
Linea zkEVM (crypto-beta-v1)
Security Audit Report

Consensys Software,
Inc.
Final Audit Report: 26 November 2024

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Prover Protocol Wizard

EVM Precompiled Contracts

zkEVM

Compress

Gnark Frontend

Linea zkEVM gnark Circuits and Backend

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Issue A: [Prover Protocol] Verifier Accepts Any Permutation Query

Issue B: [Prover Protocol] Partially Ineffective Inclusion Query

Issue C: [Prover Protocol] Incorrect Round for Inner Product Query

Issue D: [Prover Protocol] Correctness of Local Opening Point Is Not Verified During Sticking

Issue E: [Prover Protocol] Incorrect Symbolic Expression Product for Zero Edge Case

Issue F: [Gnark EVM-Precompiles] Incomplete Constraint in ECRecover Precompiled Contract

Issue G: [Gnark EVM-Precompiles] Incorrect Edge Case in ExpMod Precompile Contract

Issue H: [zkEVM] Missing Activation Constraint in ECPair and ECDSA Modules

Issue I: [zkEVM] Missing Binary Constraints in ECPair Module

Issue J: [zkEVM] Missing Exclusive Binary Constraint in ECPair Module

Issue K: [zkEVM] Missing Zeroization Constraint in Public Input Module

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 1
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue L: [zkEVM] Incorrect Value for TotalBytesCounter in the Local Opening of the Public Input

Module

Issue M: [zkEVM] Correctness of Leaf Hashing Constraint In the State Manager Can Be Turned Off

Issue N: [zkEVM] Missing Constraint for the Hashed Key During the Update Operation

Issue O: [zkEVM] Merkle Tree Can Be Updated Without Updating the Value of NextFreeNode Due

To Missing Constraint

Issue P: [zkEVM] Missing Consistency Constraint on the Hashed Key Value

Issue Q: [Gnark Frontend] Missing Binary Constraint in Select Primitive

Suggestions

Suggestion 1: [Prover Protocol] Update the Linea Prover Documentation

Suggestion 2: [Prover Protocol] Improve Code Quality

Suggestion 3: [Compress library] Improve Code Quality

Suggestion 4: [zkEVM] Improve Code Quality

Suggestion 5: [zkEVM] Refactor Common Patterns in Constraints

Suggestion 6: [Gnark Frontend] Improve Code Comments

Suggestion 7: [Gnark Frontend] Missing State Reset

Suggestion 8: Improve Documentation

Appendix

Appendix A: In-scope Components

About Least Authority

Our Methodology

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 2
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Consensys Software, Inc. has requested that Least Authority perform a security audit of Linea’s zkEVM
(crypto-beta-v1) and cryptography libraries.

Project Dates
● July 8, 2024 - September 30, 2024: Initial Code Review (Completed)
● September 30, 2024: Delivery of Initial Audit Report (Completed)
● November 18, 2024: Verification Review (Completed)
● November 26, 2024: Delivery of Final Audit Report (Completed)

Review Team
● George Gkitsas, Security / Cryptography Researcher and Engineer
● Sven M. Hallberg, Security Researcher and Engineer
● Jasper Hepp, Security Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of Linea’s zkEVM (crypto-beta-v1) and
accompanying libraries followed by issue reporting, along with mitigation and remediation instructions as
outlined in this report.

The following code repositories are considered in scope for the review:
● See Appendix A.

Specifically, we examined the Git revisions for our initial review:

● zkEVM:
○ a3ac02514a2692952d31f9ea7adfb20f32a4bf98
○ f9fae838927bb16826d293367a83a2d24d7aacd2
○ 5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d
○ b14a1a5fea038c9215206b971a0ef76a69b182c9

● gnark:
○ d94368b154d73449e796ebdc2665534b086114f2
○ c36ff9e8c58daf199a333c0f6c6fe6cacabc0bbb

● compress :
○ 2efdc672da09afb47b80d7dd35d79cbe9411a023

For the verification, we examined the Git revision:

● zkEVM: f462a8233375bb819bd037b3f7eba475cbeaedfb
● gnark: 7512178ac1fc1c308206c07bc04c8fd2747e981e

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 3
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

For the review, these repositories were cloned for use during the audit and for reference in this report:

● zkEVM:
https://github.com/LeastAuthority/zkevm-monorepo/tree/zkevm/prover/zkevm

● gnark:
https://github.com/LeastAuthority/Consensys-gnark

● compress:
https://github.com/LeastAuthority/compress/tree/main

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Linea Prover Documentation:
https://eprint.iacr.org/2022/1633

● Vortex:
https://eprint.iacr.org/2024/185

● Blob Specification:
https://github.com/LeastAuthority/zkevm-monorepo/blob/f9fae838927bb16826d293367a83a2d
24d7aacd2/prover/lib/compressor/blob/v1/blob_spec.md#linea-blob-format-specification

● Keccak Specification:
https://hackmd.io/adB-EjnKSa-P7HwI542l9g?view

● EIP-4844:
https://www.eip4844.com

● gnark:
https://docs.gnark.consensys.io/overview

● The zkEVM Architecture:
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/z
kEVM_Architecture.pdf

● State Management:
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/z
kEVM_Statemanagement.pdf

● Prover Completeness Public Inputs:
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/P
rover_Completeness_Public_Inputs.pdf

● Prover Completeness ECDSA Module:
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/P
rover_Completeness_ECDSA_Module.pdf

● Prover Completeness Statemanager Module:
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/P
rover_Completeness_Statemanager_Module.pdf

● Documentation Hash Module:
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/D
ocumentation__Hash_Module.pdf

● Proof Aggregation EIP4844 Data Compression design:
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/P
roof_Aggregation_EIP4844_Data_Compression%20design.pdf

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 4
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkevm-monorepo/tree/zkevm/prover/zkevm
https://github.com/LeastAuthority/Consensys-gnark
https://github.com/LeastAuthority/compress/tree/main
https://eprint.iacr.org/2022/1633
https://eprint.iacr.org/2024/185
https://github.com/LeastAuthority/zkevm-monorepo/blob/f9fae838927bb16826d293367a83a2d24d7aacd2/prover/lib/compressor/blob/v1/blob_spec.md#linea-blob-format-specification
https://github.com/LeastAuthority/zkevm-monorepo/blob/f9fae838927bb16826d293367a83a2d24d7aacd2/prover/lib/compressor/blob/v1/blob_spec.md#linea-blob-format-specification
https://hackmd.io/adB-EjnKSa-P7HwI542l9g?view
https://www.eip4844.com
https://docs.gnark.consensys.io/overview
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/zkEVM_Architecture.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/zkEVM_Architecture.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/zkEVM_Statemanagement.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/zkEVM_Statemanagement.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Prover_Completeness_Public_Inputs.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Prover_Completeness_Public_Inputs.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Prover_Completeness_ECDSA_Module.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Prover_Completeness_ECDSA_Module.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Prover_Completeness_Statemanager_Module.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Prover_Completeness_Statemanager_Module.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Documentation__Hash_Module.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Documentation__Hash_Module.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Proof_Aggregation_EIP4844_Data_Compression%20design.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Proof_Aggregation_EIP4844_Data_Compression%20design.pdf

● Prover Component ECPAIR:
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/P
rover_Component_%20ECPAIR.pdf

In addition, this audit report references the following documents:
● M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen, “MiMC: Efficient Encryption and

Cryptographic Hashing with Minimal Multiplicative Complexity.” IACR Cryptology ePrint Archive,
2016, [AGR+16]

