
SSV Specification
Security Audit Report

Coin-Dash Ltd.
Final Audit Report: 3 July 2023

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Missing Check on Quorum for the RoundChange Justification

Issue B: Incorrect Use of the Justification Fields for a Proposal

Issue C: Missing Tests Could Lead To Incorrect Implementations

Issue D: Incorrect Message Type Check

Suggestions

Suggestion 1: Improve Code Comments for Interface Functions

Suggestion 2: Improve Code Quality

Suggestion 3: Use ECIES Public Encryption Scheme Instead of RSA-2048 With Low Security Level

Suggestion 4: Update and Maintain Dependencies

Suggestion 5: Remove Unnecessary Checks That Increase Message Complexity

Suggestion 6: Implement the Unpredictable Proposer Selection Mechanism Described in the

Specification

About Least Authority

Our Methodology

Security Audit Report | SSV Specification | Coin-Dash Ltd. 1
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Coin-Dash Ltd. has requested that Least Authority perform a security audit of their Secret Shared
Validator (SSV) specification. SSV is a unique technology that enables the distributed control and
operation of an Ethereum validator.

Project Dates
● March 13, 2023 - April 3, 2023: Code Review (Completed)
● April 5, 2023: Delivery of Initial Audit Report (Completed)
● June 8, 2023: Verification Review (Completed)
● July 3, 2023: Delivery of Final Audit Report (Completed)

Review Team
● Shareef Maher Dweikat, Security Research and Engineer
● Mehmet Gönen, Cryptography Researcher and Engineer
● Jasper Hepp, Security Researcher and Engineer
● Anna Kaplan, Cryptography Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer
● ElHassan Wanas, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the SSV Specification followed by issue
reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Blox Application SSV Specification:

https://github.com/bloxapp/ssv-spec/tree/v0.3.0

Specifically, we examined the Git revision for our initial review:

● 0a414236cef5eca4dc0f7da464034325869a6477

For the review, this repository was cloned for use during the audit and for reference in this report:

● Least Authority Blox SSV Specification:
https://github.com/LeastAuthority/bloxssv-specification

For the verification, we examined the Git revisions:

● Blox Application SSV Specification:
○ https://github.com/bloxapp/ssv-spec/pull/207
○ https://github.com/bloxapp/ssv-spec/pull/216
○ https://github.com/bloxapp/ssv-spec/pull/218
○ https://github.com/bloxapp/ssv-spec/pull/268

Security Audit Report | SSV Specification | Coin-Dash Ltd. 2
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/bloxapp/ssv-spec/tree/v0.3.0
https://github.com/LeastAuthority/bloxssv-specification
https://github.com/bloxapp/ssv-spec/pull/207
https://github.com/bloxapp/ssv-spec/pull/216
https://github.com/bloxapp/ssv-spec/pull/218
https://github.com/bloxapp/ssv-spec/pull/268

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Blox Staking Website:
https://www.bloxstaking.com

● The Istanbul BFT Consensus Algorithm:
https://arxiv.org/pdf/2002.03613.pdf

● IBFT 2.0 Research Paper [SW19]:
https://arxiv.org/abs/1909.10194 (v1)

● An Introduction to Secret Shared Validators (SSV) for Ethereum 2.0:
https://medium.com/bloxstaking/an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-
0-faf49efcabee

● Designing SSV: A Path to distributed staking infra for Ethereum:
https://alonmuroch-65570.medium.com/designing-ssv-a-path-to-distributed-staking-infra-for-ethe
reum-9586433a536e

In addition, this audit report references the following documents and links:
● QBFT Formal Specification and Verification Repository by Roberto Saltini:

https://github.com/ConsenSys/qbft-formal-spec-and-verification
● Annotated Specification by Blox: https://github.com/bloxapp/ssv/blob/stage/ibft/IBFT.md
● BSI TR-02102-1: "Cryptographic Mechanisms: Recommendations and Key Lengths" Version:

2023-1:
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102
/BSI-TR-02102-1.pdf

