

Permuto
Security Audit Report
Chia Network
Final Audit Report: 31 July 2025

Table of Contents
Overview

Background
Project Dates

Audit 1: Permuto App and Chia Signer iOS Mobile App
Audit 2: Enterprise Wallet and Chia Wallet SDK
Audit 3: CATs and Admin Tool

Review Team
Coverage

Target Code and Revision
Supporting Documentation
Areas of Concern

Findings
General Comments

Permuto App and Chia iOS Signer
Enterprise Wallet and Vault Implementation
CAT Admin Tool and Vault Puzzles

Code Quality
Documentation and Code Comments
Scope

Specific Issues & Suggestions
Issue A: Timestamp Manipulation for Dividend Arbitrage
Issue B: Race Condition in Key-Based Authentication
Issue C: Potential Replay Attack Against Key-Based Authentication
Issue D: Next.js Authorization Bypass Vulnerability

Suggestions
Suggestion 1: Use a Strong Source of Randomness for Generating OAuth Refresh Tokens
Suggestion 2: Restrict Access to Metrics Endpoints From the Internet
Suggestion 3: Require User Authentication to Disable the “Authorize Transactions with Biometrics
or Device PIN” Toggle
Suggestion 4: Improve Account Recovery Process
Suggestion 5: Update Vulnerable Dependencies

Appendix
Appendix A: In-Scope Components

Audit 1: Permuto App and Chia Signer iOS Mobile App
Audit 2: Enterprise Wallet and Chia Wallet SDK
Audit 3: CATs and Admin Tool

About Least Authority
Our Methodology

Security Audit Report | Permuto | Chia Network 1
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Chia Network has requested that Least Authority perform security audits of Permuto. Permuto consists of
certificates issued by the Trust, which is formed solely to hold a single class of stock in a specified
publicly traded company, with the first being shares of the common stock of Microsoft Corporation
(NASDAQ: MSFT). This review consisted of three audits on the Permuto App and Chia Signer iOS Mobile
App, the Enterprise Wallet and Chia Wallet SDK, and the CATS and Admin Tool. The findings from all three
audits are presented in this report.

Project Dates

Audit 1: Permuto App and Chia Signer iOS Mobile App

● March 6, 2025 - April 16, 2025: Initial Code Review (Completed)
● April 18, 2025: Delivery of Initial Audit Report (Completed)
● July 31, 2025: Verification Review (Completed)
● July 31, 2025: Delivery of Final Audit Report (Completed)

Audit 2: Enterprise Wallet and Chia Wallet SDK

● March 6, 2025 - April 16, 2025: Initial Code Review (Completed)
● April 18, 2025: Delivery of Initial Audit Report (Completed)
● July 31, 2025: Verification Review (Completed)
● July 31, 2025: Delivery of Final Audit Report (Completed)

Audit 3: CATs and Admin Tool

● March 31, 2025 - April 16, 2025: Initial Code Review (Completed)
● April 18, 2025: Delivery of Initial Audit Report (Completed)
● July 31, 2025: Verification Review (Completed)
● July 31, 2025: Delivery of Final Audit Report (Completed)

Review Team
● Nikos Iliakis, Security Researcher and Engineer
● Anna Kaplan, Cryptography Researcher and Engineer
● Paul Lorenc, Security Researcher and Engineer
● Michael Rogers, Security Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer
● Will Sklenars, Security Researcher and Engineer
● Dominic Tarr, Security Researcher and Engineer
● Burak Atasoy, Project Manager
● Jessy Bissal, Technical Editor

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of Permuto followed by issue reporting,
along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:

Security Audit Report | Permuto | Chia Network 2
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.chia.net/

● See Appendix A.

Specifically, we examined the following Git revisions for our initial review:

● Audit 1: Permuto App and Chia Signer iOS Mobile App:
○ 9ce50d40b9dc810e82681252e522d6ac62ed46f8
○ 42dfe52c94a13730d2147bbe2c93a64b6fb9a9be

● Audit 2: Enterprise Wallet and Chia Wallet SDK

○ 33a8606ab94a8bd7c896a8cdfc96646d84252be
○ bbd411fe7e3ce773067ff6cc4db7b0cc315db01c

● Audit 3: CATs and Admin Tool

○ 7114078826d82e3405298a6ca771e861932e2a40

For the verification, we examined the following Git revisions:

● Audit 1: Permuto App and Chia Signer iOS Mobile App:
○ 9f91cbf42770c5f712d7562e227cbb4a5411b103
○ 580594f3c60ae2a9a55941216fb649cc8530c87a

● Audit 2: Enterprise Wallet and Chia Wallet SDK

○ 78305d9a63ded9589c2f48f8575c4eaef528808a

For the review, these repositories were cloned for use during the audit and for reference in this report:

● Audit 1: Permuto App and Chia Signer iOS Mobile App:
○ https://github.com/LeastAuthority/chia-permuto-app
○ https://github.com/LeastAuthority/chia-signer-ios

● Audit 2: Enterprise Wallet and Chia Wallet SDK

○ https://github.com/LeastAuthority/chia-ent-wallet
○ https://github.com/LeastAuthority/chia-wallet-sdk

● Audit 3: CATs and Admin Tool

○ https://github.com/LeastAuthority/chia-CAT-admin-tool

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● SEC Filing:
https://www.streetinsider.com/SEC+Filings/Form+S-1+Permuto+Capital+MSFT/24208915.html

● Businesswire announcement:
https://www.businesswire.com/news/home/20250114592626/en/Newly-Launched-Permuto-Cap
ital-Announces-Filing-of-Registration-Statement-for-New-Type-of-Equity-Product

● Website:
https://www.chia.net

● Clippy_Audit Scope.xlsx (shared with Least Authority via email on 29 January 2025)

