
gnark
Security Audit Report

Consensys Software,
Inc.
Final Audit Report: 20 September 2024

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Issue A: Incorrect Computation of Negative Factorial

Issue B: Incorrect Polynomial Evaluation for Domain Shifts Greater Than Five

Issue C: Polynomial Addition Potentially Computes Unexpected Sum

Issue D: Permutation NIZK Does Not Include FFT Generator in the Transcript

Issue E: Incorrect Conjugate in F_(p^3) for BW6-761, BW6-756 and BW6-633

Suggestions

Suggestion 1: Update Academic Reference

Suggestion 2: Write Specification for GKR

Suggestion 3: Update Code Comments

About Least Authority

Our Methodology

Security Audit Report | gnark | Consensys Software, Inc. 1
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Consensys Software, Inc. has requested that Least Authority perform security audits of the Linea prover
and cryptography libraries. This audit is Phase 1 and focuses specifically on the gnark library.

Project Dates
● June 5, 2024 - July 1, 2024: Initial Code Review (Completed)
● July 3, 2024: Delivery of Initial Audit Report (Completed)
● September 19, 2024: Verification Review (Completed)
● September 20, 2024: Delivery of Final Audit Report (Completed)

Review Team
● Anna Kaplan, Cryptography Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the gnark cryptographic libraries
followed by issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● gnark:

○ https://github.com/Consensys/gnark/tree/master/std/gkr
○ https://github.com/Consensys/gnark/tree/master/std/polynomial
○ https://github.com/Consensys/gnark/tree/master/std/sumcheck
○ https://github.com/Consensys/gnark/tree/master/constraint (all go files)
○ https://github.com/Consensys/gnark/tree/master/constraint/bn254
○ https://github.com/Consensys/gnark/tree/master/constraint/solver

● gnark-crypto:
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377(all go files)
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fp/hash_to_field
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr(all go files)
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/fft
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/hash_to_field
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/iop
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/mimc
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/polynomial
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/sumcheck
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/internal/fptower
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/kzg
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bns254 (all go files)
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bns254/fp/hash_to_field
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr (all go files)
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/fft
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/hash_to_field
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/iop

Security Audit Report | gnark | Consensys Software, Inc. 2
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/gnark/tree/master/std/gkr
https://github.com/Consensys/gnark/tree/master/std/polynomial
https://github.com/Consensys/gnark/tree/master/std/sumcheck
https://github.com/Consensys/gnark/tree/master/constraint
https://github.com/Consensys/gnark/tree/master/constraint/bn254
https://github.com/Consensys/gnark/tree/master/constraint/solver
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fp/hash_to_field
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/fft
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/hash_to_field
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/iop
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/mimc
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/polynomial
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/fr/sumcheck
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/internal/fptower
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/kzg
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fp/hash_to_field
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/fft
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/hash_to_field
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/iop

○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/mimc
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/polynomial
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/sumcheck
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/internal/fptower
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/kzg
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761 (all go files)
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fp/hash_to_field
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr (all go files)
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/fft
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/hash_to_field
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/iop
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/mimc
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/polynomial
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/sumcheck
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/internal/fptower
○ https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/kzg

Specifically, we examined the Git revision for our initial review:

● gnark: 02d4678924927050149ccda18dce6133a15601ff
● gnark-crypto: 564b6f724c3beac52d805e6e600d0a1fda9770b5

For the review, these repositories were cloned for use during the audit and for reference in this report:

● gnark:
https://github.com/LeastAuthority/Consensys-gnark

● gnark-crypto:
https://github.com/LeastAuthority/Consensys-gnark-crypto

For the verification, we examined the Git revision:

● gnark: 3a0fa0f316437854d56bf10a1e75811df9697f46
● gnark-crypto: 703a260c2f991d01e245adf53d20f76af4210c5f

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Website:
https://linea.build

● Linea prover/cryptography audits: request for proposals (Google Doc) (shared with Least Authority
via email on 8 March 2024)

● Linea Prover audit plan Q1 2024 (Google Doc) (shared with Least Authority via email on 11 April
2024)

In addition, this audit report references the following documents:

● G. Adj and F. Rodríguez-Henríquez, “Square root computation over even extension fields.” IACR
Cryptology ePrint Archive, 2012, [AR12]