● A. Belling, A. Soleimanian, and O. Bégassat, “Recursion over Public-Coin Interactive Proof
Systems; Faster Hash Verification.” IACR Cryptology ePrint Archive, 2022, [BSB22]

● A. Gabizon, Z. J. Williamson, and O. Ciobotaru, "Plonk: Permutations over Lagrange-bases for
Oecumenical Noninteractive arguments of Knowledge." IACR Cryptology ePrint Archive, 2022,
[GWC22]

● Y. E. Housni and A. Guillevic, “Optimized and secure pairing-friendly elliptic curves suitable for one
layer proof composition.” IACR Cryptology ePrint Archive, 2020, [HG20]

● W. Nguyen, D. Boneh, and S. Setty, "Revisiting the Nova Proof System on a Cycle of Curves." IACR
Cryptology ePrint Archive, 2023, [NBS23]

● G. Wood, “Ethereum: A Secure Decentralized Generalised Transaction Ledger.” Ethereum, 2024,
[Wood24]

● EIP4844:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-4844.md

● Ethereum execution specification:
https://github.com/ethereum/execution-specs/blob/c854868f4abf2ab0c3e8790d4c40607e0d25
1147/src/ethereum/paris/vm/precompiled_contracts/ecrecover.py

● Bitcoin libsecp256k1 library:
https://github.com/bitcoin-core/secp256k1/blob/ea2d5f0f17881031a033b0cc049230183a5826
d1/src/modules/recovery/main_impl.h

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Data privacy, data leaking, and information integrity;
● Vulnerabilities in the code leading to adversarial actions and other attacks;
● Protection against malicious attacks and other methods of exploitation; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team performed a security audit of the zkEVM implementation of Linea. The Linea team implements a
zkEVM based on theWizard protocol and the gnark library. The zkEVM aims to provide an execution
environment equivalent to the Ethereum Virtual Machine (EVM), allowing Ethereum transactions and
smart contract executions. Because of the underlying cryptographic tools, zkEVMs aim to provide a
solution to the scalability problem of the Ethereum blockchain.

The zkEVM aims to prove the correct Ethereum state transition via a constraint system built utilizing the
Wizard protocol. The Wizard protocol is designed to handle a wide class of queries (permutation,
inclusion, etc). The generated proof from the zkEVM is then compressed and modified by a set of gnark

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 5
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Prover_Component_%20ECPAIR.pdf
https://github.com/LeastAuthority/Linea-Prover-Cryptography-Audit-Documentation/blob/main/Prover_Component_%20ECPAIR.pdf
https://eprint.iacr.org/2016/492.pdf
https://eprint.iacr.org/2022/1072.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2020/351.pdf
https://eprint.iacr.org/2023/969
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-4844.md
https://github.com/ethereum/execution-specs/blob/c854868f4abf2ab0c3e8790d4c40607e0d251147/src/ethereum/paris/vm/precompiled_contracts/ecrecover.py
https://github.com/ethereum/execution-specs/blob/c854868f4abf2ab0c3e8790d4c40607e0d251147/src/ethereum/paris/vm/precompiled_contracts/ecrecover.py
https://github.com/bitcoin-core/secp256k1/blob/ea2d5f0f17881031a033b0cc049230183a5826d1/src/modules/recovery/main_impl.h
https://github.com/bitcoin-core/secp256k1/blob/ea2d5f0f17881031a033b0cc049230183a5826d1/src/modules/recovery/main_impl.h
https://eprint.iacr.org/2022/1633
https://docs.gnark.consensys.io/overview

circuits over the elliptic curves BLS12-377, BW6-761 and BN254.The circuits are used for recursive
verification of execution and blob decompression updates as well as to generate the final proof that can
be verified on the Ethereum blockchain.

System Design
We reviewed the implementation of the Linea zkEVM as well as the underlying proving system Wizard-IOP
and accompanying libraries. Our team found the system to be well-designed, with a strong emphasis on
security.

Prover Protocol Wizard

We reviewed the implementation of the Wizard-IOP in the folder prover/protocol, which includes the
compiler, prover, and verifier. Wizard-IOP has been developed by the Linea team. Although our team did
not review the paper, we nevertheless recommend updating it, as it is erroneous and deviates partly from
the codebase (Suggestion 1).

We reviewed the compiler and found several issues (Issue A, Issue B, and Issue C). Two of the findings are
critical issues that allow a malicious prover to convince an honest verifier to accept an incorrect fixed
permutation (Issue A) and an incorrect inclusion query (Issue B), effectively breaking soundness. In
addition, we found a minor issue for an inner product query (Issue C) that could break completeness.
After the compilation of the queries, the compiler applies a column sticking and splitting technique ending
with same-sized columns. We found one critical issue (Issue D) that leads to an unsafe verifier. In this
case, the compiler does not add a verification to check the correct transformation for local opening points
(Issue D).

We did not find any issues in the Vortex commitment scheme. We reviewed the correct usage of the
cryptographic primitives of Vortex in the compiler; however, we did not review its core functions (for
example, the folder vortex), as they were out of the scope of this audit.

We reviewed the additional subprotocols based on the Wizard-IOP in the folder dedicated, which
includes an implementation of Plonk [GWC22] and subprotocols, as described in the appendix of the
Linea Prover Documentation paper. The code is implementing Plonk with one custom gate based on
[BSB22] to allow for efficient usage of random coins in a circuit. We did not find any issue relating to this.

We reviewed the usage of Fiat-Shamir in the Wizard protocol and did not find any issues. The initialization
of Fiat-Shamir starts from a serialized version of the compiled IOP; however, since the serialization folder
is not in scope, we did not review the completeness of its initialization.

We reviewed the prover and verifier of the Wizard-IOP as well as the accompanying folders, such as the
implementation of symbolic expressions, the columns, or the queries. We found a minor edge case error
in the symbolic expression of a product (Issue E).

We also identified several areas of improvements in the prover protocol and recommend reducing
inefficiencies, removing redundant code, as well as adding further panics (Suggestion 2).

EVM Precompiled Contracts

We reviewed the functions for the precompile contracts MODEXP, ECRECOVER and
ALT_BN128_PAIRING_CHECK as well as SHA2 and MiMC. The remaining precompiled contracts are
either implemented directly in the zkEVM or are not addressed by the zkEVM (ripemd, blake2f, and
point evaluation). We found two issues – a missing constraint in ECRECOVER (Issue F) and an
incorrect edge case in MODEXP (Issue G).

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 6
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2022/1633
https://github.com/LeastAuthority/zkevm-monorepo/tree/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/crypto/vortex
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2022/1633
https://eprint.iacr.org/2022/1072

zkEVM

We examined the implementation of the zkEVM and its corresponding submodules. We reviewed the
constraint system against the shared documentation of each of the submodules. We identified several
missing constraints (Issue H, Issue I, Issue J, Issue K, Issue M, Issue N, Issue O, and Issue P), and an
incorrect local opening (Issue L). The missing constraints all lead to soundness issues, allowing a
malicious prover to manipulate the proof, such that an honest verifier accepts incorrect Ethereum state
updates.

Compress

The codebase uses a customized implementation of the LZSS lossless compression following the
principle of LZSS rather than adhering to a standard specification. Consequently, a proof of losslessness
is missing. We reviewed the implementation along with the specification and did not find any issues but
report a few potential improvements to enhance the code quality (Suggestion 3). However, for future
audits and independent third parties, we recommend including proper references or an argument for
losslessness in the documentation.