Security Audit Report | Permuto | Chia Network 3
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/chia-permuto-app
https://github.com/LeastAuthority/chia-signer-ios
https://github.com/LeastAuthority/chia-ent-wallet
https://github.com/LeastAuthority/chia-wallet-sdk
https://github.com/LeastAuthority/chia-CAT-addmin-tool
https://www.streetinsider.com/SEC+Filings/Form+S-1+Permuto+Capital+MSFT/24208915.html
https://www.businesswire.com/news/home/20250114592626/en/Newly-Launched-Permuto-Capital-Announces-Filing-of-Registration-Statement-for-New-Type-of-Equity-Product
https://www.businesswire.com/news/home/20250114592626/en/Newly-Launched-Permuto-Capital-Announces-Filing-of-Registration-Statement-for-New-Type-of-Equity-Product
https://www.chia.net

● Clippy Requirements version 2 - LATEST.xlsx (shared with Least Authority via email on 30 January
2025)

In addition, this audit report references the following documents:
● Block Validation | Chia Documentation:

https://docs.chia.net/block-validation
● Conditions | Chialisp:

https://chialisp.com/conditions/#assert-before-seconds-absolute
● Principles of Blockchains | Transaction Ordering and Fairness:

https://courses.grainger.illinois.edu/ece598pv/sp2021/lectureslides2021/ECE_598_PV_course_n
otes13_v2.pdf

● SET | Docs:
https://redis.io/docs/latest/commands/set

● cuid2 library:
https://github.com/paralleldrive/cuid2

● Blog post, “There’s Math.random(), and then there’s Math.random()”:
https://v8.dev/blog/math-random

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Vulnerabilities within each component and whether the interaction between the components is

secure;
● Whether requests are passed correctly to the network core;
● Key management, including secure private key storage and management of encryption and

signing keys;
● Denial of Service (DoS) and other security exploits that would impact the intended use or disrupt

the execution;
● Protection against malicious attacks and other ways to exploit;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Permuto utilizes the Chia blockchain to represent stock ownership via Chia Asset Tokens (CATs),
categorized into Asset CATs and Dividend CATs. Users interact with the system through the Permuto App,
a front-end administrative interface that facilitates stock deposits, certificate issuance, and redemption.
CATs are controlled by a singleton coin held in a vault primitive, through which transactions such as
trading, spending, and token movements can be authorized. Users manage vault interactions through the
Chia Enterprise Wallet, which leverages the Chia Wallet SDK to manage the lower-level interactions with
the blockchain. “Puzzles” are used to define how a coin can be spent on the blockchain. The Enterprise
Wallet uses the Meta Inner Puzzle Specification (MIPS) custody layer to divide custody among a number
of members and restrictions. The MIPS layer is used to implement the primitive functionality of a “vault.”
To ensure compliance and security, the system employs a revocable CAT mechanism, which is managed

Security Audit Report | Permuto | Chia Network 4
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.chia.net/block-validation
https://chialisp.com/conditions/#assert-before-seconds-absolute
https://courses.grainger.illinois.edu/ece598pv/sp2021/lectureslides2021/ECE_598_PV_course_notes13_v2.pdf
https://courses.grainger.illinois.edu/ece598pv/sp2021/lectureslides2021/ECE_598_PV_course_notes13_v2.pdf
https://redis.io/docs/latest/commands/set
https://github.com/paralleldrive/cuid2
https://v8.dev/blog/math-random

via an inner puzzle and enables Permuto to revoke and reissue tokens during stock splits or other
regulatory events.

Our team conducted security audits of Permuto's main components, comprising the Permuto App and
Chia Signer iOS Mobile App, the Enterprise Wallet and Vault Implementation, and the CAT Admin Tool, in
three separate reviews. Below, we detail our findings from each of these reviews.

Permuto App and Chia iOS Signer

During our review of the Permuto App and Chia Signer iOS, our team analyzed whether all signatures are
produced with correct cryptographic primitives and appropriate parameter checks, and did not uncover
any immediately exploitable vulnerabilities. However, we identified the use of a vulnerable version of
Next.js, which has a known security issue (CVE-2025-29927) that could allow attackers to bypass
authentication. This vulnerability may enable unauthorized access to exposed APIs, allowing malicious
actions such as transferring funds or assets. We recommend promptly upgrading Next.js to the
patched version (15.2.3) to mitigate this associated risk (Issue D). In addition, we identified an
opportunity to strengthen user authentication requirements and recommend introducing biometric or
device passcode verification when disabling key protection features, in order to prevent unintended or
unauthorized configuration changes (Suggestion 3).

Enterprise Wallet and Vault Implementation

In our evaluation of the API subcomponent, we discovered two issues related to key-based authentication
mechanisms. We identified a race condition in the Chia Enterprise Wallet's key-based authentication,
where concurrent processing of API requests signed with identical nonces can result in nonce reuse,
thereby undermining replay protection (Issue B).

Our team also identified a potential replay attack in the Chia Enterprise Wallet's key-based authentication,
caused by a mismatch between nonce retention (five minutes) and timestamp validity (ten minutes),
which may allow attackers to replay requests after nonce expiry if timestamps are set slightly ahead of
the server's clock (Issue C).

When assessing high-level attack vectors, we also identified a timestamp manipulation vulnerability,
whereby Chia farmers can opportunistically exploit the five-minute future-timestamp allowance to
simultaneously capture dividend payouts and pre-dividend token prices, disadvantaging other traders
(Issue A).

Our team also performed a manual review of the application’s front-end, focusing on user interactions and
input processing. We did not identify any issues related to the handling or validation of user interface
interactions.

Furthermore, we analyzed potential attack scenarios targeting the vault recovery mechanism, particularly
those involving the loss of a user's mobile device containing spend keys and access credentials such as
email. We identified areas of improvement that would enhance the overall security of the system.
Specifically, we recommend improving the watchtower notification system by incorporating multiple
independent communication channels. Additionally, enabling passphrase-based encryption for
iCloud-stored keys would further mitigate risks associated with unauthorized remote vault recovery
attempts (Suggestion 4).

