o

Least Authority

PRIVACY MATTERS

MetaMask Extension: Seed Phrase
Implementation
Security Audit Report

ConsenSys AG

Final Audit Report: 29 July 2022

Table of Contents

Overview
Background
Project Dates
Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments
Areas of Investigation
Code Quality

Documentation

Scope

Process Improvements

Suggestion 1: Decouple Mnemonic Generation from addAccounts

Suggestion 2: Expand Test Coverage

Suggestion 3: Build Recovery Tool

ion4: R ir r to Deliberatel ner. Mnemonic after Creating Passwor
Suggestion 5: Validate Generated Mnemonic
Suggestion 6: Do Not Allow Users to Bypass Verifying the Generated Mnemonic

Suggestion 7: Investigate LevelDB'’s Use of Previous Logs

Sugaestion 8: Clear kevring from M fore Persisting to Storage i
createNewVaultAndKeychain

Suggestion 9: Consider Exploring These Areas for Further Investigation

Suggestion 10: Fix Onboarding Flow Check

Suggestion 11: Develop and Document a Process for User Error Reporting and Response

A L Authori

Our Methodology

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background

MetaMask requested that Least Authority perform a security audit of the MetaMask extension’s seed
phrase implementation. MetaMask is a browser extension wallet that handles account management and
user interaction with the Ethereum blockchain, in addition to interacting with decentralized applications

(dApps).

Project Dates

November 17 - December 14: Code review (Completed)
December 17: Delivery of Initial Audit Report (Completed)
July 26 - 28: Verification completed (Completed)

July 29: Delivery of Final Audit Report (Completed)

Review Team

Jehad Baeth, Security Researcher and Engineer

Alicia Blackett, Security Researcher and Engineer

Anna Kaplan, Cryptography Researcher and Engineer
Ann-Christine Kycler, Cryptography Researcher and Engineer
Justin Regele, Cryptography Researcher and Engineer

Coverage

Target Code and Revision

For this audit, we performed research, investigation, and review of the MetaMask Extension: Seed Phrase
Implementation followed by issue reporting, along with mitigation and remediation instructions as
outlined in this report.

The following code repositories are considered in-scope for the review:

MetaMask Browser Extension: https:/github.com/MetaMask/metamask-extension
Eth Keyring Controller: https://github.com/MetaMask/KeyringController

HD Keyring: https://qgithub.com/MetaMask/eth-hd-keyring

Simple Keyring: https://github.com/MetaMask/eth-simple-keyring

Specifically, we examined the Git revisions for our initial review:
MetaMask Browser Extension: f7c6b3228b7ac0a94a98356415a465157091c31e
Eth Keyring Controller: 138139aea5427478f33f16347549b2b3797f73bf

HD Keyring: 65fc900593115511f6aaa9191fb525d4e144fb8a

Simple Keyring: a1ce8d2c360e348d49e980915a4a94feb270e4e2

For the verification, we examined the Git revision:

MetaMask Browser Extension: 1caab93c07dd7bcdf90991f4c8d23d73e706610c

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/MetaMask/metamask-extension
https://github.com/MetaMask/KeyringController
https://github.com/MetaMask/eth-hd-keyring
https://github.com/MetaMask/eth-simple-keyring

Eth Keyring Controller: 0a92a4b2ef80b665ae8240881b3a1f2d7715d514
HD Keyring: 52391a2a384aab545765838ed4bbe25d1608d0ed

Simple Keyring: f8¢9105825953e€926480e84c001e30ded5e8ebdf

For the review, these repositories were cloned for use during the audit and for reference in this report:

MetaMask Browser Extension:

https://github.com/LeastAuthority/metamask-extension-2

Eth Keyring Controller:
https://github.com/LeastAuthority/KeyringController

HD Keyring:
https://qithub.com/LeastAuthority/eth-hd-keyring

Simple Keyring:
https://github.com/LeastAuthority/eth-simple-keyring

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Supporting Documentation

The following documentation was available to the review team:

MetaMask Browser Extension README.md:
https://github.com/LeastAuthority/metamask-extension-2/blob/develop/README.md
Eth Keyring Controller README.md:
https://github.com/LeastAuthority/KeyringController/blob/main/README.md

HD Keyring README.md:
https://github.com/LeastAuthority/eth-hd-keyring/blob/main/README.md

Simple Keyring README.md:

https://qithub.com/LeastAuthority/eth-simple-keyring

The Keyring Class Protocol:
https://github.com/LeastAuthority/KeyringController/blob/main/docs/keyring.md
Developer Documentation:

https://docs.metamask.io/quide/

MetaMask Internal Documentation:
https://github.com/LeastAuthority/metamask-extension-2/tree/develop/docs

Seed Phrase Claims History google document (shared with Least Authority via Slack on 18
November 2021)

Guide.pdf (shared with Least Authority via Slack on 7 November 2021)

Vault-history.zip (shared with Least Authority via Slack on 18 November 2021)

Norton logs-20211119T184714Z-001.zip (shared with Least Authority via Slack on 19 November
2021)

drive-download-20211118T195918Z-001.zip (shared with Least Authority via Slack on 18
November 2021)

