Prevent Unnecessary Overflow Check

Location

contracts/Cube3RegistryLogic.sol#L104

Synopsis

This calculation can be performed with unchecked math to save gas because the count number cannot
overflow.

Mitigation

We recommend using unchecked math operations to save gas on operations that do not require
safeguards.

Status

The Cube3 team has implemented the mitigation as recommended.

Verification

Resolved.

Suggestion 9: Consider Deployer Alternatives

Location

Examples (non-exhaustive):

Hardhat Deployer: create2deployer

Synopsis

The Cube3 team asked our team to investigate deployment options given that it is a business requirement
to deploy the smart contracts to the same address on each of the blockchains they are deployed to.

The currently used Foundry deployer “wolf of wall street” is not compatible with Arbitrum and Canto.
Therefore, since the deployer does not support these networks, a custom deployer is needed to deploy the
gatekeeper and router smart contracts on all target chains.

Mitigation

Our team investigated a mitigation offered by the Cube3 team, which includes writing a deployment script
to use the appropriate deployer as determined by the chain ID, and confirmed this solution would
successfully resolve the suggestion. Additionally, our team can recommend the following two
alternatives:

1. Building a custom deployer that has the required capabilities; or
2. Using existing deployment tools available on the Hardhat framework.

Status

The Cube3 team has added the ProtocolContractsByChain library for storing deployed protocol
addresses, and is conducting further research (as noted here and here).

Security Audit Report | Smart Contracts | Cube3 12
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/cube3_protocol/blob/364f7b4aa5693ac9c8cb7a4b70db1bdaaf112805/contracts/Cube3RegistryLogic.sol#L104
https://github.com/pcaversaccio/create2deployer
https://github.com/pcaversaccio/create2deployer/tree/main
https://github.com/Zoltu/deterministic-deployment-proxy/blob/master/scripts/compile.ts

Verification

Resolved.

Suggestion 10: Use an Array of Struct Instead of Arrays

Location

contracts/Cube3GateKeeper.sol#L173-L185

Synopsis

The function batchUpdateIntegrationProtectionStatuses does not check if arrays
integrationOrProxies, integrationOrImplementations, and statuses are of the same length.
Consequently, a revertmay occur if all three parameters are not of the same length due to an array
index out of bounds exception, which would result in an unnecessary consumption of gas.

Remediation

In the Cube3RouterLogic contract, when calling the aforementioned function, the lengths of
integrationOrProxies and integrationOrImplementations are checked, but the length of
statuses is not checked. Since batchUpdateIntegrationProtectionStatuses is an external
function, we recommend validating all inputs inside the function itself.

Alternatively, we recommend using an array of struct instead of arrays.

Status

The Cube3 team acknowledged the finding but stated that it is no longer relevant. Therefore, we consider
this suggestion resolved.

Verification

Resolved.

Security Audit Report | Smart Contracts | Cube3 13
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/cube3_protocol_initial/blob/364f7b4aa5693ac9c8cb7a4b70db1bdaaf112805/contracts/Cube3GateKeeper.sol#L173-L185

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Smart Contracts | Cube3 14
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Smart Contracts | Cube3 15
9 October 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