Gnark Frontend

We reviewed the implementation of the gnark frontend with a particular focus on missing constraints in
all primitives and iterative circuit generation issues. We identified a missing constraint in the selector
primitive (Issue Q). In addition, we found various instances with imprecise or misleading code comments
that could be improved (Suggestion 6).

Linea zkEVM gnark Circuits and Backend

We reviewed the implementation of the execution[BLS12-377], aggregation[BW6-761],
blobdecompression[BLS12-377], pi_interconnection[BLS12-377], emulation[BN254] as
well as the dummy circuit, focusing on correct circuit generation as well as missing constraints. In
addition, we reviewed the associated backend functionality, which generates proof witnesses for the
circuit. We did not identify any issues.

Note that since core functionality, such as the emulated field arithmetics and the emulated Plonk prover
systems were out of scope, our team conducted the audit assuming that the aforementioned functions
operate as intended.

In addition, we analyzed the correct instantiation of the Common Reference string (Powers of Tau) for
Linea’s gnark circuits. Linea uses:

● BN254: Ignition ceremony from Aztec;
● BLS12-377: Ceremony from Aleo; and
● BW6-761: Plumo ceremony from Celo.

Our team assumed the correct deletion of at least one secret randomness in each of these ceremonies,
which is a common assumption. Moreover, all of those ceremonies are publicly verifiable.
In the recursive Plonk verifier, the common reference string for the KZG commitment scheme (KZG CRS)
is hard coded into the circuit specification, making it constant and determined at the time of circuit
compilation. For the last proof in the emulation circuit, the BN254 proof is verified on chain, where the
KZG CRS is also hard coded (using a code-generated Solidity verifier).

We did not identify any issues in this approach; however, our team noted that in order for a third party to
independently verify that the compiled circuits utilize the referenced CRS, the independent third party
needs to recompile the circuit to ensure it matches the deployed version. This, however, depends on the
assumption that the build process is deterministic and equivalent on all hardware.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 7
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Code Quality
We performed a manual review of the repositories in scope and found the code to be generally clean,
well-organized, and of high quality, in that it adheres closely to development best practices. However, we
did identify some areas that can be improved in the prover protocol and compress library components to
enhance the quality of the code (Suggestion 2 and Suggestion 3).

Tests

Our team did not assess whether test coverage was sufficient, as the tests were out of the scope of this
audit. However, we did identify one issue in the prover protocol component that results in any permutation
being accepted by the verifier, which could have been detected by performing a simple test (Issue A).

Documentation and Code Comments
The project documentation provided by the Linea team and the code comments sufficiently describe most
of the intended functionality of the system. However, our team found that in some components (for
example, the zkEVM in particular) the provided documentation is incomplete and scattered across many
files, pdfs, documents, and research papers. We recommend improving the documentation and storing it
in a single location to provide future reviewers of the code with a better understanding and ability to
reason about the system design (Suggestion 8).

Scope
During our review, we found that parts of the code are still missing crucial implementation features (for
example, the public input module does not have a consistency check on the block data), while other parts
have been commented out, pending the resolution of some other issues. Due to this, some issues, such
as (Issue M), were not identified by the Linea team.

In addition, in some parts of the code, such as the EVM precompiled contracts, important low-level
functions were not included in the scope of this audit.

The core file of the arithmetization module (define.go) was also not in scope. It is an auto-generated
file containing the complete set of constraints for the arithmetization module, including the correct
execution of opcodes as well as the registration and correct formation of many columns. This made it
difficult to reason about certain parts of the audited modules in the zkEVM since columns are fetched
across modules, and our team had to therefore assume that they were properly constrained.

Dependencies

Running nancy for the repositories in scope yielded no issues. Hence, our team did not identify any
vulnerabilities in the implementation's use of dependencies.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: [Prover Protocol] Verifier Accepts Any Permutation Query Resolved

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 8
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/arithmetization/define/define.go#L9
https://github.com/sonatype-nexus-community/nancy

Issue B: [Prover Protocol] Partially Ineffective Inclusion Query Resolved

Issue C: [Prover Protocol] Incorrect Round for Inner Product Query Resolved

Issue D: [Prover Protocol] Correctness of Local Opening Point Is Not Verified
During Sticking

Resolved

Issue E: [Prover Protocol] Incorrect Symbolic Expression Product for Zero
Edge Case

Resolved

Issue F: [Gnark EVM-Precompiles] Incomplete Constraint in ECRecover
Precompiled Contract

Resolved

Issue G: [Gnark EVM-Precompiles] Incorrect Edge Case in ExpMod
Precompile Contract

Resolved

Issue H: [zkEVM] Missing Activation Constraint in ECPair and ECDSA
Modules

Resolved

Issue I: [zkEVM] Missing Binary Constraints in ECPair Module Resolved

Issue J: [zkEVM] Missing Exclusive Binary Constraint in ECPair Module Resolved

Issue K: [zkEVM] Missing Zeroization Constraint in Public Input Module Resolved

Issue L: [zkEVM] Incorrect Value for TotalBytesCounter in the Local Opening
of the Public Input Module

Resolved

Issue M: [zkEVM] Correctness of Leaf Hashing Constraint In the State
Manager Can Be Turned Off

Resolved

Issue N: [zkEVM] Missing Constraint for the Hashed Key During the Update
Operation

Resolved

Issue O: [zkEVM] Merkle Tree Can Be Updated Without Updating the Value of
NextFreeNode Due To Missing Constraint

Resolved

Issue P: [zkEVM] Missing Consistency Constraint on the Hashed Key Value Resolved

Issue Q: [Gnark Frontend] Missing Binary Constraint in Select Primitive Resolved

Suggestion 1: [Prover Protocol] Update the Linea Prover Documentation Unresolved

Suggestion 2: [Prover Protocol] Improve Code Quality Unresolved

Suggestion 3: [Compress Library] Improve Code Quality Unresolved

Suggestion 4: [zkEVM] Improve Code Quality Unresolved

Suggestion 5: [zkEVM] Refactor Common Patterns in Constraints Partially Resolved

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 9
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 6: [Gnark Frontend] Improve Code Comments Resolved

Suggestion 7: [Gnark Frontend] Missing State Reset Resolved

Suggestion 8: Improve Documentation Unresolved

Issue A: [Prover Protocol] Verifier Accepts Any Permutation Query

Location

compiler/permutation/compiler.go#L85

Synopsis

A permutation query allows checking that two tables A and B contain the same rows up to a permutation.
During compilation of this query, the code erroneously compares A with A instead of B, hence making this
query trivial.

Impact

Critical. This issue would result in any permutation query being accepted by the verifier, which breaks the
soundness of the protocol.

Preconditions

None.

Feasibility

High.

Technical Details

During compilation of a permutation query between tables A and B, a random linear combination over the
columns is built. The Boolean multiColumns is set to true if there is more than one column for A. For
this case, the code sets the columns to be collapsed (i.e., folded by a random linear combination) to the

columns of A for both cases, table A and B. This sets the numerator and denominator of Z to
𝑖

∑ ɑ
𝑖
 𝑞. 𝐴

𝑖

and, hence, Z=1. The verifier will accept the permutation query independently of A and B. Instead, the
code should correctly assign the columns to also be collapsed for table B – that is, it should set the
columns to be collapsed for the case of table B to the columns of table B.