Log files analysis.xIsx (shared with Least Authority via Slack on 19 November 2021)
Private key.pdf (shared with Least Authority via Slack on 19 November 2021)

RSP adjust.pdf (shared with Least Authority via Slack on 19 November 2021)

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/metamask-extension-2
https://github.com/LeastAuthority/KeyringController
https://github.com/LeastAuthority/eth-hd-keyring
https://github.com/LeastAuthority/eth-simple-keyring
https://github.com/LeastAuthority/metamask-extension-2/blob/develop/README.md
https://github.com/LeastAuthority/KeyringController/blob/main/README.md
https://github.com/LeastAuthority/eth-hd-keyring/blob/main/README.md
https://github.com/LeastAuthority/eth-simple-keyring
https://github.com/LeastAuthority/KeyringController/blob/main/docs/keyring.md
https://docs.metamask.io/guide/
https://github.com/LeastAuthority/metamask-extension-2/tree/develop/docs

RSP write 2021.04.09.pdf (shared with Least Authority via Slack on 19 November 2021)
TimelLine - Issues history.docx (shared with Least Authority via Slack on 19 November 2021)
RSP adjust.pdf (shared with Least Authority via Slack on 28 November 2021)

TimeLine - Issue history - updated.2021.12.13.docx (shared with Least Authority via Slack on 13
December 2021)

Areas of Concern

Our investigation focused on the following areas:

e Correctness of the implementation of the seed phrase;
e The possibility of the seed phrase generating different account lists; and
e Anything else identified as critical to these areas during the initial analysis phase.

Findings

General Comments

Our team performed a security audit of the MetaMask extension’s seed phrase implementation. In
particular, the focus of our investigation was a potential error in the seed phrase implementation, in
response to MetaMask user claims that the same seed phrase can generate different account lists.
According to the MetaMask team, the occurrence of this error has been credibly reported by a number of
users. As a result, a concerted effort has been undertaken to consistently replicate the seed phrase error
by MetaMask, one of the MetaMask users who reported the issue, and the Least Authority team. In our
independent review, we performed a close investigation of the potential causes of the seed phrase error in
an effort to identify appropriate solutions. In doing so, we also examined the overall correctness of the
MetaMask extension seed phrase implementation.

Seed Phrase Error

Several MetaMask users have reported the occurrence of the seed phrase error. As a result, the
MetaMask team has been in close communication with one MetaMask user in particular, who has
reported and documented the inconsistency. Specifically, upon recovering a wallet from the seed phrase,
a different wallet is generated that the user has not previously seen, instead of the user’s previous wallet.
From our analysis of the code and the MetaMask user’s accounts, we believe that in some edge cases,
the wallet generates a hidden, unknown seed phrase at a very early stage that overwrites the seed phrase
the user has saved. However, we are uncertain about when and how this occurs.

Areas of Investigation

With the exception of users reporting the error and this particular MetaMask user’s documented evidence
of unexplained behavior, there is very limited information available regarding the seed phrase error or
evidence of a bug in the implementation resulting in this error. As a result, our team attempted several
approaches to reproduce the error, in addition to completing a close review of the seed phrase
implementation more generally.

Overwritten Addresses

During our analysis of the documentation provided by the MetaMask user, we confirmed that two
addresses had been corrupted into a single address, with one address overwriting a portion of another. A
picture of a memory image provided to us displayed two addresses (which have been anonymized for this
report):

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 4
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

OXAA

and
0xBB

had become corrupted into a single address of the form:
OxAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBB

This indicates that corruption in memory or during storage occurred on the operating system (0S) or
browser application level. The corrupted address exceeds the expected address length for a public key.
Additionally, the offset at which address A is overwritten by address B does not fall on a word boundary,
as would be expected if an error in splicing blocks had occurred. This leads us to conclude that an error
occurred either in memory, which was later persisted to disk, or when attempting to write the address to
disk.

As a result of this evidence of addresses being overwritten either in memory or on disk, the uncertainty of
the execution environment in which the MetaMask extension is running guided part of our investigation
efforts, which we outline further below.

Mnemonic and Seed Generation

We analyzed the seed generation from the mnemonic implementation and found that it follows best
practices and industry standards. While initializing the wallet and generating the seed from the mnemonic,
the function mnemonicToSeed is called from bitcoinjs/bip39. The generated seed is then used to
generate an Ethereum HD key through the function fromMasterSeed from
ethereumjs/ethereumjs-wallet, which uses the function fromMasterSeed from
ethereum/js-ethereum-cryptography.

The mnemonic can also be generated before the wallet is initialized, in which case the seed is generated
from the newly generated mnemonic. The function generateMnemonic is then called from
bitcoinjs/bip39, which defaults to the 128-bit strength.