Finally, we reviewed the Rust implementation of the MIPS driver, spend logic, vault binding wrapper, puzzle
types, vault singletons, and Merkle tree structures. We did not identify any issues in these areas of
investigation.

Security Audit Report | Permuto | Chia Network 5
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

CAT Admin Tool and Vault Puzzles

Our team reviewed the CAT Admin Tool, a Python-based command-line interface (CLI) designed to
facilitate the minting and management of CATs, including Credential Restricted CATs (CR-CATs). The
minting functionality accurately implements the intended token issuance logic. We also examined the
"Secure the Bag" feature for bulk token distributions via CSV input and the "Unwind the Bag" functionality
for controlled token removals, and found both to be correctly implemented.

Additionally, we examined the vault puzzles, which extend the basic spending logic by integrating time
locks, multi-signature authorization, and conditional spending mechanisms. We checked whether the
puzzles correctly enforce strict and customizable spending conditions, and did not identify any issues.

Dependencies
Our audit of the package.json files in the Permuto App and the Chia Ent Wallet repositories revealed
several vulnerable instances. We recommend improving dependency management practices to mitigate
these risks (Suggestion 5).

Code Quality
We performed a manual review of the repositories in scope and found the code to be well-organized and
aligned with best practices for TypeScript, Rust, and Python.

Tests

The Permuto server component includes an established testing suite; however, current test coverage is
insufficient. In contrast, the Permuto client lacks a testing framework entirely. To address these gaps, we
recommend implementing a testing framework using Jest’s Next.js integration, which would enhance
test coverage and support long-term reliability. The Enterprise Wallet repository, on the other hand, already
contains a testing suite that covers key API functionalities. Similarly, the CAT Admin Tool includes tests
that cover both key functionalities and critical features.

Documentation and Code Comments
The project documentation provided by the Chia Network team, along with code comments, sufficiently
describes most intended functionalities. In particular, documentation for the Enterprise Wallet adequately
facilitated the setup of the development environment; however, future enhancements should include
comprehensive installation instructions specifically for Linux-based systems. The CAT Admin Tool
repository also contains clear, descriptive comments covering critical logic and key functions. Similarly,
the documentation and code comments for the Vault puzzles were found to be detailed and effective in
conveying their intended purpose and behavior.

Scope
The scope of this review was sufficient and included all security-critical components.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Security Audit Report | Permuto | Chia Network 6
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue A: Timestamp Manipulation for Dividend Arbitrage Resolved

Issue B: Race Condition in Key-Based Authentication Resolved

Issue C: Potential Replay Attack Against Key-Based Authentication Resolved

Issue D: Next.js Authorization Bypass Vulnerability Resolved

Suggestion 1: Use a Strong Source of Randomness for Generating OAuth
Refresh Tokens

Resolved

Suggestion 2: Restrict Access to Metrics Endpoints From the Internet Resolved

Suggestion 3: Require User Authentication to Disable the “Authorize
Transactions with Biometrics or Device PIN” Toggle

Resolved

Suggestion 4: Improve Account Recovery Process Resolved

Suggestion 5: Update Vulnerable Dependencies Resolved

Issue A: Timestamp Manipulation for Dividend Arbitrage

Synopsis

When a Chia farmer creates a block, the farmer has some flexibility in choosing the block’s timestamp.
Although a farmer can use this flexibility to accept an offer to buy Permuto dividend tokens, where the
offer is intended to expire before an upcoming dividend is issued, the block’s timestamp can be set to
show that the offer was accepted after the dividend was issued. The farmer can thus receive the dividend
while benefiting from the expected drop in the token’s price when the dividend is issued.

Impact

Medium.

The attacker can benefit financially from the attack at the expense of the party buying the attacker’s
tokens.

Feasibility

High.

The attack is straightforward to execute if the preconditions are met. It can be performed
opportunistically by anyone already farming Chia and holding Permuto dividend tokens, which are
activities that are likely to offset their own costs, regardless of whether an opportunity to execute the
attack arises.

Severity

Medium.

Preconditions

The attack is opportunistic. In order to have an opportunity to carry out the attack, the attacker must be
an active Chia farmer and must own some Permuto dividend tokens for a stock that is due to receive a

Security Audit Report | Permuto | Chia Network 7
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

dividend payment in the future. Crucially, the attacker must have the opportunity to create a block within
five minutes of the time when the dividend will be issued. At the time the attacker has an opportunity to
create a block, there must be at least one active offer to purchase the tokens.

Finally, there must be a reasonable expectation that the market price of the dividend token will fall when
the dividend is issued. This is the typical market behavior for dividend-paying stock, as the price before
the dividend is issued includes the expected amount of the dividend payment, whereas the price after the
dividend is issued does not. The same market behavior is anticipated to apply to Permuto dividend
tokens. Without this price difference, the attack could still be carried out but the attacker would not expect
to profit from it.

Technical Details

A farmer who creates a Chia block has some flexibility in choosing the block’s timestamp. The timestamp
must be greater than that of the previous block, and it must not be more than five minutes in the future,
based on the clocks of the nodes validating the block. Assuming most nodes have accurate clocks, a
dishonest farmer can choose a timestamp up to five minutes ahead, and the network will still validate the
block.

When a dividend is issued for a stock represented by a Permuto dividend token, Permuto’s token tracker
identifies the owner of each token at the time when the dividend was issued so that the dividend can be
paid to that owner. The times at which changes of ownership occur are determined by the timestamps of
the blocks containing the corresponding spend bundles. Thus, flexibility in choosing a block’s timestamp
can be turned into flexibility in determining the ownership of a token at a specific time, if there is a change
in ownership close to that time.