Remediation

We recommend resolving this issue by implementing the suggestion in the Technical Details.
In addition, this issue could have been detected by performing a test checking whether the permutation
fails if B is not a permutation of A. We recommend increasing test coverage for this query.

Status

The Linea team has resolved the issue in this PR. In addition, test coverage has been increased.

Verification

Resolved.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 10
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/permutation/compiler.go#L85
https://github.com/Consensys/linea-monorepo/pull/155

Issue B: [Prover Protocol] Partially Ineffective Inclusion Query

Location

compiler/lookup/compiler.go#L197

Synopsis

For an inclusion query, the code erroneously switches fragments and columns, and does not fully verify
queries with only one fragment and several columns.

Impact

High. A query with only one fragment but several columns effectively only checks the first column of each,
the looking and the looked table. The remaining columns are excluded from the query and can hence
be tampered with. An attacker can construct a false inclusion query that the verifier would accept as true,
which breaks the soundness of the protocol.

Preconditions

For the attack, the query would need to have only one fragment and several columns.

Feasibility

High.

Technical Details

An inclusion query (or lookup query) checks for two tables S and T if S is a subset of T. Both tables are
composed of a set of fragments that respectively have a set of columns. During its compilation, the code
checks whether the tables have several columns. The code defines the Boolean isMultiColumn via the
number of fragments and not the number of columns for the lookedTable. To obtain the number of
columns, the code should perform isMultiColumn = len(lookupTable[0]) > 1. However, the
code performs isMultiColumn = len(lookupTable) > 1.

Remediation

We recommend updating the code, as described in the Technical Details section above.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Issue C: [Prover Protocol] Incorrect Round for Inner Product Query

Location

compiler/innerproduct/context.go#L60

compiler/innerproduct/compiler.go#L66

Synopsis

For an inner product query, the prover task is registered in the incorrect round if the Boolean
hasMoreThanOnePair is set to true. In addition, the Boolean hasMoreThanOnePair is unnecessary
and increases inefficiency by adding one extra round to the protocol.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 11
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/lookup/compiler.go#L197
https://github.com/Consensys/linea-monorepo/pull/171
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/innerproduct/context.go#L60
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/innerproduct/compiler.go#L66

Impact

Low. The prover can run into a completeness issue.

Technical Details

After the compilation of the inner product query, the prover task is registered for round +1. This is the
correct round only if hasMoreThanOnePair has been set to true. However, if hasMoreThanOnePair
is set to false, this is one round too late. An honest prover should catch this incorrectness during prover
runtime by throwing a panic. If the proof is still passed on to the verifier, it should be rejected.

For an inner product query, the Boolean hasMoreThanOnePair is set to true if there is more than one
query. If the Boolean is set to true, the round number is increased by one. This step is inefficient since
the protocol is made longer than necessary.

Remediation

We recommend removing the conditional increment for the round in the compilation of the inner product
query.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Issue D: [Prover Protocol] Correctness of Local Opening Point Is Not
Verified During Sticking

Location

splitter/sticker/sticker.go#L23

splitter/sticker/sticker.go#L399

Synopsis

During the step sticker in the compiler, the compiler does not add a verification step to the verifier to
check the correct transformation of a local opening query.

Impact

High. A malicious prover can assign a new opening point Y to the query, thus breaking the soundness of
the protocol.

Preconditions

None.

Feasibility

High.

Technical Details

Sticking is interleaving small columns into larger ones, allowing the modification of all columns into
columns with a constant size. During this process, local opening queries are replaced by equivalent
queries pointing to the regrouped columns. However, a verifier check that the opening point Y has not

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 12
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/linea-monorepo/pull/201
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/splitter/sticker/sticker.go#L23
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/splitter/sticker/sticker.go#L399

been modified is missing. This check should be added by the compiler to the compiled IOP as a
VerifierAction.

Remediation

We recommend adding a verifier check on the local opening point.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Issue E: [Prover Protocol] Incorrect Symbolic Expression Product for Zero
Edge Case

Location

prover/symbolic/product.go#L62

Synopsis

The symbolic expression Product returns a false result if one factor and its corresponding exponent are
both zero.

Impact

Low.

Preconditions

To receive a false result, a factor and its corresponding exponent would need to be zero.

Feasibility

Low. In the zkEVM component, the precondition noted above seems unlikely.

Technical Details

The package symbolic allows generating and manipulating symbolic expressions. The generator
function NewProduct for the symbolic expression of a product takes as inputs items and exponents and
returns \prod_i (item[i]^exponent[i]). This function returns zero for the overall product if one of
the items is zero. However, this is incorrect in the case where the corresponding exponent is zero as well
since 0^0 = 1.

Remediation

We recommend considering this edge case and checking if the exponent is non-zero when the item is
zero and, only then, returning zero as a result of the overall product.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 13
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/linea-monorepo/pull/204
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/symbolic/product.go#L62
https://github.com/Consensys/linea-monorepo/pull/204

Issue F: [Gnark EVM-Precompiles] Incomplete Constraint in ECRecover
Precompiled Contract

Location

std/evmprecompiles/01-ecrecover.go#L52-L55

ethereum/execution-specs/src/ethereum/paris/vm/precompiled_contracts/ecrecover
.py

bitcoin-core/secp256k1/src/modules/recovery/main_impl.h#L46

std/evmprecompiles/01-ecrecover.go#L95

Synopsis

The ECRECOVER precompiled contract should constrain the parameter v to be in {0,1}. However, it is
insufficiently constrained to be in {0,1,2,3} instead.

Technical Details

The function ECRecover implements the EVM precompile contract for ECRECOVER that is specified in
the Ethereum Yellow Paper [Wood24] and in the execution specification. According to these sources, the
value of v should be either 27 or 28. In contrast, Bitcoin’s libsecp256k1 allows v to be in the set
{27,28,29,30} (respectively in {0,1,2,3} if one subtracts 27). The precompile contract of Linea
follows the Bitcoin libsecp256k1 library and constrains that the adjusted v is in {0,1,2,3}. This is
incorrect since the precompiled contract should follow the Ethereum specification.

In addition, the implementation has a redundant constraint in line 95 that could be removed. More
specifically, vbits[1] is used to select cases to compute R.x., but since vbits[1] should be zero
anyway, the first case can be directly used to compute R.x.

Remediation

We recommend modifying the constraint, as suggested in the Technical Details section above.

Status

The Linea team has resolved the issue in this PR and also removed the redundant constraints.

Verification

Resolved.

Issue G: [Gnark EVM-Precompiles] Incorrect Edge Case in ExpMod
Precompile Contract

Location

std/evmprecompiles/05-expmod.go#L17

Synopsis

The implementation of the precompiled contract MODEXP returns a false value for an edge case.

Impact

Low.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 14
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Consensys-gnark/blob/d94368b154d73449e796ebdc2665534b086114f2/std/evmprecompiles/01-ecrecover.go#L52-L55
https://github.com/ethereum/execution-specs/blob/c854868f4abf2ab0c3e8790d4c40607e0d251147/src/ethereum/paris/vm/precompiled_contracts/ecrecover.py
https://github.com/ethereum/execution-specs/blob/c854868f4abf2ab0c3e8790d4c40607e0d251147/src/ethereum/paris/vm/precompiled_contracts/ecrecover.py
https://github.com/bitcoin-core/secp256k1/blob/ea2d5f0f17881031a033b0cc049230183a5826d1/src/modules/recovery/main_impl.h#L46
https://github.com/LeastAuthority/Consensys-gnark/blob/d94368b154d73449e796ebdc2665534b086114f2/std/evmprecompiles/01-ecrecover.go#L95
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereum/execution-specs/blob/c854868f4abf2ab0c3e8790d4c40607e0d251147/src/ethereum/paris/vm/precompiled_contracts/ecrecover.py
https://github.com/bitcoin-core/secp256k1/blob/ea2d5f0f17881031a033b0cc049230183a5826d1/src/modules/recovery/main_impl.h#L46
https://github.com/Consensys/gnark/pull/1293
https://github.com/LeastAuthority/Consensys-gnark/blob/d94368b154d73449e796ebdc2665534b086114f2/std/evmprecompiles/05-expmod.go#L17

Preconditions

The values a,b=0, and c=1 need to appear in an actual use case.