Security Audit Report | gnark | Consensys Software, Inc. 3
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/mimc
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/polynomial
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/fr/sumcheck
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bls12-377/internal/fptower
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bn254/kzg
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fp/hash_to_field
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/fft
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/hash_to_field
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/iop
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/mimc
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/polynomial
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/fr/sumcheck
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/internal/fptower
https://github.com/Consensys/gnark-crypto/tree/master/ecc/bw6-761/kzg
https://github.com/LeastAuthority/Consensys-gnark
https://github.com/LeastAuthority/Consensys-gnark-crypto
https://linea.build/
https://eprint.iacr.org/2012/685.pdf

● A. Belling, A. Soleimanian, and O. Begassat, “Recursion over Public-Coin Interactive Proof
Systems; Faster Hash Verification.” IACR Cryptology ePrint Archive, 2022, [BSB22]

● J. Beuchat, J. E. González-Díaz, S. Mitsunari, E. Okamoto, F. Rodríguez-Henríquez, et al.,
“High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves.”
IACR Cryptology ePrint Archive, 2020, [BGM+20]

● Q. Dao, J. Miller, O. Wright, and P. Grubbs, “Weak Fiat-Shamir Attacks on Modern Proof Systems.”
IACR Cryptology ePrint Archive, 2023, [DMW+23]

● S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating Computation: Interactive Proofs for
Muggles.”Microsoft, 2008, [GKR08]

● R. Granger and M. Scott, “Faster Squaring in the Cyclotomic Subgroup of Sixth Degree
Extensions.” IACR Cryptology ePrint Archive, 2009, [GS09]

● K. Karabina, “Squaring in Cyclotomic Subgroups.” IACR Cryptology ePrint Archive, 2010,
[Karabina10]

● K. Rubin and A. Silverberg, “Compression in Finite Fields and Torus-Based Cryptography.” Society
for Industrial and Applied Mathematics (SIAM), 2008, [RS08]

● N. Stephens-Davidowitz, “Ring-SIS and Ideal Lattices.”Massachusetts Institute of Technology,
2018, [S18]

● J. Thaler, “Proofs, Arguments, and Zero-Knowledge.” Georgetown University, 2023, [Thaler23]
● J. Thaler, “The GKR Protocol and Its Efficient Implementation.” Georgetown University, 2017,

[Thaler17]
● J. Zhang, T. Liu, Y. Horesh, W. Wang, Y. Zhang, et al., “Doubly Efficient Interactive Proofs for

General Arithmetic Circuits with Linear Prover Time.” IACR Cryptology ePrint Archive, 2020,
[ZLH+20]

● Investigation report on the use of SIS to build fast SNARKs:
https://hackmd.io/7OODKWQZRRW9RxM5BaXtIw

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Adversarial actions and other attacks;
● Denial of service (DoS) attacks and security exploits that would impact the implementation or

disrupt its execution;
● Vulnerabilities within individual components and whether the interaction between the

components is secure;
● Exposure of any critical information during interaction with any external libraries;
● Proper management of encryption and signing keys;
● Protection against malicious attacks and other methods of exploitation;
● Data privacy, data leaking, and information integrity;
● Inappropriate permissions and excess authority; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team performed a security audit of the GKR protocol implementation of Linea. GKR is an interactive
proving protocol, which is made non-interactive through the Fiat-Shamir heuristic. The Linea team has
also written a paper [BSB22] about their usage of GKR, containing a protocol description of GKR and an

Security Audit Report | gnark | Consensys Software, Inc. 4
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2022/1072.pdf
https://eprint.iacr.org/2010/354.pdf
https://eprint.iacr.org/2023/691.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/2008-DelegatingComputation.pdf
https://eprint.iacr.org/2009/565.pdf
https://eprint.iacr.org/2010/542.pdf
https://epubs.siam.org/doi/10.1137/060676155
https://people.csail.mit.edu/vinodv/6876-Fall2018/RingSISclass.pdf
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://people.cs.georgetown.edu/jthaler/gkrnotes.pdf
https://eprint.iacr.org/2020/1247.pdf
https://hackmd.io/7OODKWQZRRW9RxM5BaXtIw
https://eprint.iacr.org/2022/1072.pdf

analysis on the usage of the Fiat-Shamir heuristic in this setting.

In addition, we audited low-level building blocks, such as base and scalar fields of the elliptic curves in
gnark cryptographic libraries. The gnark project implements an open-source, low-level cryptographic
library written in Go that provides tools for working with zk-SNARKs (zero-knowledge succinct
non-interactive arguments of knowledge). While gnark offers high-level APIs to build circuits, the
underlying cryptography is implemented in gnark-crypto.