As mentioned above, it is typical for the price of a dividend-paying stock to fall when a dividend is issued,
and this behavior is expected to apply to Permuto dividend tokens also. Accordingly, traders offering to
buy a dividend token at the higher market price before the dividend is issued are likely to cancel their
offers shortly before the dividend is issued and place new offers at the lower market price after the
dividend is issued. An attacker can profit if they are able to accept an offer at the higher market price
before it is canceled, while simultaneously being recorded as the owner of the dividend token at the time
the dividend is issued.

Consider the case where the dividend payment is scheduled for midnight, there is an offer to buy the
tokens valid until 23:59, and the attacker has an opportunity to create a block at 23:58. The attacker
sets the timestamp of the new block containing the attacker’s acceptance of the offer to 00:01, so the
token tracker considers the attacker to have owned the tokens at midnight.

There are two ways that a trader who has offered to buy tokens may cancel that offer. The trader may
issue a cancellation on-chain by spending the coin used to make the offer, or include an expiry time in the
offer by outputting a condition such as ASSERT_BEFORE_SECONDS_ABSOLUTE. In either case, if the
offer has not yet been canceled when the attacker has the opportunity to create a block, the attacker can
accept the offer before it is canceled.

In the case of on-chain cancellation, the spend bundle containing the cancellation is either in the
mempool or it has not yet been published. If it is in the mempool, then the attacker simply omits it from
their block. Either way, once the attacker’s block has been published, the cancellation will no longer be
valid for inclusion in any subsequent block, as the offer will have already been accepted.

In the case of an expiry time using a condition such as ASSERT_BEFORE_SECONDS_ABSOLUTE, the
attack exploits the fact that such conditions refer to the timestamp of the previous block, rather than the
block containing the spend bundle that outputs the condition. In the example above, when the attacker
creates a block at 23:58, the offer’s condition (that the expiry time of 23:59 has not yet been reached)

Security Audit Report | Permuto | Chia Network 8
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.chia.net/block-validation/
https://chialisp.com/conditions/#assert-before-seconds-absolute

remains true, as evaluated against the timestamp of the previous block. This would not have been the
case if it had been based on the timestamp of the attacker’s block, which contains the acceptance of the
offer.

A side effect of the attack is that any blocks following the attacker’s block must have timestamps greater
than the timestamp of the attacker’s block. As a result, the timestamps of all subsequent blocks will be
inaccurate until the timestamp of the attacker’s block has passed. (In the example, this occurs at 00:01,
so all blocks created between 23:58 and 00:01 have inaccurate timestamps). These subsequent blocks
cannot be used to carry out further instances of the attack against offers with expiry conditions, as any
such conditions would be evaluated against the timestamp of the attacker’s block or a subsequent block,
resulting in the offers being treated as having expired.

The discussion so far has assumed the existence of a single attacker who was both a farmer and a token
trader, but in principle, these roles could be separated. An off-chain market could arise in which farmers
sell the opportunity to include a spend bundle in a block with an inaccurate timestamp. This would be
similar to the markets for timestamp manipulation proposed for other blockchains, although the scope for
such manipulation appears to be particularly broad on the Chia blockchain.

Mitigation

Traders can mitigate the attack by making any offers to buy dividend tokens expire at least five minutes
before a dividend is scheduled to be issued. Consequently, this results in the loss of five minutes of
trading during a period that is likely to be particularly significant for trading activity involving those tokens.

Remediation

We recommend reducing the permissible range for future timestamps, for example by decreasing the
current five-minute allowance to a smaller value. This assumes that most farmers maintain accurate
clocks and therefore will not legitimately produce blocks with significantly future-dated timestamps, and
that most nodes likewise maintain accurate clocks and will not misclassify accurate timestamps as being
too far in the future.

When a node receives a block with a timestamp that lies in the future relative to its local clock, it could
delay validation and propagation until the timestamp becomes current. This remediation could be
introduced incrementally, and once widely deployed, would prevent the propagation of blocks with future
timestamps across the network.

While our team recommends the approach outlined above, we recognize that these remediations may be
considered out of scope for Permuto, as they apply to the Chia network as a whole, whereas the attack is
specific to dividend tokens.

Status

The Chia Network team had previously reduced the permissible range for future timestamps to 2 minutes,
effective July 2, 2023. However, the documentation was only updated to reflect this change following its
mention in the initial audit report.

We note that Chia offers provide users with conditions to prevent the described attack, provided the
timing-based conditions are precisely aligned with the timestamp of dividend payment. However, if a user
sets the offer to expire even a minute before the timestamp, an attacker could perform the attack.
Therefore, Chia’s conditions allow users to securely create offers but require users to set the correct
timestamps.

Verification

Resolved.

Security Audit Report | Permuto | Chia Network 9
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://courses.grainger.illinois.edu/ece598pv/sp2021/lectureslides2021/ECE_598_PV_course_notes13_v2.pdf
https://github.com/Chia-Network/chia-docs/pull/788/commits/6189c3f7ef1f1c7710b1644a82baf19a94adcc5a

Issue B: Race Condition in Key-Based Authentication

Location

apps/api/src/utils/verifyAuthKey.ts#L93

Synopsis

The Chia Enterprise Wallet allows API requests to be authenticated by signing them with a passkey or a
key stored in the iOS secure element. To prevent replays, each signature includes a timestamp and a
nonce. A race condition allows a nonce to be used twice if two requests using the same nonce are
received concurrently.

Impact

Low.

Feasibility

Low.

Even if the preconditions for the issue are met, exploiting the race condition is probabilistic, as the
attacker cannot control the order in which the API server handles concurrent requests.

Severity

Low

Preconditions

The attacker must be able to capture, delay, and replay requests signed by a client. This could be achieved
either by compromising the security of the network connection between the client and the server or by
compromising the client device itself.

It is not necessary for the attacker to compromise the client’s passkeys or secure element. If the attacker
were able to do so, the attack would be redundant, as they could simply sign a fresh request using the
client’s key rather than replaying a previously signed request.

Technical Details

The Chia Enterprise Wallet uses Redis to keep track of nonces that have already been used.