● QBFT Presentation for the EEA:
https://wiki.hyperledger.org/download/attachments/58855126/QBFT%20Presentation%20for%20
the%20EEA%20%281%29.pdf?version=1&modificationDate=1633120327000&api=v2

Areas of Concern
Our investigation focused on the following areas:

● Any attack that impacts the Consensus order;
● Correctness of the implementation and adherence of the implementation to the specification;
● Common and case-specific implementation errors;
● Attacks intending to misuse resources or cause unintended forks;
● Denial of Service (DoS) attacks;
● Any potentially profitable attacks;
● General use of external libraries; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Blox Secret Shared Validator (SSV) builds a distributed validator technology (DVT) to decentralize the
control of an Ethereum validator node. The validator key is split among independent operators through

Security Audit Report | SSV Specification | Coin-Dash Ltd. 3
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.bloxstaking.com/
https://arxiv.org/pdf/2002.03613.pdf
https://arxiv.org/abs/1909.10194
https://medium.com/bloxstaking/an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-0-faf49efcabee
https://medium.com/bloxstaking/an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-0-faf49efcabee
https://alonmuroch-65570.medium.com/designing-ssv-a-path-to-distributed-staking-infra-for-ethereum-9586433a536e
https://alonmuroch-65570.medium.com/designing-ssv-a-path-to-distributed-staking-infra-for-ethereum-9586433a536e
https://github.com/ConsenSys/qbft-formal-spec-and-verification
https://github.com/bloxapp/ssv/blob/stage/ibft/IBFT.md
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://wiki.hyperledger.org/download/attachments/58855126/QBFT%20Presentation%20for%20the%20EEA%20%281%29.pdf?version=1&modificationDate=1633120327000&api=v2
https://wiki.hyperledger.org/download/attachments/58855126/QBFT%20Presentation%20for%20the%20EEA%20%281%29.pdf?version=1&modificationDate=1633120327000&api=v2

threshold cryptography using the Boneh Lynn Shacham (BLS) cryptography scheme. For each assigned
duty for the validator, the Istanbul Byzantine Fault Tolerance (IBFT) Consensus Protocol allows the
operators to find agreement about the data.

Our team performed a comprehensive review of Blox SSV, a specification for the implementation of the
IBFT2.0 Consensus Protocol [SW19], which provides a theoretical framework for Eventually Synchronous
Networks. The Blox SSV specification integrates improvements to IBFT2.0, which are detailed in this
presentation, and specified in the QBFT formal verification repository. We compared the Blox specification
with the QBFT repository, and noted that the QBFT repository does not currently verify the liveness of the
protocol. Our team assumed the correctness of the QBFT repository.

In our review, we compared the Quorum Byzantine Fault Tolerance (QBFT) implementation to the
specification in the QBFT folder in the Blox SSV specification. In considering the areas of concern listed
above, we closely investigated areas that could lead to liveness and safety issues, and that could
compromise the robustness of the system. In addition, we reviewed the SSV and types folders, which
implement the interaction of an operator with a Beacon Node to obtain information about validator duties
and the encryption of the operator key.

System Design
Overall, the implementation of the Consensus Protocol does not show any critical issues and closely
resembles the QBFT formal verification repository. We only found issues such as a missing check (Issue
A) and the incorrect use of the justification fields (Issue B). Furthermore, the implementation of the
Consensus Protocol code deviates slightly in the Round Change Protocol, which leads to a higher
message complexity (Suggestion 5). During our review, we did not find any patterns in the issues we
identified.

Code Quality
Overall, the code is well-written and organized. However, the interface functions lack detailed descriptions
and explanations that would help developers using the specification. Given that the specification should
help developers implement the protocol, we recommend improving the code quality by removing
redundant checks (Suggestion 2) and the comments for interface functions (Suggestion 1).

Tests

Our team found that sufficient tests are implemented to check the different flows of the QBFT Consensus
Protocol. However, we found missing tests for the QBFT Protocol (Issue C).

The implemented tests are not able to provide the Blox SSV Specification with a formal verification, such
as that of QBFT. The test coverage is therefore limited as it is not possible to test Byzantine behavior in a
thorough way. Byzantine behavior allows an operator to behave in any arbitrary way. The tests can only
prove that all required checks are included in the code.