We did not identify any issues with the implementation of BIP39 in these libraries. In addition, we did not
find any mismatches with the usage of these flows to generate an HD key from a given mnemonic, or
when generating a mnemonic first and then passing it to generate an HD key. However, we found that the
addAccounts function in the HD Keyring class serves a dual function of mnemonic generation and
account creation and could have severe side effects in the event that _initFromMnemonic does not
execute properly. As a result, we recommend decoupling the functionality of generating the mnemonic
from addAccounts, as it could result in generating a new mnemonic of which the user is unaware
(Suggestion 1). In addition, the correctness of mnemonics should be checked in order to adhere to the
BIP39 standard. As a result, we recommend validating the passed mnemonics (Suggestion 5).

Race Conditions

We explored the possibility of LevelDB log files persisting between installations of the MetaMask
extension. Once a user enters a password in the onboarding flow, a seed phrase is created for a wallet. In
the event that a user then abandons the onboarding flow, the seed phrase may still appear in the LevelDB
log file, depending on how far the onboarding process proceeds. This could have been the experience of
the MetaMask user who reported the problem. In their supporting evidence, they describe “downloading
and installing, but not creating, a wallet” on at least two occasions.

When the MetaMask extension is uninstalled, the intended behavior of the Chrome browser is that the
LevelDB database found in the Local Extension Settings Directory is deleted. It may be possible that a

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 5
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/eth-hd-keyring/blob/65fc900593115511f6aaa9191fb525d4e144fb8a/index.js#L73-L77
https://github.com/bitcoinjs/bip39/
https://github.com/ethereumjs/ethereumjs-wallet
https://github.com/ethereum/js-ethereum-cryptography
https://github.com/LeastAuthority/eth-hd-keyring/blob/65fc900593115511f6aaa9191fb525d4e144fb8a/index.js#L46

race condition occurs when uninstalling a MetaMask extension since removing the MetaMask extension
is executed in a separate thread than that of the extension itself. This could result in the MetaMask
extension’s Local Extension Settings Directory persisting between installs. If LevelDB saves to the log file
immediately after it is deleted, but prior to the call to the operating system to remove the directory, then
the delete directory API call will fail since the Windows APIs for deleting directories require empty

directories (RemoveDirectoryA; RemoveDirectoryW; RemoveDirectoryTransaction). This would leave both
the directory and the log file intact.

Upon reinstallation of the MetaMask extension, LevelDB will initialize a new database, in which the log file
from the previous installation will be renamed as LOG. 01d. It is unknown to our team how this LOG.o1d
file could corrupt the current database, as LevelDB was out of scope for this security audit. However, we
discovered particular commits to the LevelDB repository that indicate certain optimizations were made to
load older log files when opening the database (see references in Suggestion 7). In addition, inspection of
the log files over the course of the audit demonstrated that LevelDB will, at times, attempt to recover older
versions. This could indicate that a combination of race conditions and failures could cause the LevelDB
storage used by the MetaMask extension to revert to an earlier state. As such, we recommend a thorough
security audit of LevelDB's use of older logs and the resulting implications for the functionality of the seed

phrase implementation (Suggestion 7).

As mentioned above, we discovered that the seed phrase is generated once a user enters a password
during the onboarding flow. If a user aborts at this point in the process prior to seeing the seed phrase, the
seed phrase continues to exist in memory and can be written to disk. If the MetaMask extension is then
uninstalled but the scenario described above has occurred, a user may end up with a seed phrase that
they are unaware of after reinstalling the MetaMask extension.

We identified a sequence of preconditions and events that would likely be necessary to cause the seed
phrase error to occur:

1. The MetaMask extension is installed, and a password is set, but the user aborts before seeing the
seed phrase. Even though the user is unaware of this seed phrase, it is already loaded into heap
memory and is potentially stored to LevelDB;

2. The LevelDB log file (* . 1og) persists the MetaMask extension uninstall through a race condition
where LevelDB writes to the log file immediately before the browser attempts to remove the
directory;

3. Upon reinstallation of the MetaMask extension, the user uses the same password as before; and

4. After onboarding, LevelDB encounters a problem with the log file and recovers from LOG.o1d.

In one instance, one of the Least Authority security researchers believes they observed this irregular
behavior, but were unable to reproduce it further. This occurred while having a breakpoint set in the HD
Keyring addAccounts function on a newly reinstalled extension, during which a previously stored seed
phrase appeared. Due to the documentation by the MetaMask user, and our team observing irregular
behavior consistent with the seed phrase error, we recommend a further investigation into LevelDB

(Suggestion 7).

Multiple Keyrings Theory

We investigated the possibility that a second keyring was added to the Keyring Controller’s keyrings array.
The getKeyringForAccount function abstracts a way in which a keyring is used for a particular
account, which would allow the user to use accounts from a second keyring seamlessly without user
interaction.

When an account is added, the MetaMask controller will identify the primary Keyring by finding the first
HD Key Tree keyring with a hard coded index of 0 (addNewAccount). In the event that there were multiple
HD Key Tree keyrings in the Keyring Controller’s keyrings array, the second HD Key Tree keyring would be

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 6
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-removedirectorya
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-removedirectoryw
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-removedirectorytransacteda
https://github.com/google/leveldb/blob/master/doc/impl.md#log-files
https://github.com/LeastAuthority/KeyringController/blob/main/index.js#L673
https://github.com/LeastAuthority/metamask-extension-2/blob/develop/app/scripts/metamask-controller.js#L1713-L1716

ignored. In a scenario where one HD Tree keyring has an unknown seed phrase, but a second HD Key Tree
keyring has a seed phrase known to the user, this would lead to a scenario as experienced by the
MetaMask user (i.e., recovering the wallet does not restore the intended account, if the account was
linked to the HD Tree keyring with the unknown seed phrase). However, we were unable to identify a way
for the Keyring Controller to contain multiple HD Key Tree keyrings in its keyring array.