Separate Redis get and set operations are used to check whether a nonce has already been used and, if
not, to record that it has been used. If two requests using the same nonce are processed concurrently, it is
possible for both to complete their get operations before either performs its set operation. In that case,
the code will fail to detect that the same nonce has been used twice.

Remediation

We recommend replacing the separate get and set operations with a single set operation using the NX
flag. This operation atomically checks whether the nonce has been used before, returning an error if so or
recording its use otherwise.

Status

The Chia Network team has resolved this issue by updating the implementation to use a single set
operation with the NX flag, as shown in this commit.

Security Audit Report | Permuto | Chia Network 10
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/chia-ent-wallet/blob/933a8606ab94a8bd7c896a8cdfc96646d84252be/apps/api/src/utils/verifyAuthKey.ts#L93
https://redis.io/docs/latest/commands/set/
https://redis.io/docs/latest/commands/set/
https://github.com/LeastAuthority/chia-ent-wallet/commit/57de78a8d8166bb3f2000f848c788602d0896fd8

Verification

Resolved.

Issue C: Potential Replay Attack Against Key-Based Authentication

Location

apps/api/src/utils/verifyAuthKey.ts#L88

apps/api/src/utils/verifyAuthKey.ts#L95

Synopsis

The Chia Enterprise Wallet allows API requests to be authenticated by signing them with a passkey or a
key stored in the iOS secure element. To prevent replays, each signature includes a timestamp and a
nonce. A timestamp is considered valid if it falls within five minutes of the server’s clock in either
direction. Used nonces are retained for five minutes to prevent reuse. As a result, if a request includes a
timestamp slightly in the future relative to the server’s clock, it may become replayable once its nonce has
expired but its timestamp is still considered valid.

Impact

Low.

Feasibility

Medium.

The client’s clock must be ahead of the server’s clock for the attack to succeed. A discrepancy of as little
as one second may be sufficient. If the attacker has compromised the client device, they may be able to
manipulate the client’s clock. Otherwise, the attack relies on timing conditions beyond the attacker’s
control.

Severity

Low.

Preconditions

The attacker must be able to capture, delay, and replay requests signed by a client. This could be done
either by compromising the security of the network connection between the client and the server, or by
compromising the client device.

It is not necessary for the attacker to compromise the client’s passkeys or secure element. If the attacker
were able to do so, the attack would be redundant, as they could simply sign a fresh request using the
client’s key rather than replaying a previously signed request.

Technical Details

A request’s timestamp is considered valid if it falls within five minutes of the server’s clock in either
direction. Nonces are stored in Redis and expire after five minutes. This creates a vulnerability: the
ten-minute timestamp validity window exceeds the five-minute nonce retention period, allowing a window
for replay.

If a client’s clock is ahead of the server’s by even a small margin and it submits a signed request, the
request’s nonce may expire from Redis while the timestamp remains within the validity window. When the
nonce expires, the timestamp will be just under five minutes in the past according to the server’s clock,

Security Audit Report | Permuto | Chia Network 11
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/chia-ent-wallet/blob/933a8606ab94a8bd7c896a8cdfc96646d84252be/apps/api/src/utils/verifyAuthKey.ts#L88
https://github.com/LeastAuthority/chia-ent-wallet/blob/933a8606ab94a8bd7c896a8cdfc96646d84252be/apps/api/src/utils/verifyAuthKey.ts#L95

having initially been slightly in the future. The request can then be replayed and accepted as valid, since
the timestamp is still within bounds and no record exists of the nonce having been used.

Remediation

We recommend increasing the nonce expiry time to slightly exceed the length of the timestamp validity
window (ten minutes).

Status

The Chia Network team has increased the nonce expiry time to 11 minutes, as indicated on line 97 of this
commit.

Verification

Resolved.

Issue D: Next.js Authorization Bypass Vulnerability

Location

chia-permuto-app/packages/client/package.json#L39

Synopsis

A critical vulnerability in Next.js (CVE-2025-29927), which is used by the Permuto App, was publicly
disclosed during the audit.

Impact

High.

Successful exploitation could allow attackers to bypass authentication mechanisms, enabling
unauthorized control over critical API endpoints. This may lead to unauthorized transfers of funds or other
assets managed by the application.

Feasibility

High.

Given the public disclosure of this vulnerability, attackers can readily identify and probe applications
running vulnerable Next.js versions.

Severity

Critical.

Preconditions

For the vulnerability to be exploitable, the application must run a vulnerable version of Next.js and
expose API endpoints that rely on middleware-based authentication mechanisms.

Technical Details

Next.js includes a nonstandard feature in the form of a custom x-middleware-subrequest header,
which can instruct the middleware runner to skip specified middleware. While circumventing most
middleware may have limited impact, bypassing authentication middleware in particular can allow
attackers to gain unauthorized control over API endpoints that are publicly exposed by the application.

Security Audit Report | Permuto | Chia Network 12
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/chia-ent-wallet/commit/1fd8cf574502d8a269f630783a36229adbac2bb7
https://github.com/LeastAuthority/chia-ent-wallet/commit/1fd8cf574502d8a269f630783a36229adbac2bb7
https://github.com/LeastAuthority/chia-permuto-app/blob/main/packages/client/package.json#L39
https://github.com/advisories/GHSA-f82v-jwr5-mffw

Mitigation

Users of the Permuto application have no available mitigations against this vulnerability.

Remediation

We recommend immediately updating Next.js to the patched version 15.2.3, which addresses this
vulnerability. The security fix has also been backported to earlier major versions to support rapid
adoption. Given Permuto’s current version (15.1.7), upgrading to version 15.2.3 is expected to require
no additional compatibility adjustments.

Additionally, we strongly recommend auditing all other components or APIs that use Next.js, including
those outside the original scope of this audit (such as web wallet APIs), to ensure comprehensive
remediation.

Status

The Chia Network team has updated Next.js to 15.3.2, which includes the security patch, as indicated
in this commit.

Verification

Resolved.