Documentation
The project documentation provided for this specification review was sufficient and offered an accurate
description of the system.

Scope
The scope of this review included all security-critical components of the application.

Security Audit Report | SSV Specification | Coin-Dash Ltd. 4
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://arxiv.org/pdf/2002.03613.pdf
https://wiki.hyperledger.org/download/attachments/58855126/QBFT%20Presentation%20for%20the%20EEA%20%281%29.pdf?version=1&modificationDate=1633120327000&api=v2
https://github.com/ConsenSys/qbft-formal-spec-and-verification
https://github.com/ConsenSys/qbft-formal-spec-and-verification

Dependencies

Our team examined the planned use of dependencies. We recommend following a process that
emphasizes secure dependency usage to avoid introducing vulnerabilities to the
Blox-ssv-specifications applications and to mitigate supply-chain attacks (Suggestion 4).

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Missing Check on Quorum for the RoundChange Justification Resolved

Issue B: Incorrect Use of the Justification Fields for a Proposal Unresolved

Issue C: Missing Tests Could Lead To Incorrect Implementations Resolved

Issue D: Incorrect Message Type Check Resolved

Suggestion 1: Improve Code Comments for Interface Functions Unresolved

Suggestion 2: Improve Code Quality Unresolved

Suggestion 3: Use ECIES Public Encryption Scheme Instead of RSA-2048
With Low Security Level

Unresolved

Suggestion 4: Update and Maintain Dependencies Resolved

Suggestion 5: Remove Unnecessary Checks That Increase Message
Complexity

Unresolved

Suggestion 6: Implement the Unpredictable Proposer Selection Mechanism
Described in the Specification

Resolved

Issue A: Missing Check on Quorum for the RoundChange Justification

Location

qbft/prepare.go#L59-L73

dafny/spec/L1/node_auxiliary_functions.dfy#L673

Synopsis

The function getRoundChangeJustification in the qbft/prepare.go file does not check that the
set of constructed Preparemessages is of size quorum. This is a deviation from the QBFT formal
verification code.

Security Audit Report | SSV Specification | Coin-Dash Ltd. 5
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/bloxssv-specification/blob/0a414236cef5eca4dc0f7da464034325869a6477/qbft/prepare.go#L59-L73
https://github.com/ConsenSys/qbft-formal-spec-and-verification/blob/1630128e7f5468c08983d08064230422d9337805/dafny/spec/L1/node_auxiliary_functions.dfy#L673

Impact

The function returns a set of valid Preparemessages that is attached to a RoundChangemessage to
justify the round change by the operator. As specified in the QBFT code, the operator needs to check the
size of the set here. Not checking this can lead to sending a RoundChangemessage that is not accepted
by other operators, which could, in turn, lead to liveness issues. Since the proposer for a higher round
requires quorum-many valid RoundChangemessages, this can lead to a state in which the operators do
not find consensus, and liveness is not reached.

Preconditions

In order for this Issue to occur, an operator has to perform a round change. In addition, the operator
should have reached the Prepare stage, during which the operator receives quorum-many Prepare
messages, and sets the values LastPreparedValue and LastPreparedRound prior to the round
change.

Feasibility

The requirement of having received quorum-many Preparemessages makes the scenario unlikely, and
it is difficult to exploit the missing check for an attack.

Remediation

We recommend adding the check.

Status

The Blox team has added the check.

Verification

Resolved.

Issue B: Incorrect Use of the Justification Fields for a Proposal

Location

qbft/proposal.go#L237-L238

qbft/prepare.go#L59

qbft/round_change.go#L349

dafny/spec/L1/types.dfy#L124-L140

Synopsis

Justification data is attached when creating a new proposal for a higher round including the
RoundChangeJustification, which is a set of Preparemessages, and the
PrepareJustification, which is a set of RoundChangemessages. The code mixes up the two fields
and attaches the RoundChangemessages to the RoundChangeJustification field and vice versa for
the Preparemessages.