Double Onboarding

Our team investigated the possibility of multiple keyrings being generated if a user onboards twice. In
registerOnboarding, a check is made if this.completedOnboarding is true, indicating that the
user has previously onboarded. However, this.completedOnboarding appears to be accessed
incorrectly. When a user completes onboarding, the completeOnboarding function updates the state of
this.store setting this.store.completedOnboarding to true. A proper check in
registerOnboarding would check the value of this.store.completedOnboarding. Instead, a
check to verify this.completedOnboarding is made, a value that will always be false as it is never
set. As a result, the function will never abort because the check will always resolve to false, enabling
users to onboard again. Our team was able to load two onboarding pages and to onboard multiple times
to the wallet. Therefore, we recommend that the onboarding check be implemented correctly (Suggestion

10).

If a user onboards twice, we observed that two keyrings are stored, but the second is of type Ledger
Hardware and has an empty accounts array. From the MetaMask controller, the function
addNewKeyring is only called from getKeyringForDevice and importAccountWithStrategy.In
the case of getKeyringForDevice, the Keyring type is determined by a switch statement that returns
an error if a predefined hardware wallet is not used. Due to this switch statement, it would be impossible
to create an HD Tree keyring through this function call. With importAccountWithStrategy, the keyring
type is hard coded as a Simple Key Pair type and can therefore never be an HD Key Tree. Since these two
code paths prevent the creation of a second HD Key Tree keyring, double onboarding would not cause a
double HD Key Tree keyring to cause the seed phrase error.

addNewKeyring

We investigated the occurrences of addNewKeyring to see if it could be used to generate multiple HD
Key Tree keyrings. This function is only called twice and both instances are called from within the Keyring
Controller's createNewVaultAndRestore and createFirstKeyTree functions. We discovered a
subtle difference in the sequence of calls that could potentially cause keyrings in storage to become out
of sync in the event there was a temporary failure in the OS writing to disk, as detailed below.

IncreateNewVaultAndRestore, the call to addNewKeyring is preceded first by a call to
clearKeyrings, which sets the keyrings array to an empty array, and then a call to
persistAllKeyrings, which serializes the now empty keyring array to the vault. However,
createFirstKeyTree only precedes the call to addNewKeyring with a call to clearKeyrings. This
function is only called in a single place (inside of createNewVaultAndKeychain) where it is
sandwiched between calls to persistAllKeyrings. The first persists the current state of the keyring,
and the second overwrites it with the new keyrings.

The persistAllKeyrings function will only serialize and encrypt to the vault what is stored in the
keyrings array. The subtle difference between createNewVaultAndRestore and
createFirstKeyTree is that, in the former, an empty keyring is persisted to storage by first calling
clearKeyrings and then persistAllKeyrings. In the latter, however, persistAllKeyringsis
called before clearKeyrings, with the assumption that the keyrings array is already empty.

This subtle difference means that if createNewVaultAndKeychain is called when a keyring already
exists, it would result in two separate writes to the storage of different keyrings, with the second

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 7
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/metamask-extension-2/blob/develop/app/scripts/controllers/onboarding.js#L73
https://github.com/LeastAuthority/metamask-extension-2/blob/develop/app/scripts/controllers/onboarding.js#L49
https://github.com/LeastAuthority/metamask-extension-2/blob/develop/app/scripts/metamask-controller.js#L1574
https://github.com/LeastAuthority/metamask-extension-2/blob/develop/app/scripts/metamask-controller.js#L1815
https://github.com/LeastAuthority/KeyringController/blob/138139aea5427478f33f16347549b2b3797f73bf/index.js#L195
https://github.com/LeastAuthority/KeyringController/blob/main/index.js#L95
https://github.com/LeastAuthority/KeyringController/blob/main/index.js#L500
https://github.com/LeastAuthority/KeyringController/blob/main/index.js#L75

overwriting the first. Under normal operating circumstances, this would occur without problems. However,
since our team has observed the aforementioned instance of a corrupted address (i.e., by being partially
overwritten by another address), in the event of an edge case error scenario in the execution environment
or in LevelDB, this difference could cause the keyrings in storage to become out of sync with the keyrings
stored in memory. A method to protect against this would be to not assume the keyrings array is empty
when calling createNewVaultAndKeychain. As a result, we recommend clearing the keyring in
memory before persisting it to storage, as is done in createNewVaultAndRestore (Suggestion 8).