Suggestions

Suggestion 1: Use a Strong Source of Randomness for Generating OAuth
Refresh Tokens

Location

api/src/services/oauth/server.ts#L51

packages/db-schema/src/utils/createId.ts#L4

Synopsis

OAuth refresh tokens are generated by using the Math.random function as the source of randomness.
This function is not designed for this purpose. Some implementations of this function may produce
tokens that have low entropy, making it feasible for an attacker to guess the tokens by brute force.

The Chia Enterprise Wallet uses the cuid2 library to generate unique identifiers for database records.
This library is also used for generating OAuth refresh tokens, which clients use to authenticate to the
Permuto API.

The cuid2 library supports the use of a cryptographically secure source of randomness, but in the default
configuration used by the Chia Enterprise Wallet, it relies on Math.random. Some implementations of
Math.random have a small state space, making it possible to infer the internal state of the random
number generator by observing its outputs and thereby predict future outputs. In the context of generating
authentication tokens, this could allow an attacker to guess tokens issued to other users.

Mitigation

As the implementation of Math.random currently used by Node.js has a large state space, there is no
immediate risk of exploitation.

Security Audit Report | Permuto | Chia Network 13
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

http://next.js
https://github.com/LeastAuthority/chia-permuto-app//commit/9f91cbf42770c5f712d7562e227cbb4a5411b103
https://github.com/LeastAuthority/chia-ent-wallet/blob/933a8606ab94a8bd7c896a8cdfc96646d84252be/apps/api/src/services/oauth/server.ts#L51
https://github.com/LeastAuthority/chia-ent-wallet/blob/933a8606ab94a8bd7c896a8cdfc96646d84252be/packages/db-schema/src/utils/createId.ts#L4
https://github.com/paralleldrive/cuid2
https://v8.dev/blog/math-random

We recommend migrating the code to use the crypto.randomBytes function instead of the cuid2
library for generating OAuth refresh tokens. This will protect against any future changes to the
implementation of Math.random that could compromise the security of tokens generated with it. The
cuid2 library can continue to be used for generating unique database identifiers, as these do not need to
be resistant to brute-force guessing in the way authentication tokens do.

Status

The Chia Network team has migrated to the cryptographically secure crypto.randomUUID function.

Verification

Resolved.

Suggestion 2: Restrict Access to Metrics Endpoints

Location

apps/api/src/metrics.ts

apps/blockchain-sync/src/metrics.ts

apps/metrics/src/metrics.ts

Synopsis

Three of the servers in the Chia Enterprise Wallet repository (api, blockchain-sync, and metrics
servers) have API endpoints that allow metrics to be fetched without authentication. For the api and
blockchain-sync servers, the metrics include detailed information about the Node.js environment,
such as memory and file descriptor limits, which could be useful to an attacker. For the metrics server,
the metrics include aggregate information about Permuto’s users and services.

Mitigation

We recommend that these API endpoints not be exposed to the Internet. Ideally, they should also require
authentication and be accessible only to administrators.

Status

The Chia Network team has confirmed that this API endpoint is not exposed to the internet. However, our
team did not directly verify this, as confirming it would require reviewing the deployment process, and
server configuration, which falls outside the scope of the audit.

Verification

Resolved.

Suggestion 3: Require User Authentication to Disable the
“Authorize Transactions with Biometrics or Device PIN” Toggle

Location

ui/keygen/KeyGenConfigPanel.swift#L81

Synopsis

The toggle determines whether a newly‑generated Secure Enclave key will embed the
.userPresence flag. If the flag is absent, the resulting key can sign silently, allowing any code within the

Security Audit Report | Permuto | Chia Network 14
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/chia-ent-wallet/blob/main/apps/api/src/metrics.ts
https://github.com/LeastAuthority/chia-ent-wallet/blob/main/apps/blockchain-sync/src/metrics.ts
https://github.com/LeastAuthority/chia-ent-wallet/blob/main/apps/metrics/src/metrics.ts
https://github.com/LeastAuthority/chia-signer-ios/blob/42dfe52c94a13730d2147bbe2c93a64b6fb9a9be/apple/shared/app/source/ui/keygen/KeyGenConfigPanel.swift#L81

application’s sandbox to execute SecKeyCreateSignature without invoking Face ID or a device
passcode prompt.

Since disabling the toggle does not require user re-authentication:

● Users may disable the protection accidentally or without understanding its permanence.
● “UI‑only” malware (such as tap injection or SwiftUI state manipulation) can silently downgrade the

setting during key generation and create harvestable keys.

The vulnerability is confined to the key that is about to be created; existing keys remain unaffected. No
other component currently compensates for this downgrade path.

Mitigation

We recommend requiring an immediate biometric or device passcode authentication when users attempt
to disable this toggle. If authentication fails or is canceled, the toggle should remain enabled. Conversely,
re-enabling the toggle (switching from OFF to ON) should remain straightforward and free from additional
authentication prompts.

Status

The Chia Network team now requires user authentication to disable the “Authorize Transactions with
Biometrics or Device PIN” toggle.

Verification

Resolved.

Suggestion 4: Improve Account Recovery Process

Synopsis

If an attacker gains unauthorized remote access to a vault user's iCloud BLS key and associated email
account, they could initiate a vault recovery process while simultaneously preventing the user from
receiving critical watchtower notifications. Although the initiation of recovery would be visible on-chain,
the legitimate user would be unaware, leaving them unable to take timely action to secure their vault
assets.

Mitigation

We recommend strengthening the watchtower node implementation by incorporating multiple
independent notification channels, such as simultaneous notifications to both the user and a trusted third
party (e.g., a family member or friend), thereby providing reliable alerts during vault recovery actions.
Additionally, we suggest enabling vault users to encrypt their iCloud-stored BLS keys with a symmetric
passphrase, thus increasing the difficulty for remote attackers to gain unauthorized access to the keys.