Feasibility

Low.

Technical Details

The function ExpMod computes a^b mod c. For a=b=0 and c=1, the code returns 1, while the correct
value is 0.

Remediation

We recommend considering the edge case of the modulus being one when checking for the case zero to
the power of zero.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Issue H: [zkEVM] Missing Activation Constraint in ECPair and ECDSA
Modules

Location

prover/ecdsa/antichamber.go#L55

prover/ecpair/ecpair.go#L47

common/common_constraints/common_constraints.go#L34

Synopsis

For both modules ECPair and ECDSA in the zkEVM, the isActive columns are not constrained to be
prevented from transitioning from 0 to 1. A typical isActive column is constrained to be binary and to
refrain from the aforementioned transition. Rows with isActive set to 0 are used for padding, such that
the column reaches a length that equals a power of two.

Impact

Critical. A malicious prover can exploit this soundness issue. In particular, columns such as
UnalignedPairingData.Limb in the ECPair module can be activated in padding rows and can hence
be used to manipulate the behavior of the modules ECPair and ECDSA.

Remediation

We recommend adding the constraints.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 15
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/gnark/pull/1294
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/ecdsa/antichamber.go#L55
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/ecpair/ecpair.go#L47
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/common/common_constraints/common_constraints.go#L34
https://github.com/Consensys/linea-monorepo/pull/172

Issue I: [zkEVM] Missing Binary Constraints in ECPair Module

Location

prover/ecpair/ecpair.go#L236-L237

Synopsis

The binary constraints for the columns IsFirstLineOfPrevAccumulator and
IsFirstLineOfCurrAccumulator are missing in the ECPair module.

Impact

Low. Since the two columns are only used as terms in products, a malicious prover assigning arbitrary,
non-binary values to the columns does not gain any advantage in manipulating the behavior of the
module.

Remediation

We recommend adding the binary constraints.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Issue J: [zkEVM] Missing Exclusive Binary Constraint in ECPair Module

Location

prover/ecpair/ecpair.go#L232-L233

std/evmprecompiles/08-bnpairing.go

Synopsis

The module ECPair is missing a constraint on the interplay between the columns
ToMillerLoopCircuitMask and ToFinalExpCircuitMask. Their addition should sum to the
column isActive, such that only one of the two can be activated in a row. The columns are used to
distinguish the two circuits defined for the ECPair precompile module.

Impact

High. A malicious prover can exploit this soundness issue by activating both columns simultaneously and
manipulate the data input to the two circuits responsible for the correct verification of the ECPair
precompile.

Remediation

We recommend adding the constraint.

Status

The Linea team has resolved the issue in this PR by adding the new column IsActive to the
UnalignedPairingData struct and checking that the sum of the two columns mentioned above equals
this column. In addition, due to this new column, several other constraints have been either modified or
newly added.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 16
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/ecpair/ecpair.go#L236-L237
https://github.com/Consensys/linea-monorepo/pull/173
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/ecpair/ecpair.go#L232-L233
https://github.com/LeastAuthority/Consensys-gnark/blob/master/std/evmprecompiles/08-bnpairing.go
https://github.com/Consensys/linea-monorepo/pull/174

Verification

Resolved.

Issue K: [zkEVM] Missing Zeroization Constraint in Public Input Module

Location

publicInput/execution_data_collector/execution_data_collector.go#L184

publicInput/execution_data_collector/execution_data_collector.go#L1057

Synopsis

The module Public Inputs does not have a zeroization constraint for the column TotalBytesCounter.

Impact

Critical. A malicious prover can manipulate the data during padding (i.e., when rows are inactive) and
more specifically, share an incorrect value for the final value of this column with the execution circuit
(assuming Issue L has been resolved).

Remediation

We recommend adding the column to the set of columns being zeroized via the isActive column.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Issue L: [zkEVM] Incorrect Value for TotalBytesCounter in the Local
Opening of the Public Input Module

Location

prover/publicInput/input_extractor.go#L50

prover/circuits/execution/pi_wizard_extraction.go#L34

Synopsis

An incorrect value of the column TotalBytesCounter is being propagated as a local opening to the
execution circuit.

Impact

Since this issue can be detected by the Linea team as soon as the corresponding check is enabled in the
execution circuit, we consider it to be a low impact issue.

Technical Details

Currently, the first entry of the column TotalBytesCounter is shared via a local opening with the
execution circuit. This is the incorrect entry and, instead, the last non-zero value should be shared. This
has not been identified by the execution circuit because the corresponding check is being disabled until
another issue is resolved.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 17
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/publicInput/execution_data_collector/execution_data_collector.go#L184
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/publicInput/execution_data_collector/execution_data_collector.go#L1057
https://github.com/Consensys/linea-monorepo/issues/168
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/publicInput/input_extractor.go#L50
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/circuits/execution/pi_wizard_extraction.go#L34

Remediation

We recommend sharing the correct entry of the column.

Status

The Linea team has resolved the issue in this PR by adding the new column
FinalTotalBytesCounter.

Verification

Resolved.

Issue M: [zkEVM] Correctness of Leaf Hashing Constraint In the State
Manager Can Be Turned Off

Location

prover/statemanager/accumulator/define.go#L510

Synopsis

The hash verification for the Merkle tree in the state manager can be turned off because the column
isEmptyLeaf is not constrained properly.

Impact

Critical. The verification of leaf hashes can be turned off by a malicious prover.

Technical Details

In the zkEVM, the state manager verifies the Merkle proofs for access to the state – that is, deletion,
insertion, updates, and other operations on the leaves. In the submodule accumulator there is a
constraint that checks the correct hashing of the leaf opening (1 - IsEmptyLeaf[i]) *
(Leaves[i] - LeafHashes[i]), which is only active for non-empty leaves.

A malicious prover can set the Boolean column IsEmptyLeaf to true for all rows. By skipping this
check, the prover does not need to provide a correct opening of the leaf. This can be prevented by adding
a constraint, such that the Boolean is set to true if and only if the row is the third for an insert
operation or the fourth for a delete operation.

Remediation

We recommend adding the constraint as described in the Technical Details section.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Issue N: [zkEVM] Missing Constraint for the Hashed Key During the Update
Operation

Location

prover/statemanager/accumulator/define.go

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 18
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/linea-monorepo/issues/168
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/statemanager/accumulator/define.go#L510
https://github.com/Consensys/linea-monorepo/pull/146
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/statemanager/accumulator/define.go

Synopsis

There is no constraint preventing the HKey from being changed during an update operation.

Impact

Low. This issue could lead to undefined behavior.

Technical Details

An update operation is replacing a value in the state manager Merkle tree. It should change the value but
not the Hkey of a leaf. In the accumulator module, there is no constraint verifying that the Hkey has not
been modified.