Impact

Due to the fact that the code also mixes up the two data fields upon receiving a proposal message, no
harm is caused. However, theoretically, the data is not used in the correct way. In addition, since this is a
specification, it is very important to ensure that it is consistent with the theoretical basis, such as the
QBFT formal verification repository, to avoid any confusions.

Security Audit Report | SSV Specification | Coin-Dash Ltd. 6
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/bloxssv-specification/blob/master/qbft/proposal.go#L237-L238
https://github.com/LeastAuthority/bloxssv-specification/blob/master/qbft/prepare.go#L59
https://github.com/LeastAuthority/bloxssv-specification/blob/master/qbft/round_change.go#L349
https://github.com/ConsenSys/qbft-formal-spec-and-verification/blob/1630128e7f5468c08983d08064230422d9337805/dafny/spec/L1/types.dfy#L124-L140

Remediation

We recommend changing the assignment of the fields in CreateProposal and the processing of the
data in UponProposal.

Status

Given that this Issue causes changes across several tests and has a very low impact, the Blox team
stated that they prefer to resolve it at a later stage. Hence, at the time of the verification, the suggested
remediation has not been resolved.

Verification

Unresolved.

Issue C: Missing Tests Could Lead To Incorrect Implementations

Location

qbft/spectest

Synopsis

The QBFT specification is tested by simple tests that run the Consensus Protocol with invalid data. Our
team found some tests are missing. In particular there is no test for:

● a Preparemessage that triggers quorum even though the commit stage is reached already; and
● a Commitmessage that is added to the message container but does not result in quorum.

Impact

The tests aim to verify the correctness of the flows in the QBFT folder. In addition, the generated JSON file
from the tests can be run in any implementation and should therefore help developers in testing their own
implementation against the specification code. Missing tests can lead to incorrect implementations by
other developers.

Remediation

We recommend adding the tests.

Status

The Blox team has added the tests.

Verification

Resolved.

Issue D: Incorrect Message Type Check

Location

qbft/messages.go#L127

qbft/messages.go#L38-L45

Security Audit Report | SSV Specification | Coin-Dash Ltd. 7
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/bloxssv-specification/tree/master/qbft/spectest
https://github.com/LeastAuthority/bloxssv-specification/blob/0a414236cef5eca4dc0f7da464034325869a6477/qbft/messages.go#L127
https://github.com/LeastAuthority/bloxssv-specification/blob/0a414236cef5eca4dc0f7da464034325869a6477/qbft/messages.go#L38-L45

Synopsis

For the validation of a message, the message type is checked to be no larger than 5. Since the message
types are between 0 to 3, this allows a message to be of type 4 or 5, even though these cases are
unspecified.

Remediation

We recommend adjusting the check to verify that a message type is not larger than 3.

Status

The Blox team has adjusted the check.

Verification

Resolved.

Suggestions

Suggestion 1: Improve Code Comments for Interface Functions

Location

qbft/instance.go#L13-L14

qbft/types.go#L20

bloxssv-specification

Synopsis

Some critical components are not part of the Blox SSV Specification and only appear as interfaces. In this
case, it is critical to have clear and correct code comments in order to help developers implement the
specification correctly. The code comments must explain the expected behavior of the interface as well
as all assumptions that are made on the pre and post conditions of the interface’s functions.

We list a few non-exhaustive examples:

● ProposerF takes as inputs the round and the identifier and returns the proposer for the given
values. It is assumed that the function is deterministic and unpredictable; and

● TimeoutForRound takes as input the round, resets a running timer, and starts a new round. It
assumes that the time increases exponentially in the round.

Mitigation

We recommend improving code comments stating critical assumptions to the interface functions.

Status

The Blox team stated that they plan on implementing the suggested mitigation in the future. Hence, this
Issue remains unresolved at the time of verification.

Verification

Unresolved.