System Design
Our team examined the design of the gnark cryptographic libraries and found them to be well-designed,
with a strong emphasis on security.

We examined the various implementations of hash functions that map to either the base or the scalar
field of the bls12-377, bn254, the bw6-761 elliptic curves, as well as the mimc permutation. We
analyzed the code against standard errors, such as high biases, overflows, or unsafe parameter choices
and could not identify any issues.

Moreover, the Linea team has implemented hash to field functions for bls12-377 and bn254, based on
the Short Integer Solution (SIS) problem, which we analyzed and discussed with the Linea team in detail.
Our team did not identify any issues relating to these areas of concerns.

We also investigated the extension field towers for those curves and checked whether pairings are
generated properly by comparing the implementation against their specifications and identified an issue
(Issue E).

Our team additionally reviewed the fft code and checked whether proper tests are in place. We analyzed
their implementation of an Interactive Oracle Proof for a permutation and a quotient argument and
identified an Issue (Issue D).
We assessed the implementation of the KZG polynomial commitment scheme. Assuming that the used
randomness (Powers of Tau) is computed in a safe way, (e.g., by means of a proper multi-party
computation), our team could not identify any issues.

Furthermore, we analyzed the GKR implementation in the Linea team’s paper [BSB22] and the original GKR
paper [GKR08] by reviewing the implementations in both gnark and gnark-crypto for the different
elliptic curves, which differ only with regards to the use of the claimsmanager and different gate
definitions. Our team could not identify any issues relating to these areas of concerns. However, we
recommend writing a proper specification for these implementations of GKR since the underlying
academic work [BSB22] has some inconsistencies and does not include all the details of the specification
(Suggestion 2).

Our team also analyzed the various implementations of the sumcheck protocol operations performed
through the GKR proving and verifying mechanism and the relevant topological sorting functions. We
additionally thoroughly reviewed the use of the Fiat-Shamir heuristic, which renders the GKR proof
non-interactive, and could not identify issues within the GKR functionality.

Code Quality
Our team found the code to be clean, well-organized, and in adherence to standard best practices for
advanced cryptography, which we found to be considerately implemented.

Security Audit Report | gnark | Consensys Software, Inc. 5
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2022/1072.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/2008-DelegatingComputation.pdf
https://eprint.iacr.org/2022/1072.pdf

Tests

The repositories in scope include sufficient test coverage.

Documentation and Code Comments
The documentation provided by the Linea team was broad and sufficient. Our team noted some ways to
improve the documentation even further through updating the academic reference [BSB22] to the GKR
implementation in regard to some inconsistencies (Suggestion 1) and adding a specification (Suggestion
2). Additionally, code comments contain some inaccuracies, which we recommend be corrected
(Suggestion 3).

Scope
The scope of this review did not include the fr/permutation/permutation.go repository.
Additionally, our team did not manually audit internal/fptower/e2_amd64.s but rather reviewed
whether the Linea team implemented proper tests by comparing the system against a high level
implementation.

Dependencies

Our team did not identify any vulnerabilities in the implementation's use of dependencies.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Incorrect Computation of Negative Factorial Resolved

Issue B: Incorrect Polynomial Evaluation for Domain Shifts Greater Than Five Resolved

Issue C: Polynomial Addition Potentially Computes Unexpected Sum Determined Non-Issue.

Issue D: Permutation NIZK Does Not Include FFT Generator in the Transcript Unresolved

Issue E: Incorrect Conjugate in F_(p^3) for BW6-761, BW6-756 and BW6-633 Resolved

Suggestion 1: Update Academic Reference Unresolved

Suggestion 2: Write Specification for GKR Unresolved

Suggestion 3: Update Code Comments Partially Resolved

Issue A: Incorrect Computation of Negative Factorial

Location

std/sumcheck/lagrange.go#L7

Security Audit Report | gnark | Consensys Software, Inc. 6
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://eprint.iacr.org/2022/1072.pdf
https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bls12-377/fr/permutation/permutation.go
https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bn254/internal/fptower/e2_amd64.s
https://github.com/LeastAuthority/Consensys-gnark/blob/master/std/sumcheck/lagrange.go#L7

Synopsis

The implementation of the negative factorial function negFactorial(n) computes
negFactorial(1)=1, but it should compute negFactorial(1)=-1. As a consequence, the zero’th
Lagrange polynomial L_0 is computed incorrectly for any linear (degree 1) Lagrange base.