Remediation

We recommend adding a constraint to enforce that the Hkey remains unchanged during an update
operation.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Issue O: [zkEVM] Merkle Tree Can Be Updated Without Updating the Value
of NextFreeNode Due To Missing Constraint

Location

prover/statemanager/accumulator/define.go#L521

Synopsis

During an insert operation for the state manager Merkle tree, the value NextFreeNode does not need to
be updated due to a missing constraint for IsInsertRow3.

Impact

Medium. A malicious prover can update the Merkle tree without updating the value NextFreeNode. This
breaks the deterministic structure of the Merkle tree and hence leads to undefined behavior.

Technical Details

In the accumulator module, the column IsInsertRow3 indicates whether the current row is the third row.
However, the column is not constrained properly and, hence, a malicious prover can set the value to
false in any row. This can be used to turn off the below constraint. Consequently, the malicious prover
would not have to update the NextFreeNode field.

IsActive[i] * (1 - IsFirst[i]) * (IsInsertRow3[i] * (NextFreeNode[i] -
NextFreeNode[i-1] - 1) + (1- IsInsertRow3[i]) * (NextFreeNode[i] -
NextFreeNode[i-1]))

This can be prevented by adding the following constraint:

IsActive[i] * IsInsert[i] * IsEmptyLeaf[i] * (1-IsInsertRow3[i])

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 19
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/linea-monorepo/pull/149
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/statemanager/accumulator/define.go#L521

The Merkle tree structure should be deterministic – that is, the position of an insertion of a new leaf is
deterministic. This requirement allows anyone to verify the Merkle tree hash with only the transaction
history. Manipulating the value NextFreeNode by not increasing it properly breaks this assumption.

In addition, after the insertion of a new leaf with an incorrect NextFreeNode value, two leaves would
have the same value for NextFreeNode. Consequently, inserting a new leaf would lead to undefined
behavior.

Remediation

We recommend adding the constraint described in the Technical Details section.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Issue P: [zkEVM] Missing Consistency Constraint on the Hashed Key Value

Location

statemanager/accumulator/define.go#L110

Synopsis

The accumulator module is missing a constraint to check the consistency of the hashed key value
between the column Hkey and the column leafOpening.Hkey.

Impact

High. A malicious prover could use this missing check to assign false values to Hkey and hence skip
crucial constraints.

Technical Details

A leaf in the Merkle tree is the hash of several values, including the Hkey value. Hkey represents the hash
of the 256-bits key. The accumulator module has two columns (Hkey and leafOpening.Hkey) that
store this value. There is no consistency check across these two values. This allows a malicious prover to
operate with two distinct values. In particular, an attacker could assign a false value to the Hkey and
hence skip the accompanying checks on the value.

Remediation

We recommend adding a constraint to enforce the equality of the two values.

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 20
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/linea-monorepo/pull/147
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/statemanager/accumulator/define.go#L110
https://github.com/Consensys/linea-monorepo/pull/159

Issue Q: [Gnark Frontend] Missing Binary Constraint in Select Primitive

Location

frontend/cs/scs/api.go#L405

Synopsis

The selector constraint Select(b,i1,i2) does not have a constraint enforcing the selector bit b to
be Boolean.

Impact

Critical. If b is not Boolean, the function does not behave like a selector.

Remediation

We recommend adding builder.AssertIsBoolean(b).

Status

The Linea team has resolved the issue in this PR.

Verification

Resolved.

Suggestions

Suggestion 1: [Prover Protocol] Update the Linea Prover Documentation

Location

https://eprint.iacr.org/2022/1633

zkevm-monorepo/prover/protocol

Synopsis

We identified several deviations between the paper and its implementation, including several
inconsistencies and errors, such as incorrect constraints or typographical mistakes in the definitions.

Below, we list a few findings (non-exhaustive):

● In contrast to the code here, in Appendix A.8, the constraint 2.) is missing the multiplication of
IsActive[i].

● The code computes here, 2*NotEndOfProof[i]*PosAcc[i-1], while the paper, in Appendix
A.8 for the constraint, 4.) incorrectly computes 2*NotEndOfProof[i]*PosAcc[i+1].

● In contrast to the code here, the formula for P(r) is missing the term a^n-1 in Appendix A.2.
● The random coin r_merge in section 9.2, bullet point 4, has been removed from the protocol and

replaced with r_collapse^nbOpencol (see the corresponding code segment here).
● In the definition of Z_i(x) in Figure 4, the index j should index both A’ and B’.
● The definition of the Z_v product in Figure 5 has no specification of the index k.
● In the definition of ‘local constraints’ in section 4.3, it is the oracle that does the computation, not

the verifier.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 21
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Consensys-gnark/blob/c36ff9e8/frontend/cs/scs/api.go#L405
https://github.com/Consensys/gnark/issues/1246
https://eprint.iacr.org/2022/1633
https://github.com/LeastAuthority/zkevm-monorepo/tree/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol
https://eprint.iacr.org/2022/1633
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/dedicated/merkle/computemod.go#L297
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/dedicated/merkle/computemod.go#L322
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/dedicated/functionals/interpolation.go#L157
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/selfrecursion/column_opening.go#L466

Mitigation

We recommend updating the paper. Writing a correct and in-depth specification can lead to the finding of
further issues that may have been missed so far (see, for example, the soundness issue in Nova found
during the writing of a proper security proof [NBS23]).

Status

The Linea team stated that they plan on implementing the suggested mitigation in the future. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 2: [Prover Protocol] Improve Code Quality

Location

zkevm-monorepo/prover/protocol

Synopsis

Overall, the code quality in the prover protocol is very high. The wizard protocol has many defensive
checks and panics to improve usability. Nevertheless, we identified several opportunities for improving
the codebase by removing redundant code or inefficiencies and adding missing panics.

Mitigation

Below, we list a few opportunities for improvements in the compiler:

● In the vortex compiler here, the code excludes the case where the compiled IOP contains
Precomputed columns but not committed columns. Even though this particular use case
seems unlikely, we recommend also checking this for the Precomputed columns.

● For the code here, the function returns instead of panicking. As a result, all univariate queries are
removed and, in turn, the vortex compiler runs into a panic.

● In the compilation of MiMC here, in the case of only one query, the code does not return and,
instead, inefficiently adds further constraints. We recommend returning for this case in the
if-loop.

● This code segment here, in the splitter, cannot be reached and can therefore be removed.
● The sortingMap here is not used and can therefore be removed.
● The columns with the status Precomputed are erroneously excluded from the compilation step

sticking here. This is inefficient since they are verified manually by the verifier instead.
● The columns with the status VerifyingKey are excluded from the compiler step splitting here.

Consequently, their size is not reduced into the target size. We suggest including the splitting of
VerifyingKey columns as well.

Below, we list a few opportunities for improvements in the folder wizard:

● There is a redundant check in compiledIOP here, in InsertColumn (checked also in function
AddToRound).

● The function InsertColumn does not check if the size == 0 here, while other, similar
functions, such as InsertProof here, do check this.

● There is no round consistency check in InsertFixedPermutation here.
● Here, the function GetColumnAt does not have any sanity checks, while GetColumn, for

example, checks if the column is public.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 22
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2023/969
https://github.com/LeastAuthority/zkevm-monorepo/tree/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/vortex/compiler.go#L50
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/univariates/multi_to_single_point.go#L41
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/mimc/mimc.go#L50
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/splitter/splitter.go#L110
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/lookup/utils.go#L45
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/splitter/sticker/sticker.go#L113
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/compiler/splitter/splitter.go#L64
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/wizard/compiled.go#L169
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/wizard/compiled.go#L166
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/wizard/compiled.go#L429
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/wizard/compiled.go#L318
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/wizard/verifier.go#L334

● In gnark_verifier.go here, GetColum does not check if the column is public, while the
counterpart in verifier.go does.