Security Audit Report | SSV Specification | Coin-Dash Ltd. 8
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/bloxssv-specification/blob/0a414236cef5eca4dc0f7da464034325869a6477/qbft/instance.go#L13-L14
https://github.com/LeastAuthority/bloxssv-specification/blob/0a414236cef5eca4dc0f7da464034325869a6477/qbft/types.go#L20
https://github.com/LeastAuthority/bloxssv-specification

Suggestion 2: Improve Code Quality

Location

bloxssv-specification

qbft/commit.go#L128

qbft/controller.go#L60

qbft/decided.go#L56-L86

qbft/controller.go#L60

qbft/messages.go#L118

Synopsis

We identified several redundancies in the code. Since this is a specification repository, the aim should be
to achieve a very high-quality code such that developers understand the code easily.

Below, we list redundancies we found in the code:

● signedMessage.Validate is called several times for one message during the validation. For
example, it is called two times for the COMMIT message and three times for a DECIDED message;

● A DECIDED message is checked two times by isDecidedMsg in the function ProcessMsg.
Upon receiving a RoundChangemessage, it is checked twice that the operator has received
quorum-many RoundChangemessages;

● The check that the identifier is not zero in msg.Validate seems unnecessary. Some functions
are independent of the instance (e.g. CreatePrepare), while others are not (e.g.
UponPrepare). Additionally, there does not appear to be a clear pattern; and

● Some functions receive inputs twice. For example, uponProposal receives the
proposerMsgContainer and the state, but the state already contains the
ProposerMsgContainer. In the same way, the function ProposerF receives the state and the
round (which is already in the state), and then uses round and state.height.

Mitigation

We recommend fixing the listed items.

Status

The Blox team stated that they plan on implementing the suggested mitigation after the upcoming
mainnet release. Hence, this suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 3: Use ECIES Public Encryption Scheme Instead of RSA-2048
With Low Security Level

Location

types/encryption.go

Security Audit Report | SSV Specification | Coin-Dash Ltd. 9
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/bloxssv-specification
https://github.com/LeastAuthority/bloxssv-specification/blob/master/qbft/commit.go#L128
https://github.com/LeastAuthority/bloxssv-specification/blob/0a414236cef5eca4dc0f7da464034325869a6477/qbft/controller.go#L60
https://github.com/LeastAuthority/bloxssv-specification/blob/0a414236cef5eca4dc0f7da464034325869a6477/qbft/decided.go#L56-L86
https://github.com/LeastAuthority/bloxssv-specification/blob/0a414236cef5eca4dc0f7da464034325869a6477/qbft/controller.go#L60
https://github.com/LeastAuthority/bloxssv-specification/blob/0a414236cef5eca4dc0f7da464034325869a6477/qbft/messages.go#L118
https://github.com/LeastAuthority/bloxssv-specification/blob/0a414236cef5eca4dc0f7da464034325869a6477/types/encryption.go#L5

Synopsis

Although RSA-2048 provides 112-bit security and is recommended by the National Institute of Standards
and Technology (NIST), a higher security level is recommended for critical systems. Bundesamt für
Sicherheit in der Informationstechnik (BSI) – the Federal Office for Information Security – published a new
technical guideline, titled: Cryptographic Mechanisms: Recommendations and Key Lengths. According to
this guideline, it is recommended to use a 120-bit security level, instead of 112-bit, by the end of 2023. For
this reason, RSA-2048 should be replaced with another encryption algorithm.

Mitigation

Instead of using RSA with a low-security level, the first solution may be to increase the key size (e.g.
RSA-4096). But in this case, there may be a performance problem. Therefore, we recommend
implementing the ECIES encryption system, which offers security levels greater than 112 (128-bit) and a
more effective performance.

Status

The Blox team stated that the remediation is already planned in a System Improvement Process and will
be implemented after the upcoming mainnet release, as noted here. Hence, at the time of the verification,
the suggested mitigation has not been resolved.

Verification

Unresolved.

Suggestion 4: Update and Maintain Dependencies

Location

go.mod

Synopsis

Analyzing go.mod for dependency versions using ‘go list -json -m all | nancy sleuth’
shows 14 vulnerable dependencies.