Impact

The impact is low since linear interpolation occurs rarely – if at all – in targeted applications, such as
zero-knowledge proving systems. However, in cases where linear interpolation would occur, the Issue will
lead to the generation of false proofs.

Remediation

We recommend implementing a proper negative factorial function.

Status

The Linea team has resolved this Issue in PR1158.

Verification

Resolved.

Issue B: Incorrect Polynomial Evaluation for Domain Shifts Greater Than
Five

Location

fr/iop/polynomial.go#L184

Synopsis

The function evaluates a polynomial at a given point. However, since the computation is dependent on the
size of the associated shift factor of the polynomial, the function fails to initialize the fft generator g.

Preconditions

The shift factor of the polynomial would have to be larger than five.

Remediation

We recommend initializing g to be fft.Generator(uint64(p.size)).

Status

The Linea team will be resolving this Issue with PR539 by initializing g correctly.

Verification

Resolved.

Issue C: Polynomial Addition Potentially Computes Unexpected Sum

Location

fr/polynomial/polynomial.go#L98

Synopsis

For correct execution, the function p.Add(p1, p2)must check if p is equal to the larger polynomial
bigger of p1 or p2. However, the function only checks whether the degrees and the constant terms of p

Security Audit Report | gnark | Consensys Software, Inc. 7
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/gnark/pull/1158/files
https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bls12-377/fr/iop/polynomial.go#L184
https://github.com/Consensys/gnark-crypto/pull/539/files
https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bw6-761/fr/polynomial/polynomial.go#L98

and bigger are equal.

Impact
Without loss of generality, and assuming deg(p1) < deg(p2), an attacker can use the missing checks
to compute p ← p + p1 for p ≠ p2, instead of the expected result p ← p1 + p2.

Preconditions

The constant terms of p and p2 would have to be equal.

Feasibility

Straightforward.

Remediation

We recommend implementing equality checks for all coefficients.

Status

During the verification phase, our team determined this finding to be a Non-Issue, as the check is on the
pointer addresses and not the constant terms.

Verification

Determined Non-Issue.

Issue D: Permutation NIZK Does Not Include FFT Generator in the
Transcript

Location

fr/permutation/permutation.go#L135

Synopsis

According to the principles of the strong Fiat-Shamir transformation [DMW+23], the FFT domain generator
should be part of the initial Fiat-Shamir transcript.

Impact

Without an inclusion of the generator into the initial transcript, a malicious prover might be able to
strategically change the generator as a function of the proof, the witness, and the Fiat-Shamir
randomness to, for example, find a point where the argument is false, but the proof is correct (since
soundness is not perfect). While we were not able to leverage this Issue to perform an attack, including
the generator into the transcript is common practice.

Remediation

We recommend including the generator into the initial transcript before any randomness is derived.

Status

The Linea team stated that it is unlikely that the prover would be able to choose the FFT domain generator
and have therefore decided not to fix this Issue. However, our team still recommends addressing this
finding, as leaving this Issue unresolved could lead to a malleable situation.

Verification

Unresolved.

Security Audit Report | gnark | Consensys Software, Inc. 8
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bls12-377/fr/permutation/permutation.go#L135
https://eprint.iacr.org/2023/691.pdf

Issue E: Incorrect Conjugate in F_(p^3) for BW6-761, BW6-756 and BW6-633

Location

internal/fptower/e3.go#L128

Synopsis

The code implements incorrect conjugate functions in the degree three extension fields F_(p^3) for the
elliptic curves BW6-761, BW6-756 (out of scope), and BW6-633 (out of scope).

Impact

None. The functions are not used anywhere in the codebase.

Technical Details

The implementation uses -1 to compute the conjugate, while it should use the cubic non-residue -4,
according to the specification of the associated fp-towers.

Remediation

We recommend either deleting or rewriting the conjugation functions.

Status

The Linea team has resolved this Issue by removing the conjugation functions in PR514.

Verification

Resolved.