User Interface Investigation

Our team investigated locations in the User Interface (Ul) implementation that trigger the creation of the
keyrings private key import and json import. In both of these Ul components, a button click or pressing
enter on the keyboard creates keyrings. We investigated the implication of these two events happening
nearly simultaneously and if that would result in two keyrings being stored in the Keyring Controller. We
found that both flows create a Keyring through importAccountWithStrategy, which resultsin a
Simple Key Pair keyring being created. As a result, an HD Key Tree keyring cannot be created using this
method. Therefore, it is impossible to create a hidden HD Key Tree keyring that a user is not aware of.

Irregular APl Response

We examined the log files sent by the MetaMask user to identify any past event that may have caused a
synchronization issue between LevelDB and the wallet state. On at least two occasions, the b-cube API
used by the MetaMask user appeared to drop a decimal point and post request times dated 1975. The
erroneous API responses we observed were most likely requested on 6 April 2021 and 13 May 2021. The
error handler calls the function forceUpdateMetaMaskState when this occurs, which has the potential
to change the state of the wallet. The 6 April 2021 date comes after the MetaMask user’s unknown wallet
had already been created, so we do not believe this particular event could have caused the unknown
wallet to be generated. However, we investigated whether a similar prior event could have caused the
seed phrase error but were unable to draw any conclusions about an incorrect date causing a wallet’s
seed phrase to be reset.

Code Quality

Our team found the codebase of the MetaMask extension’s seed phrase implementation to be well written
and organized, and generally adhering to best practices. As detailed above, the usage of Ethereum and
BIP39 libraries adheres to industry standards and we could not identify issues in the implementation of
the mnemonic generation.

Tests

The in-scope repositories contain extensive test coverage. However, there are currently no tests
implemented for complicated scenarios that could simulate the impact of unexpected user workflows on
the application’s state. We recommend expanding test coverage to include edge case scenarios more
comprehensively, and refining the variables tested to identify process errors as well as results. This would
aid in identifying edge case scenarios that could cause the system to behave in unintended or unexpected

ways (Suggestion 2).

Documentation

The MetaMask extension seed phrase implementation documentation was thorough and comprehensive.
In addition to the project documentation, the MetaMask team provided the MetaMask user’s log files, the
results of forensic type investigations carried out by the user, working directories used by the users
Chrome browser, and a description of the steps the user followed (based on recollection) when the seed

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 8
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/metamask-extension-2/blob/develop/ui/pages/create-account/import-account/private-key.js
https://github.com/LeastAuthority/metamask-extension-2/blob/develop/ui/pages/create-account/import-account/json.js

phrase error was first observed. Furthermore, the MetaMask team attempted to collect data points from
other impacted users. However, the information was limited, vague, and inconclusive.

Scope

The in-scope repositories for this security audit were limited to the MetaMask extension’s seed phrase
implementation. All other components of the MetaMask extension were explicitly considered out of
scope. As a result, in reviewing the key handling components, we assumed that the rest of the system
behaves as intended and does not introduce any security vulnerabilities. However, due to the limited
scope of the security audit, we are unable to make statements about the general security of the
MetaMask extension in its entirety.

Moreover, due to the unique nature of the seed phrase error described in this report, we recommend that
the scope of this investigation be expanded to include areas that were considered out of scope for this

review (Suggestion 9).

Process Improvements

Given the limited information available about this error, it is difficult to predict the number of users that
may be unknowingly impacted by its occurrence, particularly since users are only made aware of the seed
phrase error when they are forced to restore access from the seed phrase. At the time of delivering this
report, only a small number of MetaMask users have reported encountering a similar issue. However, this
may not represent the actual number of impacted users. As a result, we recommend providing MetaMask
users with incentives, resources, and tooling in order to verify that their seed phrase is correct when their
private keys are still accessible. If the user seed phrase is stored incorrectly, consistent with the seed
phrase error, the seed phrase for all involved keyrings should be discoverable from the LevelDB log files.
We suggest simplifying this process for the user by utilizing a recovery mechanism (Suggestion 3).

Furthermore, we recommend defining a clear process for MetaMask users to report errors, which would
be helpful in identifying errors and security vulnerabilities in similar situations, and in identifying solutions.
We suggest that this process facilitate the gathering of all relevant data and include a questionnaire to
gather background information about the nature of the error and the execution environment, in addition to
enabling users to share relevant log files, screenshots, and other supporting documentation. Defining an
internal process of this nature would also help in tracking user errors effectively, in addition to
documenting and sharing findings, which facilitates future research and prevents duplicate effort on

similar leads (Suggestion 11).