● In gnark_verifier.go here, GetColumnAt does not check if the position falls into the range,
while it is properly checked in verifier.go.

● Some constraint constructors check whether the query ID is greater than zero (see here, for
example, in global constraints). This check is only there for Local, Global, and MiMC constraint
constructors and is missing for all other constraint constructors, such as newLocalOpening,
Univariate, and Range.

We identified several improvements in the folder dedicated:

● Here, the if-loop should be accessed for numCol > 1 and not numCol > 0. This increases
efficiency since it avoids adding the merging coin.

● One line below, here, the increment of the round is not necessary and is hence inefficient.
● Here, for the isZero column, the invOrZero column name is misleading: it is constrained to be

either the inverse of c or any other value. Since it is not used further in the code, it is not
necessary to constrain it. However, we recommend adding a comment that this column is only
constrained to be the inverse of c and that it can otherwise have any other value, even though the
name suggests otherwise.

● At this code segment here, logging occurs instead of panicking. We recommend adding a panic
for this case.

● The collapsing step of the columns L, R, O of the Plonk implementation here is not used.
According to the Linea team, they only use Plonk with single columns L, R, O. We recommend
removing it to avoid confusion.

We recommend addressing the findings listed above.

Status

The Linea team stated that they plan on implementing the suggested mitigation in the future. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 3: [Compress Library] Improve Code Quality

Location

See the Mitigation section.

Synopsis

Within the Compress library, we found a few opportunities for improving the code by using hard coded
values or returning error messages.

Mitigation

Below, we list a few improvements:

● The value 1 << 19 for the input buffer here should be hard coded as a constant.
● The function Write here does not return proper error messages in various cases.
● The input addressableBytes to the function NewDynamicBackrefType is not used anymore

and should be removed here.
● In the same function, the bound that is set to 21 here should be hard coded as a constant.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 23
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/wizard/gnark_verifier.go#L316
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/wizard/gnark_verifier.go#L342
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/query/global.go#L61
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/dedicated/projection/projection.go#L116
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/dedicated/projection/projection.go#L117
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/dedicated/is_zero.go#L91
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/dedicated/functionals/foldouter.go#L26
https://github.com/LeastAuthority/zkevm-monorepo/blob/5009fb0d68506b9cfa6512dbaf2242f4e8e8e75d/prover/protocol/dedicated/plonk/compile.go#L238
https://github.com/LeastAuthority/compress/blob/2efdc672da09afb47b80d7dd35d79cbe9411a023/lzss/compress.go#L62
https://github.com/LeastAuthority/compress/blob/2efdc672da09afb47b80d7dd35d79cbe9411a023/lzss/compress.go#L122
https://github.com/LeastAuthority/compress/blob/2efdc672da09afb47b80d7dd35d79cbe9411a023/lzss/backref.go#L38
https://github.com/LeastAuthority/compress/blob/2efdc672da09afb47b80d7dd35d79cbe9411a023/lzss/backref.go#L38

Status

The Linea team stated that they plan on implementing the suggested mitigation in the future. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 4: [zkEVM] Improve Code Quality

Location

See the Mitigation section.

Synopsis

Within the zkEVM codebase, we found a few opportunities for improving the code.

Mitigation

Below, we list a few improvements:

● Here and in various other places in the zkEVM folder, the option addGateForRangeCheck is set
to true in the function WithRangecheck. This is not necessary and can be changed to false
instead.

● Constraints are duplicated in the state manager accumulator for IsFirst, IsInsert,
IsDelete, IsUpdate, IsReadZero, and IsReadNonZero. Their Booleanity constraints (e.g.,
for IsInsert) also imply that they will be zero when the accumulator is inactive. This is checked
again here. Similar remarks also apply to IsNewHash and IsHashEnd in the mimcCodeHash
module.

● Comments are incorrect and incomplete in the following locations:
○ statemanager/accumulator/settings.go#L23-L24
○ statemanager/accumulatorsummary/accumulator_summary.go#L40-L42
○ statemanager/statesummary/state_summary.go#L553-L556

Status

The Linea team stated that they plan on implementing the suggested mitigation in the future. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 5: [zkEVM] Refactor Common Patterns in Constraints

Location

Examples (non-exhaustive):

prover/statemanager/mimcCodeHash/define.go

prover/common/common_constraints/common_constraints.go

Synopsis

Many common patterns exist in the algebraic constraints that make up the various zkEVM modules.
Some abstractions already exist but are not always applied consistently (see the
common_constraints.go file). Refactoring the code to leverage the abstraction facilities provided by

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 24
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/ecarith/ecmul.go#L46
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/statemanager/accumulator/define.go#L349-L354
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/statemanager/accumulator/define.go#L562-L567
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/statemanager/accumulator/settings.go#L23-L24
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/statemanager/accumulatorsummary/accumulator_summary.go#L40-L42
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/statemanager/statesummary/state_summary.go#L553-L556
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/statemanager/mimccodehash/define.go
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/common/common_constraints/common_constraints.go
https://github.com/LeastAuthority/zkevm-monorepo/blob/b14a1a5fea038c9215206b971a0ef76a69b182c9/prover/zkevm/prover/common/common_constraints/common_constraints.go

the Go programming language would make it easier to read and reason about. In addition to helping with
bug prevention, it could also benefit future audits.

Mitigation

Below, we list a few candidates for refactoring (non-exhaustive):

● Enforcing the ‘Booleanity’ of a column;
● Representing logical connectives such as negation, implication, etc; and
● Asserting equality and inequality.

In addition, we recommend using the functions in the common constraints file throughout the codebase.

Status

The Linea team has partially addressed this suggestion in some modules, such as the ECPair and ECDSA
module, as demonstrated in the remediation of some of the issues reported above.

Verification

Partially Resolved.

Suggestion 6: [Gnark Frontend] Improve Code Comments

Location

Consensys-gnark/frontend

Synopsis

There are insufficient code comments explaining the rationale behind certain critical lines of code. This
reduces the readability of the code and, as a result, makes reasoning about the security of the system
more difficult. Comprehensive in-line documentation helps provide reviewers of the code with a better
understanding and ability to reason about the system design.

Additionally writing pre- and post-conditions as comments on a user interface helps prevent bugs and
security issues in third-party applications.

Below we list some of our findings:

● In cs/scs/api.go#L160, code comments should specify that in case 0/0, the return value is
unconstrained.

● In frontend/api.go#L57, it is not specified what should happen in case division is not defined.
● In frontend/api.go#L60, it is not specified what should happen in case inversion is not

defined.
● In frontend/api.go#L74, frontend/api.go#L92, and frontend/api.go#L92, it is not

specified if the b's are assumed to be Boolean-constrained already or if the function has to
constrain them.

● In frontend/api.go#L85, the comment should reference the AND operator.
● In frontend/api.go#L122, the comment should be v != 0 OR v != 1.
● The comment in cs/scs/builder.go#L313 seems to suggest a panic; however, no panic was

implemented.
● The comment in cs/scs/api.go#L391 should be about the AND operator.