Status

The Chia Network team has added comments for their users suggesting the use of Apple’s Advanced
Data Protection system for securing their iCloud-stored keys, and has also implemented support for
additional emails.

Verification

Resolved.

Security Audit Report | Permuto | Chia Network 15
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/chia-signer-ios//commit//d711cbd9045a2d541f016e4b758ae9a26eca76bd
https://github.com/LeastAuthority/chia-ent-wallet/commit/cf059b864ecb916975787da4a96c8bdf748c9755

Suggestion 5: Update Vulnerable Dependencies

Location

chia-ent-wallet/package.json

chia-permuto-app/packages/client/package.json

chia-permuto-app/packages/server/package.json

Synopsis

Analyzing package.json for dependency versions using npm audit shows:

● 10 Vulnerabilities (7 moderate, 3 high) in the Enterprise Wallet repository;
● 2 Vulnerabilities (1 moderate, 1 critical) in the Permuto client and;
● 2 Vulnerabilities (2 moderate) in the Permuto server.

While the extent of their exploitability remains unclear, it is recommended to keep dependencies up to
date in order to avoid importing vulnerable code.

Mitigation

We recommend adopting a process that emphasizes secure dependency usage to avoid introducing
vulnerabilities to Permuto and to mitigate supply-chain attacks. This process should include:

● Manually reviewing and assessing currently used dependencies;
● Upgrading dependencies with known vulnerabilities to patched versions with fixes;
● Replacing unmaintained dependencies with secure and battle-tested alternatives, if possible;
● Pinning dependencies to specific versions, including pinning build-level dependencies in the

package.json file to a specific version;
● Only upgrading dependencies upon careful internal review for potential backward compatibility

issues and vulnerabilities; and
● Including Automated Dependency auditing reports in the project’s CI/CD workflow.

Status

The Chia Network team has updated the dependencies across all projects (see here and here).

Verification

Resolved.

Appendix

Appendix A: In-Scope Components

Audit 1: Permuto App and Chia Signer iOS Mobile App

The following code repositories and features are considered in-scope for this review:

● Permuto App:
○ https://github.com/Chia-Network/permuto-app

Security Audit Report | Permuto | Chia Network 16
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/chia-ent-wallet/blob/main/package.json
https://github.com/LeastAuthority/chia-permuto-app/blob/9ce50d40b9dc810e82681252e522d6ac62ed46f8/packages/client/package.json
https://github.com/LeastAuthority/chia-permuto-app/blob/9ce50d40b9dc810e82681252e522d6ac62ed46f8/packages/server/package.json
https://github.com/LeastAuthority/chia-ent-wallet/commit/9bb65d3a7491d7a3f3c05e91035588385d16992f
https://github.com/LeastAuthority/chia-permuto-app/commit/9f91cbf42770c5f712d7562e227cbb4a5411b103
https://github.com/Chia-Network/permuto-app

● Chia Signer iOS Mobile App:
○ https://github.com/Chia-Network/chia-signer-ios

Audit 2: Enterprise Wallet and Chia Wallet SDK

The following code repositories and features are considered in-scope for this review:

● Enterprise Wallet:
○ https://github.com/Chia-Network/ent-wallet/

● Vaults:
○ Vault Implementation:

■ https://github.com/LeastAuthority/chia-wallet-sdk/tree/main/crates/chia-sdk-dri
ver/src/primitives/vault

■ https://github.com/LeastAuthority/chia-wallet-sdk/blob/main/crates/chia-sdk-dri
ver/src/primitives/vault/vault_launcher.rs

■ https://github.com/LeastAuthority/chia-wallet-sdk/tree/main/crates/chia-sdk-dri
ver/src/primitives/mips

○ The MIPS and Vault binding wrapper::
■ https://github.com/LeastAuthority/chia-wallet-sdk/tree/main/crates/chia-sdk-bin

dings/src/mips
■ https://github.com/LeastAuthority/chia-wallet-sdk/blob/main/crates/chia-sdk-bi

ndings/src/mips.rs
■ https://gist.github.com/Quexington/32936e9a03bbf4f1956f3538096f2a83

○ The section in the CLVM bindings that spends vault coins:
■ https://github.com/xch-dev/chia-wallet-sdk/blob/bbd411fe7e3ce773067ff6c

c4db7b0cc315db01c/crates/chia-sdk-bindings/src/clvm.rs#L190-L220
○ Binding Tests:

■ https://github.com/LeastAuthority/chia-wallet-sdk/blob/main/napi/__test__/vault
s.spec.ts

○ Puzzles:
■ https://github.com/Chia-Network/chia_puzzles/pull/22
■ https://github.com/xch-dev/chia-wallet-sdk/crates/chia-sdk-types/src/puzzle

s/mips
○ The Merkle Tree implementation:

■ https://github.com/xch-dev/chia-wallet-sdk/blob/bbd411fe7e3ce773067ff6c
c4db7b0cc315db01c/crates/chia-sdk-types/src/merkle_tree.rs

● Token tracker
● Permuto API

Audit 3: CATs and Admin Tool

The following code repositories and features are considered in-scope for this review:

● Puzzles:
○ https://github.com/Chia-Network/chia_puzzles/pull/22

● CAT Admin Tool:
○ https://github.com/Chia-Network/CAT-admin-tool
○ Minting and melting of revocable CATs
○ Secure the bag payment