Specific Suggestions

We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

Suggestion 1: Decouple Mnemonic Generation from addAccounts Resolved

Suggestion 2: Expand Test Coverage Partially Resolved
ion 3: Build Recovery Tool Unresolved

Suggestion 4: Require User to Deliberately Generate a Mnemonic after Unresolved

Creating Password

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 9
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 5: Validate Generated Mnemonic Resolved

Suggestion 6: Do Not Allow Users to Bypass Verifying the Generated Unresolved
Mnemonic
Suggestion 7: Investigate LevelDB's Use of Previous Logs Resolved

Suggestion 8: Clear keyring from Memory before Persisting to Storage in Resolved
r NewVaultAndKeychain

Suggestion 9: Consider Exploring These Areas for Further Investigation Resolved
Suggestion 10: Fix Onboarding Flow Check Resolved
Suggestion 11: Develop and Document a Process for User Error Reporting Resolved

and Response

Suggestions

Suggestion 1: Decouple Mnemonic Generation from addAccounts

Location

main/index.js#L45-147

Synopsis

The addAccounts function in the HdKeyring class serves a dual function of mnemonic generation and
account creation. When this function is called, a check if this.root is null is made. If this.root is
null, a mnemonic is generated. Under normal circumstances, this. root should always be set after a call
to _initFromMnemonic. However, considering the presence of an error where users receive a
mnemonic that they are unaware of, we consider this to be a dangerous coupling of functionality that
would best be separated into different components.

This function is called during the onboarding flow, when unlocking the wallet, and when a new account is
added. Creating a wallet begins with deserialization, through the deserialize () function, which takes
an optional opts argument. If the opts argument includes a mnemonic, then _initFromMnemonic is
called. Additionally, if opts has numberOfAccounts, then addAccounts is called. Another critical
variable set in this function is this. root, which is set to null in the prelude of deserialize().

When the MetaMask extension is first installed, and a fresh wallet is generated, the deserialize()
function will not have an mnemonic in the opts object, and so, when addAccount () is called,
_initFromMnemonic would not have been called and this. root will still be null. As a result,
addAccount () is used to generate the mnemonic for the entire wallet.

this.root is set as the end result of the operations in _initFromMnemonic. When
_initFromMnemonic is called, this.mnemonic is set with the argument passed to the
function.Therefore, if this function were ever called twice, it would overwrite the original mnemonic.

The danger in this approach is in the following three function calls that result in this. root being set. If
there is a failure in any of these functions, for any reason, including a failure from the larger execution
environment or operating system, this. root will not be set, leaving the keyring in a state where the next
call to addAccount will generate a new mnemonic to overwrite the original.

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 10
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/eth-hd-keyring/blob/main/index.js#L45-L47
https://github.com/LeastAuthority/eth-hd-keyring/blob/main/index.js#L26
https://github.com/LeastAuthority/eth-hd-keyring/blob/main/index.js#L73

const seed = bip39.mnemonicToSeed(mnemonic) ;
this.hdWallet = hdkey.fromMasterSeed(seed);
this.root = this.hdWallet.derivePath(this.hdPath);

We investigated the code in these function calls for any potential edge cases or anomalous behavior that
would cause a failure in rare cases but did not discover any irregularities.

Additionally, we found, through the use of a debugger, that a new seed phrase can only be generated
during the unlocking of the wallet or when adding a new account. If the seed phrase is regenerated during
wallet creation, the error is caught by verifySeedPhrase. However, during wallet unlocking,
addAccounts is called twice. If the error occurs on the first call to addAccounts, then the mnemonic is
overwritten silently, and a new wallet is generated. We observed that the MetaMask extension was
unpredictable in whether this new mnemonic persisted across the further locking and unlocking of the
wallet, indicating another issue regarding the integrity of the persistent storage.

Mitigation
We recommend removing the mnemonic generation from addAccounts and implementing it in a
separate flow that does not obstruct unlocking the wallet or adding accounts to a keyring.

Status
The MetaMask team has implemented the suggested mitigation.

Verification

Resolved.

Suggestion 2: Expand Test Coverage

Location

metamask-extension-2/tree/develop/test
KeyringController/tree/main/test
eth-hd-keyring/tree/main/test
eth-simple-keyring/tree/main/test

Synopsis

Test coverage of the repositories in-scope is extensive. We inspected the end-to-end testing and found
that while components are tested to prevent regression, more complicated scenarios that better simulate
the impact of unexpected user workflows on the application’s state could be added.

For example, the tests from-import-ui.spec. js do not test that a previous wallet has been removed,
or whether keyrings have been added as expected. Additionally, some tests, such as in
from-import-ui.spec.js andlock-account.spec. js only validate that the resulting account has
25 ETH in it, and not that the account’s address is what was expected.

Mitigation
We recommend adding unexpected flows to the end-to-end testing suite to protect against edge cases
where unusual user behavior could result in the corruption of the application state. As we suspect the

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 11
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/metamask-extension-2/tree/develop/test
https://github.com/LeastAuthority/KeyringController/tree/main/test
https://github.com/LeastAuthority/eth-hd-keyring/tree/main/test
https://github.com/LeastAuthority/eth-simple-keyring/tree/main/test

seed phrase error could be the result of system failure, running tests on systems with limited resources
might also prove invaluable.

Additionally, we recommend that the success of tests be determined by more conditions being met than
whether the wallet has 25 ETH. If the edge case occurs where the test restores a previously cleared wallet
that also had 25 ETH in it, the test would not catch the seed phrase error. We recommend randomizing the
ETH value across tests, as well as validating that the address of the wallet remains as expected.

Status

The Metamask team has created a PR to expand test coverage. However, there are components that are
still not covered.

Verification

Partially Resolved.