Suggestions

Suggestion 1: Update Academic Reference

Location

Examples (non-exhaustive):

std/gkr/gkr.go

fr/gkr/gkr.go

Synopsis

The academic reference to the GKR implementation should include correct and precise information. Our
team identified the following instances within the reference paper [BSB22] that need updating:

● In Figure 15 (p. 15): V_O(\rho) is not defined.
● In Figure 15 (p. 15): The claim register claims is only defined in a comment. Type definition

could be made more direct.
● Definition B.2 (p. 14): The batch assignment should be defined for the specific cases of input and

output gates.
● In Figure 15 (p. 15): The call to miniProtocol2 should be on (v, claim').
● Remark B.3 (p. 14): For the defining equation for B(v)(x) over K^n, the summation should be

over the hypercube {0,1}^n.

Security Audit Report | gnark | Consensys Software, Inc. 9
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bw6-761/internal/fptower/e3.go#L128
https://github.com/Consensys/gnark-crypto/pull/514
https://github.com/Consensys/gnark/blob/master/std/gkr/gkr.go
https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bls12-377/fr/gkr/gkr.go
https://eprint.iacr.org/2022/1072.pdf

Mitigation

We recommend updating the paper.

Status

The Linea team has acknowledged the suggestion and created a GitHub issue (#1280)to address the
finding.

Verification

Unresolved.

Suggestion 2: Write Specification for GKR

Location

Examples (non-exhaustive):

std/gkr/gkr.go

fr/gkr/gkr.go

Synopsis

While an academic reference is a useful resource that developers and auditors can refer to, it does not
serve the same purpose as a specification, which could contain more information about the extension
field tower and be a necessary addition to this complex protocol.

Mitigation

We recommend considering writing a specification for Linea GKR.

Status

The Linea team has acknowledged the suggestion and created a GitHub issue (#1280) to address the
finding.

Verification

Unresolved.

Suggestion 3: Update Code Comments

Location

Multiple locations throughout the codebase.

Synopsis

The following code comments contain inaccuracies:

● std/sumcheck/lagrange.go#L25 should be updated to be δ_i(at) by noting it is equal to
δ_{i-1}(at) × (r-i+1) × (r-i)⁻¹ × i⁻¹ × (-len(values)+i).

● The definition of the Ring in fr/sis/sis.go#L72 should be updated to Z_p[X]/X^d + 1.
● In fr/iop/ratios.go#L55, (Π_{k<j}Π_{i<m}(β-Pᵢ(ωᵏ)))/(β-Qᵢ(ωᵏ)) should be updated

to Π_{k<j}Π_{i<m} (β-Pᵢ(ωᵏ))/(β-Qᵢ(ωᵏ)).
● In internal/fptower/e2.go#L104, as well as in similar locations in other curves, the

comment should be updated to describe the correct functionality.

Security Audit Report | gnark | Consensys Software, Inc. 10
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Consensys/gnark/issues/1280
https://github.com/Consensys/gnark/blob/master/std/gkr/gkr.go
https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bls12-377/fr/gkr/gkr.go
https://github.com/Consensys/gnark/issues/1280
https://github.com/LeastAuthority/Consensys-gnark/blob/master/std/sumcheck/lagrange.go#L25
https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bls12-377/fr/sis/sis.go#L72
https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bls12-377/fr/iop/ratios.go#L55
https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bls12-377/internal/fptower/e2.go#L104

● fr/polynomial/multilin.go#L158 should be updated to
res <- 1 + 2 * qᵢ * hᵢ - qᵢ - hᵢ.

● The extension field tower in
ecc/bw6-761/bw6-761.go#L18ecc/bw6-761/bw6-761.go#L17 should be defined as
F_(p^3)[x]/<v²-u>.

● In internal/fptower/e2.go#L43, the comment should be updated to warn users that this
function does not implement an order in finite fields that respects the field structure. (However,
our team notes that this function is not used anywhere in the codebase.)

Mitigation

We recommend updating the comments to prevent misunderstandings and security risks.

Status

The Linea team has resolved part of this suggestion (the fourth and sixth bullet point) with PR511.

Verification

Partially Resolved.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting

Security Audit Report | gnark | Consensys Software, Inc. 11
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bw6-761/fr/polynomial/multilin.go#L158
https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/564b6f724c3beac52d805e6e600d0a1fda9770b5/ecc/bw6-761/bw6-761.go#L18
https://github.com/LeastAuthority/Consensys-gnark-crypto/blob/master/ecc/bls12-377/internal/fptower/e2.go#L43
https://github.com/Consensys/gnark-crypto/pull/511

services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live

Security Audit Report | gnark | Consensys Software, Inc. 12
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | gnark | Consensys Software, Inc. 13
20 September 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