● CAT Revocation:
○ https://github.com/Chia-Network/chips/blob/c4ecddeeff2a9fad31dd8e69740e23e7dab9

eb01/CHIPs/chip-0038.md

Security Audit Report | Permuto | Chia Network 17
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Chia-Network/chia-signer-ios
https://github.com/Chia-Network/ent-wallet/
https://github.com/LeastAuthority/chia-wallet-sdk/tree/main/crates/chia-sdk-driver/src/primitives/vault
https://github.com/LeastAuthority/chia-wallet-sdk/tree/main/crates/chia-sdk-driver/src/primitives/vault
https://github.com/LeastAuthority/chia-wallet-sdk/blob/main/crates/chia-sdk-driver/src/primitives/vault/vault_launcher.rs
https://github.com/LeastAuthority/chia-wallet-sdk/blob/main/crates/chia-sdk-driver/src/primitives/vault/vault_launcher.rs
https://github.com/LeastAuthority/chia-wallet-sdk/tree/main/crates/chia-sdk-driver/src/primitives/mips
https://github.com/LeastAuthority/chia-wallet-sdk/tree/main/crates/chia-sdk-driver/src/primitives/mips
https://github.com/LeastAuthority/chia-wallet-sdk/tree/main/crates/chia-sdk-bindings/src/mips
https://github.com/LeastAuthority/chia-wallet-sdk/tree/main/crates/chia-sdk-bindings/src/mips
https://github.com/LeastAuthority/chia-wallet-sdk/blob/main/crates/chia-sdk-bindings/src/mips.rs
https://github.com/LeastAuthority/chia-wallet-sdk/blob/main/crates/chia-sdk-bindings/src/mips.rs
https://gist.github.com/Quexington/32936e9a03bbf4f1956f3538096f2a83
https://github.com/xch-dev/chia-wallet-sdk/blob/bbd411fe7e3ce773067ff6cc4db7b0cc315db01c/crates/chia-sdk-bindings/src/clvm.rs#L190-L220
https://github.com/xch-dev/chia-wallet-sdk/blob/bbd411fe7e3ce773067ff6cc4db7b0cc315db01c/crates/chia-sdk-bindings/src/clvm.rs#L190-L220
https://github.com/LeastAuthority/chia-wallet-sdk/blob/main/napi/__test__/vaults.spec.ts
https://github.com/LeastAuthority/chia-wallet-sdk/blob/main/napi/__test__/vaults.spec.ts
https://github.com/Chia-Network/chia_puzzles/pull/22
https://github.com/xch-dev/chia-wallet-sdk/tree/bbd411fe7e3ce773067ff6cc4db7b0cc315db01c/crates/chia-sdk-types/src/puzzles/mips
https://github.com/xch-dev/chia-wallet-sdk/tree/bbd411fe7e3ce773067ff6cc4db7b0cc315db01c/crates/chia-sdk-types/src/puzzles/mips
https://github.com/xch-dev/chia-wallet-sdk/blob/bbd411fe7e3ce773067ff6cc4db7b0cc315db01c/crates/chia-sdk-types/src/merkle_tree.rs
https://github.com/xch-dev/chia-wallet-sdk/blob/bbd411fe7e3ce773067ff6cc4db7b0cc315db01c/crates/chia-sdk-types/src/merkle_tree.rs
https://github.com/Chia-Network/chia_puzzles/pull/22
https://github.com/Chia-Network/CAT-admin-tool
https://github.com/Chia-Network/chips/blob/c4ecddeeff2a9fad31dd8e69740e23e7dab9eb01/CHIPs/chip-0038.md
https://github.com/Chia-Network/chips/blob/c4ecddeeff2a9fad31dd8e69740e23e7dab9eb01/CHIPs/chip-0038.md

Out of Scope
The following items are considered out of scope for this review:

● Other unlisted actions defined within the CAT-admin-tool,
● CAT2 standard (in the CAT Revocation),
● Permuto processes,
● User brokerage,
● IRS Reporting, and
● Any dependency and third-party code, unless specifically included above.

The above in-scope audit target was provided by the Chia Network team to Least Authority and assessed
for the purposes of this report.

In addition, any dependency and third-party code, unless specifically included above, were considered out
of the scope of this audit.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Security Audit Report | Permuto | Chia Network 18
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets,
and generally investigate details other than the implementation. We hypothesize what vulnerabilities may
be present and possibly resulting in Issue entries, then for each, we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful

Security Audit Report | Permuto | Chia Network 19
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Permuto | Chia Network 20
31 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

	Permuto
	Overview
	Background
	Project Dates
	Audit 1: Permuto App and Chia Signer iOS Mobile App
	Audit 2: Enterprise Wallet and Chia Wallet SDK
	Audit 3: CATs and Admin Tool

	Review Team

	Coverage
	Target Code and Revision
	Supporting Documentation
	Areas of Concern

	Findings
	General Comments
	Permuto App and Chia iOS Signer
	Enterprise Wallet and Vault Implementation
	CAT Admin Tool and Vault Puzzles
	Dependencies
	Code Quality
	Tests

	Documentation and Code Comments
	Scope

	Specific Issues & Suggestions
	Issue A: Timestamp Manipulation for Dividend Arbitrage
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Mitigation
	Remediation
	Status
	Verification

	Issue B: Race Condition in Key-Based Authentication
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Remediation
	Status
	Verification

	Issue C: Potential Replay Attack Against Key-Based Authentication
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Remediation
	Status
	Verification

	Issue D: Next.js Authorization Bypass Vulnerability
	Location
	Synopsis
	Impact
	Feasibility
	Severity
	Preconditions
	Technical Details
	Mitigation
	Remediation
	Status
	Verification

	Suggestions
	Suggestion 1: Use a Strong Source of Randomness for Generating OAuth Refresh Tokens
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 2: Restrict Access to Metrics Endpoints
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 3: Require User Authentication to Disable the “Authorize Transactions with Biometrics or Device PIN” Toggle
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 4: Improve Account Recovery Process
	Synopsis
	Mitigation
	Status
	Verification

	Suggestion 5: Update Vulnerable Dependencies
	Location
	Synopsis
	Mitigation
	Status
	Verification

	Appendix
	Appendix A: In-Scope Components
	Audit 1: Permuto App and Chia Signer iOS Mobile App
	Audit 2: Enterprise Wallet and Chia Wallet SDK
	Audit 3: CATs and Admin Tool

	Out of Scope

	About Least Authority
	Our Methodology
	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Resolutions & Publishing