Suggestion 3: Build Recovery Tool

Synopsis

The MetaMask user was able to discover the mnemonic used to generate the account with the lost funds
through diligently decrypting every vault they found by manually parsing all the LevelDB files located in the
Local Extensions Settings directory of the MetaMask extension. This process was successful because
LevelDB is a time store of data and retains historical data rather than overwriting it. However, manually
searching the binary data format is tedious and requires a level of technical skill that many users do not
have.

Mitigation

We recommend building a recovery tool, as it could reveal any hidden mnemonics in the database if the
Local Extension Settings Directory has been preserved. Since LevelDB is an open source project with a
known file structure, it would be possible to create a tool that users who experience the issue could use to
crawl all LevelDB files and decrypt all vaults found with their chosen password.

Status

The MetaMask team has rejected the suggested mitigation stating that the costs do not justify the
benefits.

Verification

Unresolved.

Suggestion 4: Require User to Deliberately Generate a Mnemonic after
Creating Password

Synopsis

Currently, the mnemonic phrase is generated and visible in heap memory once the user has created their
password. However, it is not visible to the user, and they are unaware that it has been created. Not all
users who install a wallet complete the full onboarding flow in one pass, as they may stop and return to
the process after generating a password. Therefore, the user may be unaware that there potentially is a
mnemonic already created, which could be used by the wallet. The user is then not able to detect if there
has been an issue generating the mnemonic or that there might potentially be two mnemonics created
through events outside of their control.

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 12
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/MetaMask/KeyringController/pull/140

Mitigation
We recommend presenting users with a button that generates and reveals the mnemonic on the page
where users are given the option to reveal the mnemonic.

Status

The MetaMask team has not implemented the suggested mitigation, stating that the scenario described
above is highly unlikely due to the mutex used in the controller to prevent simultaneous vault generation.

Verification
Unresolved.

Suggestion 5: Validate Generated Mnemonic

Location

index.js#L46

Synopsis

The addAccounts function in the HdKeyring class serves a dual function of mnemonic generation and
account creation. When this function is called, a check if this.root is null is made. If this.root is
null, a mnemonic is generated through generateMnemonic from bitcoinjs/bip39. The call to the
function generateMnemonic defaults to the 128-bit strength and generates the correct checksum
through entropyToMnemonic.

As the checksum is being generated when generateMnemonic is called from bitcoinjs/bip39, the
correct structure of the mnemonics is not checked in the implementation. The checksum ensures that
even if, for example, the generation of mnemonics changes in the future, the code still checks that the
mnemonics generated are valid. In addition, the BIP39 standard recommends that this validation be
performed to aid in the upholding of the security assumptions of BIP39.

Mitigation
We recommend validating a generated mnemonic through validateMnemonic from

bitcoinjs/bip39.

Status
The MetaMask team has implemented the suggested mitigation.

Verification

Resolved.

Suggestion 6: Do Not Allow Users to Bypass Verifying the Generated
Mnemonic

Synopsis

Currently, when the user creates their initial wallet, they are given the choice between verifying the seed
phrase immediately or at a later time. However, If the seed phrase generated becomes corrupted or is not
the seed phrase expected by the user, they may deposit funds into the wallet before realizing that there is
a problem. This could lead to the loss of funds if the user must recover the wallet using the seed phrase,
but the seed phrase is associated with an account other than the one the user intended.

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 13
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/eth-hd-keyring/blob/65fc900593115511f6aaa9191fb525d4e144fb8a/index.js#L46
https://github.com/bitcoinjs/bip39/blob/5faee2c17b2195f30b03cb125df68c20d7dd584b/src/index.js#L139-L147
https://github.com/bitcoinjs/bip39/
https://github.com/bitcoinjs/bip39/blob/5faee2c17b2195f30b03cb125df68c20d7dd584b/src/index.js#L108-L138
https://github.com/bitcoinjs/bip39/
https://github.com/bitcoinjs/bip39/blob/5faee2c17b2195f30b03cb125df68c20d7dd584b/src/index.js#L148-L157
https://github.com/bitcoinjs/bip39/

Mitigation
We recommend requiring the user to verify the mnemonic immediately after it is generated.

Status

The MetaMask team has chosen not to implement the recommended mitigation, stating that this is an
intentional design decision.

Verification

Unresolved.

Suggestion 7: Investigate LevelDB’s Use of Previous Logs

Location

Synopsis

LevelDB might be optimizing load time by loading older logs. This could detrimentally affect users if an
unknown mnemonic is ever stored in LevelDB. As part of our review, we discovered the above-referenced
change that indicates this sort of behavior might be part of the developers’ intentions for LevelDB. Since
LevelDB was out of scope for the audit, we did not investigate further.

Mitigation

We recommend that an independent auditing team perform a security audit of how LevelDB handles older
log files and whether the presence of a mnemonic in an old log could cause the wallet to load an
unexpected mnemonic.

Status

Our team and the MetaMask team have agreed that an audit of LevelDB functionality is not feasible for
the MetaMask team.

Verification

Resolved.