Mitigation

We recommend following a process that emphasizes secure dependency usage to avoid introducing
vulnerabilities to the Blox-ssv-specifications applications and to mitigate supply-chain attacks,
which includes:

● Manually reviewing and assessing currently used dependencies;
● Upgrading dependencies with known vulnerabilities to patched versions with fixes;
● Replacing unmaintained dependencies with secure and battle-tested alternatives, if possible;
● Pinning dependencies to specific versions, including pinning build-level dependencies in the

package.json file to a specific version;
● Only upgrading dependencies upon careful internal review for potential backward compatibility

issues and vulnerabilities; and
● Including automated dependency auditing reports in the project’s CI/CD workflow.

Status

The Blox team has updated all dependencies identified in the audit.

Verification

Resolved.

Security Audit Report | SSV Specification | Coin-Dash Ltd. 10
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://github.com/bloxapp/SIPs/blob/main/sips/ecies_share_encryption.md
https://github.com/LeastAuthority/bloxssv-specification/blob/master/go.mod

Suggestion 5: Remove Unnecessary Checks That Increase Message
Complexity

Location

qbft/round_change.go#L202-L268

spec/L1/node_auxiliary_functions.dfy#L546-L561

Synopsis

QBFT comes with a message complexity of O(n2), which is an improvement over the IBFT2.0 Consensus
algorithm [SW19] that has O(n3) (see slide 10 in the QBFT Presentation for the EEA). The lower complexity
is achieved by improving the Round Change Protocol. In the QBFT Protocol, a proposal message for a
higher round attaches the RoundChangemessages and only once thePreparemessages. Upon
receiving a proposal for a higher round, an operator validates the RoundChange and Prepare
justifications. For the RoundChange justification in the QBFT Protocol, it is not necessary to check any
Preparemessages related to the RoundChangemessage. In contrast, the implementation of the
Consensus Protocol by Blox checks that, for all RoundChangemessages, the Preparemessages
attached to the RoundChangemessages are valid. This is unnecessary and is not included in the QBFT
formal verification repository.

Mitigation

We recommend removing these checks to improve the efficiency of the Consensus Protocol.

Status

The Blox team stated that they plan on implementing the suggested mitigation after the upcoming
mainnet release. Hence, this suggestion remains unresolved at the time of the verification

Verification

Unresolved.

Suggestion 6: Implement the Unpredictable Proposer Selection
Mechanism Described in the Specification

Location

qbft/round_robin_proposer.go

qbft/instance.go#L14

Synopsis

As described in the annotated specification by the Blox team, the proposer selection mechanism must be
deterministic and unpredictable. However, in the current setup, the mechanism is predictable.

The code takes the round number and the height of each validator instance. Both values are counters that
are easily predicted. The annotated specification suggests taking the slot number of the duty, which is
unpredictable beyond the next slot.

Mitigation

We recommend taking the slot number as an input to the proposer selection mechanism.

Security Audit Report | SSV Specification | Coin-Dash Ltd. 11
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/bloxssv-specification/blob/master/qbft/round_change.go#L202-L268
https://github.com/ConsenSys/qbft-formal-spec-and-verification/blob/1630128e7f5468c08983d08064230422d9337805/dafny/spec/L1/node_auxiliary_functions.dfy#L546-L561
https://github.com/ConsenSys/qbft-formal-spec-and-verification
https://arxiv.org/pdf/2002.03613.pdf
https://wiki.hyperledger.org/download/attachments/58855126/QBFT%20Presentation%20for%20the%20EEA%20%281%29.pdf?version=1&modificationDate=1633120327000&api=v2
https://github.com/LeastAuthority/bloxssv-specification/blob/master/qbft/round_robin_proposer.go
https://github.com/LeastAuthority/bloxssv-specification/blob/0a414236cef5eca4dc0f7da464034325869a6477/qbft/instance.go#L14
https://github.com/bloxapp/ssv/blob/stage/ibft/IBFT.md

Status

The Blox team has changed the annotated specification and stated that they will continue to use the
Round Robin proposer selection mechanism, which is deterministic but predictable. Note that since the
main requirement for a selection mechanism is that it is deterministic, this is not a security issue.

Verification

Resolved.

Security Audit Report | SSV Specification | Coin-Dash Ltd. 12
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | SSV Specification | Coin-Dash Ltd. 13
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | SSV Specification | Coin-Dash Ltd. 14
July 3, 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