Our team also found that the functions AssertIsBoolean and MarkBoolean ensure that a frontend
variable that is considered Boolean will have a corresponding Boolean constraint. These functions consult

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 25
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Consensys-gnark/tree/c36ff9e8/frontend
https://github.com/LeastAuthority/Consensys-gnark/blob/c36ff9e8/frontend/cs/scs/api.go#L160
https://github.com/LeastAuthority/Consensys-gnark/blob/c36ff9e8/frontend/api.go#L57
https://github.com/LeastAuthority/Consensys-gnark/blob/c36ff9e8/frontend/api.go#L60
https://github.com/LeastAuthority/Consensys-gnark/blob/c36ff9e8/frontend/api.go#L74
https://github.com/LeastAuthority/Consensys-gnark/blob/c36ff9e8/frontend/api.go#L92
https://github.com/LeastAuthority/Consensys-gnark/blob/c36ff9e8/frontend/api.go#L92
https://github.com/LeastAuthority/Consensys-gnark/blob/c36ff9e8/frontend/api.go#L85
https://github.com/LeastAuthority/Consensys-gnark/blob/c36ff9e8/frontend/api.go#L122
https://github.com/LeastAuthority/Consensys-gnark/blob/c36ff9e8/frontend/cs/scs/builder.go#L313
https://github.com/LeastAuthority/Consensys-gnark/blob/c36ff9e8/frontend/cs/scs/api.go#L391

the underlying table mtBooleans. However, the guarantee that a Boolean constraint will be implemented
relies on the fact that only MarkBoolean can alter the mtBooleans table. Although we did not identify
any issues in the current code version, the practice of using non-modular and non-local logic can be
difficult to audit and adds the risk that future code changes might not follow the needed code pattern. We
suggest making this behavior clear in the comment to prevent future code updates from breaking this
behavior.

Mitigation

We recommend referring to the notes above to expand and improve the code comments within the
codebase in order to better describe the intended functionality of the components, thereby facilitating
reasoning about the security properties of the system.

Status

The Linea team has addressed the findings listed above (see this PR).

Verification

Resolved.

Suggestion 7: [Gnark Frontend] Missing State Reset

Location

blob/v1/blob_maker.go#L168

Synopsis

There is no state reset when the compressor fails to write a block to the BlobMaker.

Mitigation

We recommend implementing the state reset, as is done in blob/v1/blob_maker.go#L187-L190.

Status

The Linea team has included the recommended state reset in PR #114.

Verification

Resolved.

Suggestion 8: Improve Documentation

Synopsis

Our team noted that the documentation was incomplete and scattered across many files, pdfs,
documents, and research papers.

Mitigation

We recommend updating the available documentation to include clear and precise specifications, as well
as providing additional, detailed documentation to allow both future developers and auditors to easily
understand the different components of the system. We further recommend collecting the documentation
in a single place, to facilitate future audits.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 26
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/gnark/pull/1291
https://github.com/LeastAuthority/zkevm-monorepo/blob/zkevm/prover/lib/compressor/blob/v1/blob_maker.go#L168
https://github.com/LeastAuthority/zkevm-monorepo/blob/zkevm/prover/lib/compressor/blob/v1/blob_maker.go#L187-L190
https://github.com/Consensys/linea-monorepo/pull/114/files

Status

The Linea team stated that they plan on implementing the suggested mitigation in the future. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 27
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Appendix

Appendix A: In-scope Components

Review 1:
Circuit + outer circuit (aka Wizard Verifier)

● https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/execution
● https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/internal

Circuit blob decompression + out of circuit compression

● github.com/consensys/compress
● https://github.com/Consensys/gnark/tree/master/std/compress
● https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/blobdecompression/

(except blobdecomppression/v0)
● https://github.com/Consensys/zkevm-monorepo/blob/main/prover/lib/compressor/

Circuit EVM Precompiles

● https://github.com/Consensys/gnark/blob/master/std/evmprecompiles/01-ecrecover.go
● https://github.com/Consensys/gnark/blob/master/std/evmprecompiles/05-expmod.go
● https://github.com/Consensys/gnark/blob/master/std/evmprecompiles/08-bnpairing.go
● https://github.com/Consensys/gnark/tree/master/std/hash/mimc
● https://github.com/Consensys/gnark/tree/master/std/permutation/sha2

Circuit aggregation (Caller side / integration)

● https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/aggregation
● https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/emulation
● https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/pi-interconnection

Review 2:
gnark frontend

● https://github.com/Consensys/gnark/tree/master/frontend

Review 3:
Protocol

● https://github.com/Consensys/zkevm-monorepo/tree/main/prover/protocol (except
/protocol/serialization)

● https://github.com/Consensys/zkevm-monorepo/tree/main/prover/symbolic

Review 4:
zkEVM

● https://github.com/Consensys/zkevm-monorepo/tree/main/prover/zkevm/
○ Except :

https://github.com/Consensys/zkevm-monorepo/blob/main/prover/zkevm/arithmetizati
on/define/define.go

○ https://github.com/Consensys/zkevm-monorepo/tree/main/prover/zkevm/prover/hash/
datatransfer

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 28
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/execution
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/internal
http://github.com/consensys/compress
https://github.com/Consensys/gnark/tree/master/std/compress
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/blobdecompression/v1
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/protocol
https://github.com/Consensys/zkevm-monorepo/blob/main/prover/lib/compressor
https://github.com/Consensys/gnark/blob/master/std/evmprecompiles/01-ecrecover.go
https://github.com/Consensys/gnark/blob/master/std/evmprecompiles/05-expmod.go
https://github.com/Consensys/gnark/blob/master/std/evmprecompiles/08-bnpairing.go
https://github.com/Consensys/gnark/tree/master/std/hash/mimc
https://github.com/Consensys/gnark/tree/master/std/permutation/sha2
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/aggregation
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/emulation
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/circuits/pi-interconnection
https://github.com/Consensys/gnark/tree/master/frontend
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/protocol
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/protocol
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/symbolic
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/zkevm
https://github.com/Consensys/zkevm-monorepo/blob/main/prover/zkevm/arithmetization/define/define.go
https://github.com/Consensys/zkevm-monorepo/blob/main/prover/zkevm/arithmetization/define/define.go
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/zkevm/prover/hash/datatransfer
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/zkevm/prover/hash/datatransfer

○ https://github.com/Consensys/zkevm-monorepo/tree/main/prover/zkevm/prover/state
manager/mock

Backend bits

○ https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/aggregation
○ https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/blobdecom

pression
○ https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/blobsubmis

sion
○ https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/ethereum
○ https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/execution/b

ridge
○ https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/execution/s

tatemanager
○ https://github.com/Consensys/zkevm-monorepo/tree/main/prover/lib/shnarf_calculator

The above in-scope audit target was provided by the Linea team to Least Authority and assessed for the
purposes of this report.

In addition, any dependency and third-party code, unless specifically included above, were considered out
of the scope of this audit.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 29
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/zkevm-monorepo/tree/main/prover/zkevm/prover/statemanager/mock
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/zkevm/prover/statemanager/mock
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/aggregation
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/blobdecompression
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/blobdecompression
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/blobsubmission
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/blobsubmission
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/ethereum
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/execution/bridge
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/execution/bridge
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/execution/statemanager
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/backend/execution/statemanager
https://github.com/Consensys/zkevm-monorepo/tree/main/prover/lib/shnarf_calculator

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 30
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Linea zkEVM (crypto-beta-v1) | Consensys Software, Inc. 31
26 November 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