Suggestion 8: Clear Keyring from Memory before Persisting to Storage in
createNewVaultAndKeychain

Location
index.js#L75

Synopsis

The assumption in createNewVaultAndKeychain is that the keyrings array is empty. The function
calls persistAllKeyrings twice: The first time to delete what is currently in storage, and the second
time to persist the freshly created keyring. In the first call, the assumption is that the keyrings array is
empty. If the keyrings array is not empty, this will result in two keyrings persisted to storage in a short
sequence. This should not cause any issues. However, in light of the corrupted address we discovered in

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 14
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://codereview.chromium.org/793423002
https://github.com/google/leveldb/commit/ac1d69da31205a979b5a8510f33c31ae977530f0
https://github.com/google/leveldb/commit/ac1d69da31205a979b5a8510f33c31ae977530f0
https://github.com/LeastAuthority/KeyringController/blob/138139aea5427478f33f16347549b2b3797f73bf/index.js#L75

storage, it can be assumed that writing to storage is not guaranteed to be consistent. This could result in
the new vault getting out of sync from what is stored in memory.

Mitigation
We recommend preceding the first call to persistAllKeyrings in createNewVaultAndKeychain
with a call to clearKeyrings.

Status
The MetaMask team has implemented the suggested mitigation.

Verification
Resolved.

Suggestion 9: Consider Exploring These Areas for Further Investigation

Synopsis

The scope of the current security audit was limited to the seed phrase implementation of the in-scope
repositories and the documentation provided by the MetaMask user. While we were not able to identify
the root cause of the seed phrase error, we do believe the audit highlighted a need for further inquiries into
other aspects of the ecosystem in which the MetaMask extension operates.

Mitigation
We recommend that the MetaMask team further investigate:

LevelDB;
Chrome’s consistency in writing data to storage from memory;
Engineering an environment to test for the corruption of data in a controlled fashion (For instance,
to have memory cleared while the _initFromMnemonic function is being run);

e Accumulating more information from users experiencing the problem, such as operating systems
and versions, and hardware configurations;

e Reports of Antivirus software deleting Chrome data upon identifying a “Potentially Unwanted
Program (PUP)” and deleting some essential LevelDB files in the process;
Whether external API failures could cause the wallet state to become corrupted;
The possibility of the Application Update Process causing inconsistency; and
How similar reports from users of the mobile application could be related.

While auditing closed source systems like the Windows operating system is not possible, an inquiry into
issues relating to memory usage and disk |0 might provide more information.

Status
The MetaMask team has acknowledged this suggestion and continues to investigate the areas listed

above.

Verification
Resolved.

Suggestion 10: Fix Onboarding Flow Check

Location

scripts/controllers/onboarding. js#L73

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 15
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://support.malwarebytes.com/hc/en-us/articles/360039019533-Malwarebytes-Endpoint-Protection-keeps-detecting-the-same-Google-Chrome-PUP
https://github.com/LeastAuthority/metamask-extension-2/blob/develop/app/scripts/controllers/onboarding.js#L73

Synopsis

During the completion of the onboarding flow, the completeOnboarding function updates the state of
this.store by setting this.store.completedOnboardingto true. Inthe registerOnboarding
function, however, this.completedOnboarding is checked. This results in the check always being
false, allowing the user to onboard again.

Mitigation
We recommend checking this.store.completedOnboardingin registerOnboarding.

Status
The MetaMask team has implemented the suggested mitigation.

Verification
Resolved.

Suggestion 11: Develop and Document a Process for User Error Reporting
and Response

Synopsis

The MetaMask user’s log files and the documentation that was provided to us during the security audit
contained important information about the usage and the execution environment, which significantly
aided our efforts. Similarly, providing MetaMask users with information about this error would likely assist
in solving similar problems and solicit additional user feedback that may help in identifying the cause of
the error.

Given that users are only made aware of the seed phrase error when they are forced to restore access
from the seed phrase, it is likely that there are users who are unknowingly impacted by its occurrence. As
a result, further investigation across the user base may provide MetaMask with helpful information in an
effort to resolve the error. Furthermore, notifying users of this potential error would allow them to secure
access to their funds before the relevant data is potentially lost.

Mitigation
We recommend developing a process that facilitates error reporting and response that includes, but is not
limited to, the following:

e Defining steps for obtaining relevant information about the execution environment, log files, and
other relevant application data from MetaMask users reporting similar problems;

e Utilizing the existing MetaMask user error reporting and support tools (e.g., MetaMask user
forums) to help the MetaMask team respond effectively to similar reports;

e Creating a questionnaire to gather usage information from users that can aid further investigation
into the error; and

e Including a process for properly handling Personal Identifiable Information (PII), given that log
files may contain sensitive user information.

Status

The MetaMask team has developed questionnaires for the mobile wallet and the browser extension wallet
to collect more specific information on errors in the implementation.

Verification

Resolved.

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 16
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority

We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts, and
zero-knowledge protocols. Additionally, the team can utilize various tools to scan code and networks and
build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit

https://leastauthority.com/security-consulting/.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis

Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 17
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results

We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions

We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing

Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | MetaMask Extension: Seed Phrase Implementation | ConsenSys AG 18
29 July 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

